首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper addresses observed variations in cosmic ray (CR) intensity, the interplanetary magnetic field (IMF), the solar wind (SW) turbulence energy spectrum, and the energy spectrum index of Forbush decreases in the 20th–23rd solar cycles. Unlike the previous three cycles, there are some distinctive features in the 23rd solar cycle. The entire cycle shows a considerable increase in the index of the SW turbulence energy spectrum inclination and an substantially harder energy spectrum of Forbush decreases. The anomalously high flux of high-energy CRs and the anomalously low level of the IMF strength were recorded at the end of this cycle. The conclusion has been made that such unusual CR behavior is associated with a decrease in the degree of scattering in the resonance interaction between CR fluxes and SW inhomogeneities with spatial scales of ∼1012 cm.  相似文献   

2.
A weak active region (NOAA 11158) appeared on the solar disk near the eastern limb. This region increased rapidly and, having reached the magnetic flux higher than 1022 Mx, produced an X-class flare. Only weak field variations at individual points were observed during the flare. An analysis of data with a resolution of 45 s did not indicate any characteristic features in the photospheric field dynamics during the flare. When the flux became higher than 3 × 1022 Mx, active region NOAA 10720 produced six X-class flares. The field remained quiet during these flares. An increase in the magnetic flux above ~1022 Mx is a necessary, but not sufficient, condition for the appearance of powerful flares. Simple active regions do not produce flares. A flare originates only when the field distribution in an active region is complex and lines of polarity inversion have a complex shape. Singular lines of the magnetic field can exist only above such active regions. The current sheets, in the magnetic field of which the solar flare energy is accumulated, originate in the vicinity of these lines.  相似文献   

3.
The possibilities of improving the semiempirical model of cosmic ray (CR) modulation, proposed by us previously, are discussed. The following characteristics have been considered as model parameters in order to describe long-period CR variations using a unified model and to more completely reflect solar cycles in CR modulation as a complex interaction between two systems of fields (large-scale and local): the value and sign of the polar solar field, the average strength of the solar magnetic field (the B ss integral index), partial indices (zone-even (ZE) and zone-odd (ZO) and sector-even (SE) and sector-odd (SO) indices), the tilt of the heliospheric current sheet, and the special index (F x ) taking into account X ray flares. The role of each index in CR modulation has been revealed. When we described the long-term CR variations using many parameters and taking into account the integral index or one of four partial indices, the best results of modulation modeling during 1976–1999 were obtained for the B ss total energetic index and SO index. A difference between the model calculations and observations increases beginning from the middle of 2000; the problem features of the CR behavior and the specific features of modeling this behavior in cycle 23 of solar activity (SA) are discussed. It is assumed that a decrease in the CR density at the last SA minimums (from cycle to cycle) can be related to a decrease in the ZO index and to a recently detected similar decrease in the vertical component of the solar dipole magnetic moment.  相似文献   

4.
Based on observations of long-term variations in galactic cosmic rays (CRs) on Earth and in the near-Earth space, we have determined, using our own semiempirical model, modulation of galactic CRs during solar cycles 19–23. The modulation model relates CR variations to the characteristics of the solar magnetic field obtained for the surface of the solar wind source at distances of 2.50 and 3.25 solar radii. The main focus is CR behavior at the minimums of cycles 19–23 and specific features of CR modulation at a prolonged (as compared to previous cycles) minimum of cycle 23, which is still ongoing. CR modulation at minimums related to a change in the solar field dipole component during this period of the cycle has been considered. It is indicated that the long-term variations in CRs are better described if the last two years (2007 and 2008) of cycle 23 with anomalously low solar activity (SA) are included in the model. The role and value of the contribution of the cyclic variations in each index used in the proposed CR modulation model to the observed CR modulation have been estimated.  相似文献   

5.
The data on fluxes of electrons with energy Ee > 1 MeV and on radiation doses under the Al shielding of about 2 g/cm2 measured on the GLONASS satellite (circular orbit with altitude 20000 km and inclination 65°) for the period from December 2006 through May 2010 are analyzed. The minimum of the 23rd solar cycle turned out to be the longest for all over the space exploration age. Consequently, average semiannual electron fluxes and daily radiation doses are showing the decrease by more than an order of magnitude in comparison with the levels observed in 2007. We present an example of a diffusion wave of relativistic electrons; the wave develops in a period between magnetic storms. This process may result in a significant increase of the radiation dose measured in the orbit, even under the conditions of weak geomagnetic disturbances. The dynamics of variations in relativistic electron fluxes during the magnetic storm of April 5?C6, 2010, is discussed so far as this is the first strong flux enhancement in the 24th solar cycle.  相似文献   

