首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
赵宗慈 《大气科学》1990,14(1):118-127
本文总结五个应用较广的全球大气与海洋环流模式(GFDL,GISS,NCAR,OSU与UKMO),模拟由于人类活动造成大气中二氧化碳浓度增加对气候变化的影响模拟表明,由于大气中二氧化碳浓度增加,将导致全球地面气温增暖大约4℃,其中高纬与极区冬季增暖更明显。高纬与极区海冰和积雪融化增加。全球降水率与土壤湿度在部分地区明显增加,部分地区明显减少,引人注意的是中纬度地区土壤湿度可能变干燥。 本文还给出发达国家与发展中国家在能源战略的各种考虑下各自相应对大气中二氧化碳浓度的影响,以及展望未来由于人类活动的结果,将对全球大气与海洋温度的变暖和土壤湿度变化的影响。  相似文献   

2.
本文利用一个全球九层大气环流模式,对大气CO2浓度倍增以及CO2浓度倍增同时海温升高进行了两个数值试验。主要分析了CO2浓度增加对我国夏季气候的影响。在仅仅考虑CO2浓度倍增的情况下,我国大部分地区气温升高,尤其在西北地区升温最多,但是长江中、下游地区则是降温。考虑CO2浓度倍增后大气对海洋的感热作用使海表温度上升,所得结果基本相同,但升温幅度增大。大气中CO2浓度倍增后,我国降水分布有所改变,西北地区更加干燥,沿海地区更加湿润。  相似文献   

3.
杨梅玉 《应用气象学报》1997,8(A00):209-216
文章简要综述了次网格尺度海非均匀性大对大气环流模式性能的影响,南极冰在全球环流和短期气候变化中的作用,以及模式中不同的海冰反照率参数化对地表温度和辐射的影响等研究结果,说明海冰对极地海洋和大气的能量收支及短期气候变化有重要作用,不同的海洋参数化方案对气候模拟结果有重要影响。  相似文献   

4.
本文利用全球三维大气耦合混合层海洋环流模式模拟大气中二氧化碳浓度增加对土壤湿度的影响。敏感试验(2×CO_2)与控制试验(1×CO_2)对照表明,当大气中二氧化碳浓度增加时,全球土壤湿度在各季发生明显变化。其中两半球低纬度地区在冬季土壤温度变温,两半球中纬度地区则在各季土壤湿度变干,北半球高纬度地区土壤湿度在夏季变干,其余各季变温。分析大气中二氧化碳浓度增加造成土壤温度全球变化的可能物理机制表明,地面水循环和热量循环是重要的因素。  相似文献   

5.
大气中CO2等温室气体的增加,使全球气候有可能变暖。未来气候将如何变化?对人类会有什么影响?我们应该采取什么对策?科学工作者对这些问题从不同的角度进行了广泛的探讨。现代的气候研究手段──大气环流模拟试验表明,大气中CO2浓度增加,全球表面平均温度可能升高,南北极冰原的大量融化会导致海平面上升,海岸和河口会发生变化,对生态、农业、水资源、甚至整个社会经济产生广泛的影响。卫气候变暖及其对海洋的影响随着气温的升高,高山冰川和极地冰架消融,海水体积膨胀,导致海平面上升。在过去100年间,全球表面平均温度上升0.…  相似文献   

6.
气溶胶气候效应的一维模式分析   总被引:4,自引:1,他引:4  
赵凤生  石广玉 《大气科学》1994,18(Z1):902-909
本文首先采用一线辐射对流模式,分析了乡村型、城市型气溶胶和平流层气溶胶含量增加对全球地表气温的直接影响以及硫酸盐粒子含量增加对全球地表气温的间接影响。然后利用考虑了海洋热惯性作用的EBM/BD模式,模拟了近百年来由于大气中硫酸盐粒子含量变化、火山爆发和大气温室气体浓度增加共同引起的全球地表平均气温变化。结果表明:气溶胶的气候效应在地气系统辐射收支和全球气温变化研究中起着非常重要的作用。  相似文献   