6.
The dynamics of the absolute global values (Φ) of the large-scale open solar magnetic field (LOSMF) fluxes at an interval of one solar rotation in 2006–2012 has been studied based on the Wilcox Solar Observatory data and using the ISOPAK original package for modeling the solar magnetic field. The reference points and the duration of the final quasi-biennial interval in cycle 23 (January 2006–May 2007; 17 months) and the phases of the cycle 24 minimum (May 2007–November 2009; 30 months), growth (November 2009–May 2012; 30 months), and the beginning of the maximum (May 2012–January 2013) have been determined. It has been indicated that the absolute values (Φ) decreased sharply at the beginning of the minimum, growth, and the maximum phases to ~(2, 1.25, 0.75) × 1022 Mx, respectively. During the entire minimum phase, LOSMF corotated super-quasi-rigidly westward in the direction of solar rotation; at the beginning of the growth phase, this field started corotating mostly eastward. The LOSMF polarity reversal in the current cycle 24 started in May–June 2012 (CR 2123–2124), when fields of southern polarity rushed from the Sun’s southern hemisphere toward the north. The statement that the solar cycle is a continuous series of quasi-biennial LOSMF intervals is confirmed. In particular, the minimum and growth phases are characterized by opposite LOSMF rotation directions, i.e., super-quasi-rigid corotation (twisting) and detwisting, with identical duration at least in cycle 24.  相似文献   

7.
During the declining phase of the last three solar cycles, secondary peaks have been detected 2–3 years after the main peak of sunspot number. The main peak of cycle 23 was in 2001, but a sudden increase of the solar activity occurred during the period October 17 to November 10, 2003 (the so-called Halloween storms). A similar storm occurred 1 year later, during the period October 3 to November 13, 2004. These events are considered as secondary peaks during the declining phase of cycle 23. Secondary peaks during declining phase of the last 10 solar cycles were detected by Gonzalez and Tsurutani [1990. Planetary and Space Science 38, 181–187]. During Halloween storm period, the sunspot area increased up to 1.11×10?9 hemisphere on October 19, and grow up to 5.69×10?9 hemisphere on October 30, 2003. Then it decreased to 1.11×10?9 hemisphere on November 4, 2003. Also, the radio flux of λ=10.7 cm increased from 120 sfu on October 19, to 298 sfu on October 26, 2003, then decreased to 168 sfu on November 4, 2003. Two eruptive solar proton flares were released on 26 and 28 October 2003, the latter being the most eruptive flare recorded since 1976 (values reaching X17/4B).The aim of this study is to follow the morphological and magnetic changes of the active region before, during, and after the production of high-energy flares. Furthermore, the causes of release of these eruptive storms have been discussed for the period, October–November 2003, during the declining phase of the solar cycle 23.  相似文献   

8.
Based on the known forecast of solar cycle 25 amplitude (Rz max ≈ 50), the first assessments of the shape and amplitude of this cycle in the index of solar activity F10.7 (the magnitude of solar radio flux at the 10.7 cm wavelength) are given. It has been found that (F10.7)max ≈ 115, which means that it is the lowest solar cycle ever encountered in the history of regular ionospheric measurements. For this reason, many ionospheric parameters for cycle 25, including the F2-layer peak height and critical frequency (hmF2 and foF2), will be extremely low. For example, at middle latitudes, typical foF2 values will not exceed 8–10 MHz, which makes ionospheric heating ineffective in the area of upper hybrid resonance at frequencies higher than 10 MHz. The density of the atmosphere will also be extremely low, which significantly extends the lifetime of low-orbit satellites. The probability of F-spread will be increased, especially during night hours.  相似文献   

9.
Recent years allowed us to study long-term variations in the cosmic ray (CR) intensity at an unusually deep solar activity (SA) minimum between cycles 23 and 24 and during the SA growth phase in cycle 24, which was the cycle when SA was the lowest for the epoch of regular ground-based CR observations since 1951. The intensity maximum, the value of which depends on the particle energy, was observed in CR variations during the period of an unusually prolonged SA minimum: the CR density during the aformentioned period (2009) is higher than this density at previous CR maxima in cycles 19–23 for low-energy particles (observed on spacecraft and in the stratosphere) and medium-energy particles (observed with neutron monitors). After 2009 CR modulation at the SA growth phase was much weaker over three years (2010–2012) than during the corresponding SA growth periods in the previous cycles. The possible causes of this anomaly in CR variations, which are related to the CR residual modulation value at a minimum between cycles 23 and 24 and to variations in SA characteristics during this period, were examined. The contribution of different solar magnetic field characteristics and indices, taking into account sporadic solar activity, has been estimated.  相似文献   

10.
We investigate here the fluctuations in the total, open and closed solar magnetic flux (SMF) for the period 1971–1999 by means of the maximum entropy method in the frequency range 5×10−9–10−7 Hz (6 yr to 120 days). We use monthly data for the total, open and closed magnetic solar fluxes. Periodicities found in the series are similar showing that there is some relationship between the fluxes. The most important finding of this work is the existence of fluctuations at around 1.3 and 1.7 yr in the SMF with alternating importance during consecutive even and odd solar cycles. These fluctuations are directly related with variations present in cosmic rays, solar wind parameters and geomagnetic activity indexes. A quasi-triennial periodicity previously found in sunspots and other solar phenomena is also of importance. The SMF is generated by the action of the solar dynamo; therefore, it is through the magnetic flux that the solar dynamo influences several heliospheric phenomena.  相似文献   

11.
The magnetic flux longitudinal distribution in the equatorial solar zone has been studied. The magnetic synoptic maps of the Wilcox Solar Observatory (WSO) during Carrington rotations (CRs) 2052–2068 in 2007 and early 2008 have been analyzed. The longitudinal distributions of the area of the zones where the photospheric magnetic field locally enhanced have been constructed for each CR. The obtained distributions indicate that the zones are located discretely and that a clearly defined one narrow longitudinal interval with the maximum flux is present. The longitudinal position of this maximum shifted discretely by ≈130° at an interval of 5.5 ± 0.5 CRs. A longitudinal shift of the zones with an increased magnetic flux multiple of 60° was observed between the hemispheres. In addition, a time shift of ≈2.5 CRs existed between the instants when the position of maximum fluxes in different hemispheres shifted. The established peculiarities of the magnetic flux longitudinal distribution and time dynamics are interpreted as an action of supergiant convection cells. These actions result in that magnetic fields are removed from the generation region through the channels that are formed between such cells at a longitudinal interval of 120°. The average synodic rotation velocity of the considered equatorial channels, through which the magnetic flux emerges, is 13.43° day–1.  相似文献   

12.
Unique measurements by a solar submillimeter radio telescope (SST) have been carried out in the sub-THz radiation at 212 and 405 THz over the past decade. The spectrum of RF radiation in this region increased with frequency for the three flares of November 2 and 4, 2003, and December 6, 2006, and the flux value reached 5 × 103?2 × 104 sfu at 405 GHz (Kaufman et al., 2009). In this work, we consider a set of nonlinear equations for an accelerated electrons beam and the Langmuir wave energy density. The distribution functions of the accelerated electron beam and wave energy density are calculated taking into account Coulomb collisions, electron scattering by waves, and wave scattering by plasma ions. In addition, the source of accelerated particles and the heat level of the Langmuir turbulence are specified. The beam and plasma parameters are chosen based on the aims of a problem. The plasma concentration varies from n = 1013 to 1015 cm?3, the electron plasma frequency f p = (3 × 1010?3 × 1011) Hz in this case. The ratio of plasma and beam concentrations, sufficient to explain the value of the radio flux at a frequency of 300 GHz, is n b/n = 10?3. The Langmuir turbulence is excited due to the instability of the accelerated electron beam with an initial distribution function of the ??bump-in-tail?? type. Then, the parameters of radiowaves are calculated in the sub-THz range under the assumption of coalescence of two plasma waves. The calculation results show that a sub-THz radio flux can be obtained under the condition of injection of accelerated electrons. The fine time structure of radio flux observed is easily simulated based on this statement by the pulsed time structure of electron beams and their dynamics in overdense plasma. X-ray and gamma radiation was recorded during the events under study. Hard X-ray radiation is bremsstrahlung radiation from accelerated electron beams.  相似文献   