7.
七月大气环流对南极海冰异常的响应   总被引:2,自引:0,他引:2  
王召民  黄土松 《气象科学》1994,14(4):311-321
本文用一个全球大气九层谱模式,模拟了七月份南极两个不同海区海冰区异常对大气环流的影响。主要讨论了大气环流对南极海冰异常存在的局地性的及全球性的响应。细致分析了二个区域极冰异常导致的南北半球低频波列分布的差异,以及它们对热带区域及亚洲季风区降水、越赤道气流的不同影响。最后则依据我们的模拟结果,讨论了南极海冰异常影响全球大气环流的动力学机制。  相似文献   

8.
海冰在大气环流模式中的重要作用   总被引:1,自引:0,他引:1  
文章简要综述了次网格尺度海冰非均匀性对大气环流模式性能的影响;南极冰在全球环流和短期气候变化中的作用;以及模式中不同的海冰反照率参数化对地表温度和辐射的影响等研究结果.说明海冰对极地海洋和大气的能量收支及短期气候变化有重要作用,不同的海冰参数化方案对气候模拟结果有重要影响.  相似文献   

9.
模拟温室效应对我国气候变化的影响   总被引:22,自引:0,他引:22  
赵宗慈 《气象》1989,15(3):10-14
利用5个全球大气海洋海冰模式,模拟了大气中二氧化碳浓度的增加对我国冬季与夏季地面气温、降水率及土壤湿度的影响。结果表明,由于温室效应,我国冬、夏季气温增暖,降水率与土壤湿度也有明显变化。  相似文献   

10.
大气中CO2浓度增加对大气顶射出辐射影响的监测   总被引:1,自引:0,他引:1  
本文分析了大气中CO2浓度增加对2380-2400 cm-1范围大气顶射出辐射的影响,对温度和其它一些大气成分可能的干扰也进行了考察,提出了可以从卫星上对CO2浓度增加的辐射影响进行监测的通道。  相似文献   

11.
Here we present a set of regional climate scenarios of sea level rise for the northeast Atlantic Ocean. In this study, the latest observations and results obtained with state-of-the-art climate models are combined. In addition, regional effects due to ocean dynamics and changes in the Earth’s gravity field induced by melting of land-based ice masses have been taken into account. The climate scenarios are constructed for the target years 2050 and 2100, for both a moderate and a large rise in global mean atmospheric temperature (2 °C and 4 °C in 2100 respectively). The climate scenarios contain contributions from changes in ocean density (global thermal expansion and local steric changes related to changing ocean dynamics) and changes in ocean mass (melting of mountain glaciers and ice caps, changes in the Greenland and Antarctic ice sheets, and (minor) terrestrial water-storage contributions). All major components depend on the global temperature rise achieved in the target periods considered. The resulting set of climate scenarios represents our best estimate of twenty-first century sea level rise in the northeast Atlantic Ocean, given the current understanding of the various contributions. For 2100, they yield a local rise of 30 to 55 cm and 40 to 80 cm for the moderate and large rise in global mean atmospheric temperature, respectively.  相似文献   

12.
Sea-level records show large glacial-interglacial changes over the past million years, which on these time scales are related to changes of ice volume on land. During the Pleistocene, sea-level changes induced by ice volume are largely caused by the waxing and waning of the large ice sheets in the Northern Hemisphere. However, the individual contributions of ice in the Northern and Southern Hemisphere are poorly constrained. In this study, for the first time a fully coupled system of four 3-D ice-sheet models is used, simulating glaciations on Eurasia, North America, Greenland and Antarctica. The ice-sheet models use a combination of the shallow ice and shelf approximations to determine sheet, shelf and sliding velocities. The framework consists of an inverse forward modelling approach to derive a self-consistent record of temperature and ice volume from deep-sea benthic δ18O data over the past 1 million years, a proxy for ice volume and temperature. It is shown that for both eustatic sea level and sea water δ18O changes, the Eurasian and North American ice sheets are responsible for the largest part of the variability. The combined contribution of the Antarctic and Greenland ice sheets is about 10 % for sea level and about 20 % for sea water δ18O during glacial maxima. However, changes in interglacials are mainly caused by melt of the Greenland and Antarctic ice sheets, with an average time lag of 4 kyr between melt and temperature. Furthermore, we have tested the separate response to changes in temperature and sea level for each ice sheet, indicating that ice volume can be significantly influenced by changes in eustatic sea level alone. Hence, showing the importance of a simultaneous simulation of all four ice sheets. This paper describes the first complete simulation of global ice-volume variations over the late Pleistocene with the possibility to model changes above and below present-day ice volume, constrained by observations of benthic δ18O proxy data.  相似文献   