13.
Line-of-sight magnetograms acquired by the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamic Observatory (SDO) and by the Michelson Doppler Imager (MDI) onboard the Solar and Heliospheric Observatory (SOHO) for 14 emerging ARs were used to study the derivative of the total unsigned flux–the flux emergence rate, R(t). We found that the emergence regime is not universal: each AR displays a unique emergence process. Nevertheless, two types of the emergence process can be identified. First type is a “regular” emergence with quasi-constant behavior of R(t) during a 1–3 day emergence interval with a rather low magnitude of the flux derivative, Rmax = (0.57 ± 0.22) × 1022 Mx day–1. The second type can be described as “accelerated” emergence with a long interval (>1 day) of the rapidly increasing flux derivative R(t) that result in a rather high magnitude of Rmax= (0.92 ± 0.29) × 1022 Mx day–1, which later changes to a very short (about a one third of day) interval of R(t) = const followed by a monotonous decrease of R(t). The first type events might be associated with emergence of a flux tube with a constant amount of flux that rises through the photosphere with a quasi-constant speed. Such events can be explained by the traditional largescale solar dynamo generating the toroidal flux deep in the convective zone. The second-type events can be interpreted as a signature of sub-surface turbulent dynamo action that generates additional magnetic flux (via turbulent motions) as the magnetic structure makes its way up to the solar surface.  相似文献   

14.
The present-day state of the studies of the outer radiation belt relativistic electrons and the boundary of the solar proton penetration into the magnetosphere during magnetic storms is briefly reviewed. The main attention is paid to the results from studying the interrelation between these structural formations and other magnetospheric plasma structures. It has been indicated that the relationship between the position of the maximum of belt of relativistic electrons injected during magnetic storms (L max) and the magnetic storm amplitude (|Dst|max = 2.75 × 104/L max4) can be used to predict the extreme latitudinal position of such magnetospheric plasma formations as a trapped radiation region boundary, the nighttime equatorial boundary of the auroral oval, and westward electrojet center during a storm. Using the examples of still rare studies of the solar proton boundary dynamics in the magnetosphere based on the simultaneous measurements on several polar satellites, it has been demonstrated that a change in the geomagnetic field topology during magnetic storms can be diagnosed.  相似文献   

15.
The Apollo 12 mission brought back sections of the Surveyor 3 vehicle suitable for mass spectrometric studies of implanted solar wind and solar cosmic rays. Using this method, we have determined an average solar wind 4He flux of 6.1 × 106 ions/cm2 sec for the 31 months of exposure. We have also measured 4He/3He= 2700 ± 50;4He/20Ne= 410 ± 30;20Ne/22Ne= 13.5 ± 0.2;20Ne/36Ar= 24.5 ± 2.5; and 36Ar/38Ar= 5.41 ± 0.20. These measurements provide solar wind values averaged over considerably longer periods of time than the Apollo Solar Wind Composition experiments and suggest that the short term SWC measurements during a period of high solar activity may not be a reliable measure of average solar wind composition.  相似文献   

16.
Based on the DMSP F6 and F7 satellite observations, the characteristics of precipitating particles in different auroral precipitation regions of the dayside sector have been studied depending on the solar wind plasma density. Under quiet geomagnetic conditions (|AL| < 100 nT and B z > 0), a considerable increase in the fluxes of precipitating ions is observed in the zones of structured auroral oval precipitation (AOP) and soft diffuse precipitation (SDP). A decrease in the mean energy of precipitating ions is observed simultaneously with the flux growth in these regions. The global pattern of variations in the fluxes of precipitating ions, which shows the regions of effective penetration of solar wind particles into the magnetosphere at a change in the solar wind density from 2 to 20 cm?3, has been constructed. The maximal flux variation (ΔJ i = 1.8 · 107 cm?2 s?1, i.e., 3.5% of an increase in the solar wind particle flux) is observed in the SDP region on the dayside of the Earth. The dependence of precipitating ion fluxes in the low-latitude boundary layer (LLBL), dayside polar cusp, and mantle on the solar wind density at positive and negative values of the IMF B z component has been studied. In the cusp region, an increase in the precipitating ion flux is approximately 17% of an increase in the solar wind density. The IMF southward turning does not result in an appreciable increase in the ion precipitation fluxes either in the cusp or in the mantle. This fact can indicate that the reconnection of the geomagnetic field with southward IMF is not the most effective mechanism for penetration of solar wind particles into these regions.  相似文献   

17.
Time variations in strong and weak photospheric magnetic fields have been considered based on synoptic maps from the Kitt Peak observatory for 1976?C2003. The magnetic fields of positive and negative polarities of the Northern and Southern hemispheres of the Sun and their imbalance were studied. It has been indicated that different groups of magnetic fields vary with 11-or 22-year periods depending on their values. The difference between positive and negative fluxes for each hemisphere always varies with a 22-year period. For weak fields, the 22-year cycle is related to the manifestation of the global solar magnetic field. For strong fields, the imbalance between positive and negative fluxes reflects the predominant role of leading sunspots in a given solar hemisphere. It has been detected that the total magnetic flux over the entire solar disk varies with an 11-year period in antiphase with the solar activity cycle for the weakest magnetic fields (0?C5 G).  相似文献   

18.
We study the mutual relation of sunspot numbers and several proxies of solar UV/EUV radiation, such as the F10.7 radio flux, the HeI 1083 nm equivalent width and the solar MgII core-to-wing ratio. It has been noted earlier that the relation between these solar activity parameters changed in 2001/2002, during a large enhancement of solar activity in the early declining phase of solar cycle 23. This enhancement (the secondary peak after the Gnevyshev gap) forms the maximum of solar UV/EUV parameters during solar cycle 23. We note that the changed mutual relation between sunspot numbers and UV/EUV proxies continues systematically during the whole declining phase of solar cycle 23, with the UV/EUV proxies attaining relatively larger values for the same sunspot number than during the several decennia prior to this time. We have also verified this evolution using the indirect solar UV/EUV proxy given by a globally averaged f0(F2) frequency of the ionospheric F2 layer. We also note of a simultaneous, systematic change in the relation between the sunspot numbers and the total solar irradiance, which follow an exceptionally steep relation leading to a new minimum. Our results suggest that the reduction of sunspot magnetic fields (probably photospheric fields in general), started quite abruptly in 2001/2002. While these changes do not similarly affect the chromospheric UV/EUV emissions, the TSI suffers an even more dramatic reduction, which cannot be understood in terms of the photospheric field reduction only. However, the changes in TSI are seen to be simultaneous to those in sunspots, so most likely being due to the same ultimate cause.  相似文献   

19.
Global electron content (GEC) as a new ionospheric parameter was first proposed by Afraimovich et al. [2006]. GEC is equal to the total number of electrons in the near-Earth space. GEC better than local parameters reflects the global response to a change in solar activity. It has been indicated that, during solar cycle 23, the GEC dynamics followed similar variations in the solar UV irradiance and F 10.7 index, including the 11-year cycle and 27-day variations. The dynamics of the regional electron content (REC) has been considered for three belts: the equatorial belt and two midlatitude belts in the Northern and Southern hemispheres (±30° and 30°–65° geomagnetic latitudes, respectively). In contrast to GEC, the annual REC component is clearly defined for the northern and southern midlatitude belts; the REC amplitude is comparable with the amplitude of the seasonal variations in the Northern Hemisphere and exceeds this amplitude in the Southern Hemisphere by a factor of ~1.7. The dayside to nightside REC ratio, R(t), at the equator is a factor of 1.5 as low as such a GEC ratio, which indicates that the degree of nighttime ionization is higher, especially during the solar activity maximum. The pronounced annual cycle with the maximal R(t) value near 8.0 for the winter Southern Hemisphere and summer Northern Hemisphere is typical of midlatitudes.  相似文献   

20.
Results of the study of activity complexes of (AC) on the Sun that evolved during the 23rd solar cycle (SC) are presented. Based on ananalysis of synoptic charts of sunspot activity, 69 AC cores have been detected in the Northern Hemisphere, and 77 AC cores, in the Southern Hemisphere during the 23rd SC. An AC core catalogue has been composed. We have found an increase in the number of AC cores with lifetime (maximum 14 rotations); their nonuniform longitudinal distribution; and a local drop in the number of AC cores during the 23rd SC maximum (1967th–1979th rotations, October 2000–August 2001). The quasiperiodic character of variations in the total rotation-to-rotation power of AC cores during the cycle has been ascertained; the quasi-has 12–14 rotations. A feature of the 23rd SC is a prolonged period of AC generation in comparison with the 22nd SC. Last AC cores in the Southern Hemisphere were observed until the 144th rotation after the previous minimum according to the Wolf numbers (to the 110th rotation in the 22nd SC). The total number of AC cores in the 23rd SC (146) far exceeds that in the 22nd SC (104). Ninety-four percent of high-power proton flares with an energy higher than 10 MeV and a flux of more than 10/(s sm2 sr) at the Earth’s orbit occurred near the AC cores. The total number of proton flares related to AC cores of the above class increased: 48 in the 22nd SC versus 62 in the 23rd SC. We have also revealed a strong north-south asymmetry in the AC evolution manifesting itself in different indices describing AC on the Sun.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号