13.
陈琪  张华  荆现文  谢冰 《气象学报》2017,75(4):607-617
将包含多形状冰晶粒子的冰云辐射参数化方案应用于全球气候模式中,详细讨论了冰云粒子从球形假定到多形状假定的变化对辐射场和气候场的影响。结果显示,冰晶粒子形状假定的引入对冰云光学厚度、辐射通量和加热率以及温度场均有明显的影响。采用新的冰云方案使得全球平均云光学厚度值降低0.28(23%);热带地区降低最为明显,其差异绝对值可达1.02,而在中高纬度陆地地区,两者的冰云光学厚度差别较小。冰晶粒子形状假定改变将导致全球平均的大气顶出射长波辐射通量增加5.52 W/m2(2.3%)。与观测资料的比较表明,多形状冰晶粒子假定明显减小了球形粒子假定对长波出射辐射的低估。对大气加热率廓线的模拟显示,多形状冰晶粒子假定会减弱短波辐射对大气的加热作用,同时增强长波辐射对大气的冷却作用;在热带对流层中高层,这两种影响尤为显著。冰晶粒子形状假定的改变对温度场有明显的影响,热带地区的对流层高层大气温度降低幅度可超过1.5 K。研究表明,冰晶粒子形状假定的改变对模拟的辐射和温度场均有重要的影响。   相似文献   

14.
The contributions of expanded continental ice, reduced atmospheric CO2, and changes in land albedo to the maintenance of the climate of the last glacial maximum (LGM) are examined. A series of experiments is performed using an atmosphere-mixed layer ocean model in which these changes in boundary conditions are incorporated either singly or in combination. The model used has been shown to produce a reasonably realistic simulation of the reduced temperature of the LGM (Manabe and Broccoli 1985b). By comparing the results from pairs of experiments, the effects of each of these environmental changes can be determined.Expanded continental ice and reduced atmospheric CO2 are found to have a substantial impact on global mean temperature. The ice sheet effect is confined almost exclusively to the Northern Hemisphere, while lowered CO2 cools both hemispheres. Changes in land albedo over ice-free areas have only a minor thermal effect on a global basis. The reduction of CO2 content in the atmosphere is the primary contributor to the cooling of the Southern Hemisphere. The model sensitivity to both the ice sheet and CO2 effects is characterized by a high latitude amplification and a late autumn and early winter maximum.Substantial changes in Northern Hemisphere tropospheric circulation are found in response to LGM boundary conditions during winter. An amplified flow pattern and enhanced westerlies occur in the vicinity of the North American and Eurasian ice sheets. These alterations of the tropospheric circulation are primarily the result of the ice sheet effect, with reduced CO2 contributing only a slight amplification of the ice sheet-induced pattern.  相似文献   

15.
武炳义 《大气科学》2018,42(4):786-805
北极历来是影响东亚冬季天气、气候的关键区域之一。北极表面增暖要比全球平均快2~3倍,即所谓北极的放大效应。随着全球增暖的持续以及北极海冰的持续融化,北极的生态环境正在发生显著的变化,进而可能对北半球中、低纬度的天气、气候产生影响。本文概述了有关北极海冰融化影响冬季东亚天气、气候的主要研究进展,特别是自2000年以来,北极海冰异常偏少影响东亚冬季气候变率以及极端严寒事件的可能途径、存在的科学问题,以及学术界的争论焦点。秋、冬季节是北极海冰快速形成时期,此时北极海冰对大气环流的影响要强于大气对海冰的影响。近二十年来的研究结果表明,北极海冰异常偏少,不仅影响北冰洋局地的气温和降水变化,而且通过复杂的相互作用和反馈过程,对北半球中、低纬度的天气、气候产生影响。北极海冰通过以下两个可能机制来影响东亚冬季的天气、气候:(1)北极海冰的负反馈机制;(2)由海冰异常偏少引起的平流层-对流层相互作用机制。秋、冬季节北极海冰持续异常偏少,特别是,巴伦支海-喀拉海海冰异常偏少,既可以加强冬季西伯利亚高压(东亚冬季风偏强),也可以导致冬季风偏弱。导致海冰影响不确定性的部分原因是:(1)夏季北极大气环流状态影响北极海冰异常偏少对冬季大气环流的反馈效果;(2)冬季大气环流对北极海冰异常偏少响应的位置、强度不同造成的。秋、冬季节北极海冰持续异常偏少,在适宜的条件下(例如,前期夏季北极大气环流的热力和动力条件,有利于加强北极海冰偏少对冬季大气的反馈作用),可以激发出有利于冬季亚洲大陆极端严寒过程的大气环流异常。目前学术界争论焦点主要集中在以下两个方面:(1)关于北极增暖、北极海冰融化对中纬度区域影响的争论;(2)关于1980年代后期以来,冬季欧亚大陆表面气温呈现降温趋势的原因。目前,有关北极海冰融化影响冬季欧亚大陆次季节变化以及极端天气、气候事件的过程和机制,我们认知非常有限,亟需开展深入细致的研究。  相似文献   

16.
Based on a two-dimensional energy balance model, the studies on some climatic issues such as the re- lationship between ice cap latitude and solar constant, desertifieation, and the warming effect of carbon dioxide, have been reviewed and discussed. The phenomenon that a fixed solar constant might correspond to different equilibrium ice cap latitudes is determined by the continuity of albedo distribution. The disconti- nuity in albedo distribution increases the number of equilibrium ice cap latitudes. Desert would expand both northward and southward when desert surface albedo is increasing. This would deteriorate the ecological environment in border regions, and then threaten the existence of local inhabitants. Melting of the polar ice would not be accelerated, with increasing carbon dioxide concentration. The ice cap latitude would move northward slowly, with some “hiatus” periods, under the slowly increasing global average surface tempera- ture. According to the current research, future development of the two-dimensional energy balance model and possible progress are also forecasted.  相似文献   

17.
Response of the Antarctic ice sheet to future greenhouse warming   总被引:2,自引:0,他引:2  
Possible future changes in land ice volume are mentioned frequently as an important aspect of the greenhouse problem. This paper deals with the response of the Antarctic ice sheet and presents a tentative projection of changes in global sea level for the next few hundred years, due to changes in its surface mass balance. We imposed a temperature scenario, in which surface air temperature rises to 4.2° C in the year 2100 AD and is kept constant afterwards. As GCM studies seem to indicate a higher temperature increase in polar latitudes, the response to a more extreme scenario (warming doubled) has also been investigated. The mass balance model, driven by these temperature perturbations, consists of two parts: the accumulation rate is derived from present observed values and is consequently perturbed in proportion to the saturated vapour pressure at the temperature above the inversion layer. The ablation model is based on the degree-day method. It accounts for the daily temperature cycle, uses a different degree-day factor for snow and ice melting and treats refreezing of melt water in a simple way. According to this mass balance model, the amount of accumulation over the entire ice sheet is presently 24.06 × 1011 m3 of ice, and no runoff takes place. A 1°C uniform warming is then calculated to increase the overall mass balance by an amount of 1.43 × 1011 m3 of ice, corresponding to a lowering of global sea level with 0.36 mm/yr. A temperature increase of 5.3°C is needed for the increase in ablation to become more important than the increase in accumulation and the temperature would have to rise by as much as 11.4°C to produce a zero surface mass balance. Imposing the Bellagio-scenario and accumulating changes in mass balance forward in time (static response) would then lower global sea level by 9 cm by 2100 AD. In a subsequent run with a high-resolution 3-D thermomechanic model of the ice sheet, it turns out that the dynamic response of the ice sheet (as compared to the direct effect of the changes in surface mass balance) becomes significant after 100 years or so. Ice-discharge across the grounding-line increases, and eventually leads to grounding-line retreat. This is particularly evident in the extreme case scenario and is important along the Antarctic Peninsula and the overdeepened outlet glaciers along the East Antarctic coast. Grounding-line retreat in the Ross and Ronne-Filchner ice shelves, on the other hand, is small or absent.  相似文献   

18.
Abstract

The climatic role of sea ice is assessed in a survey of the recent literature. Theoretical or model‐based results are compared with existing evidence of ice‐atmosphere interactions over scales ranging from the local and regional to the hemispheric and global.

The evidence shows that sea‐ice fluctuations are meteorologically important locally, primarily through associations with air temperature. On the regional and hemispheric scales, atmospheric and sea‐ice fluctuations are correlated according to both observational evidence and model experiments. While the causal links have not been evaluated quantitatively, there is evidence that the stronger signal occurs in the response of the ice to the atmosphere. On the longer time‐scales, model experiments and qualitative arguments suggest that sea ice may play a major role in the climatic change. However, the results of large‐scale coupled model simulations contain deficiencies and must be viewed with caution pending more realistic treatments of sea‐ice dynamics, leads, ice thickness variations, and the areally‐integraled effects of the small‐scale features of sea ice.  相似文献   

19.
The 16.8 year sea ice record (November 1978 to August 1995) derived from satellite passive microwave data shows evidence of contrasting climate patterns in the Southern Ocean as indicated by persistent opposing trends in regional sea ice coverage. Southern Ocean regions adjoining the south Atlantic, south Indian and southwest Pacific Oceans show increasing trends in sea ice coverage, particularly during non-winter months, while regions adjoining the southwest Pacific Ocean show decreasing trends in sea ice coverage, particularly during summer months. The data are compiled from three successive passive microwave sensors from which two separate time-series are analyzed. The first includes the data originally released by the National Snow and Ice Data Center (NSIDC) which have not been significantly adjusted to account for differences in the successive sensors, while the second includes data recently released by NSIDC which have been rigorously adjusted (Cavalieri et al., 1997) to account for differences between sensors. Although the significance of many of the increasing trends detected in the original time-series decrease in the reanalyzed time-series, the overall pattern of contrasting trends remains evident. These trends have important implications for the southern hemisphere heat budget and surface albedo as well as for marine ecosystems associated with various sea ice habitats. Other evidence of contrasting climate patterns with respect to southern hemisphere atmospheric circulation is explored. Due to the relatively short sea ice record, it still remains to be seen whether these trends are natural decadel variation or indicative of global climate change. However, the persistent opposition in Southern Ocean regional ice coverage is noteworthy and may well be studied using global circulation models in order to better define potential positive and negative feedbacks for global change scenarios.  相似文献   

20.
A change in a sea-ice parameter in a global coupled climate model results in a reduction in amplitude (of about 60%) and a shortening of the predominant period of decadal low frequency variability in the time series of globally averaged surface air temperature. These changes are global in extent and also are reflected in time series of area-averaged SSTs in the equatorial eastern Pacific Ocean, the principal components of the first EOFs of global surface air temperature and sea level pressure, Asian monsoon precipitations and other quantities. Coupled ocean-atmosphere-sea ice processes acting on a global scale are modified to produce these changes. Global climate sensitivity is reduced when ice albedo feedback is weakened due to the change in sea ice that makes it more difficult to melt. The changes in the amplitude and time scale of the low frequency variability in the model are traced to changes in the base state of the climate simulations as affected by modifications associated with the changes in sea ice. Making sea ice more difficult to melt results in increased sea-ice area, colder high latitudes, increased meridional surface temperature gradients, and, to a first order, stronger surface winds in most regions which strengthen near-surface currents, particularly in the Northern Hemisphere, and decreases the advection time scale in the upper ocean gyres. Additionally, in the North Atlantic there is enhanced meridional overturning due to increased density mainly in the Greenland Sea region. This also contributes to an intensified North Atlantic gyre. The changes in base state due to the sea ice change result in a more predominant decadal time scale of near 14 years and significantly reduced contributions from lower frequencies in the range of 15–40 year periods. Received: 11 December 1998 / Accepted: 4 October 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号