首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Climate change scenarios generated by general circulation models have too coarse a spatial resolution to be useful in planning disaster risk reduction and climate change adaptation strategies at regional to river basin scales. This study presents a new non-parametric statistical K-nearest neighbor algorithm for downscaling climate change scenarios for the Rohini River Basin in Nepal. The study is an introduction to the methodology and discusses its strengths and limitations within the context of hindcasting basin precipitation for the period of 1976?C2006. The actual downscaled climate change projections are not presented here. In general, we find that this method is quite robust and well suited to the data-poor situations common in developing countries. The method is able to replicate historical rainfall values in most months, except for January, September, and October. As with any downscaling technique, whether numerical or statistical, data limitations significantly constrain model ability. The method was able to confirm that the dataset available for the Rohini Basin does not capture long-term climatology. Yet, we do find that the hindcasts generated with this methodology do have enough skill to warrant pursuit of downscaling climate change scenarios for this particularly poor and vulnerable region of the world.  相似文献   

3.
The urge for higher resolution climate change scenarios has been widely recognized, particularly for conducting impact assessment studies. Statistical downscaling methods have shown to be very convenient for this task, mainly because of their lower computational requirements in comparison with nested limited-area regional models or very high resolution Atmosphere–ocean General Circulation Models. Nevertheless, although some of the limitations of statistical downscaling methods are widely known and have been discussed in the literature, in this paper it is argued that the current approach for statistical downscaling does not guard against misspecified statistical models and that the occurrence of spurious results is likely if the assumptions of the underlying probabilistic model are not satisfied. In this case, the physics included in climate change scenarios obtained by general circulation models, could be replaced by spatial patterns and magnitudes produced by statistically inadequate models. Illustrative examples are provided for monthly temperature for a region encompassing Mexico and part of the United States. It is found that the assumptions of the probabilistic models do not hold for about 70 % of the gridpoints, parameter instability and temporal dependence being the most common problems. As our examples reveal, automated statistical downscaling “black-box” models are to be considered as highly prone to produce misleading results. It is shown that the Probabilistic Reduction approach can be incorporated as a complete and internally consistent framework for securing the statistical adequacy of the downscaling models and for guiding the respecification process, in a way that prevents the lack of empirical validity that affects current methods.  相似文献   

4.
This study evaluated the performance of three frequently applied statistical downscaling tools including SDSM, SVM, and LARS-WG, and their model-averaging ensembles under diverse moisture conditions with respect to the capability of reproducing the extremes as well as mean behaviors of precipitation. Daily observed precipitation and NCEP reanalysis data of 30 stations across China were collected for the period 1961–2000, and model parameters were calibrated for each season at individual site with 1961–1990 as the calibration period and 1991–2000 as the validation period. A flexible framework of multi-criteria model averaging was established in which model weights were optimized by the shuffled complex evolution algorithm. Model performance was compared for the optimal objective and nine more specific metrics. Results indicate that different downscaling methods can gain diverse usefulness and weakness in simulating various precipitation characteristics under different circumstances. SDSM showed more adaptability by acquiring better overall performance at a majority of the stations while LARS-WG revealed better accuracy in modeling most of the single metrics, especially extreme indices. SVM provided more usefulness under drier conditions, but it had less skill in capturing temporal patterns. Optimized model averaging, aiming at certain objective functions, can achieve a promising ensemble with increasing model complexity and computational cost. However, the variation of different methods' performances highlighted the tradeoff among different criteria, which compromised the ensemble forecast in terms of single metrics. As the superiority over single models cannot be guaranteed, model averaging technique should be used cautiously in precipitation downscaling.  相似文献   

5.
Based on hindcasts obtained from the “Development of a European Multimodel Ensemble system for seasonal to inTERannual prediction” (DEMETER) project, this study proposes a statistical downscaling (SD) scheme suitable for global precipitation forecasting. The key idea of this SD scheme is to select the optimal predictors that are best forecast by coupled general circulation models (CGCMs) and that have the most stable relationships with observed precipitation. Developing the prediction model and further making predictions using these predictors can extract useful information from the CGCMs. Cross-validation and independent sample tests indicate that this SD scheme can significantly improve the prediction capability of CGCMs during the boreal summer (June–August), even over polar regions. The predicted and observed precipitations are significantly correlated, and the root-mean-square-error of the SD scheme-predicted precipitation is largely decreased compared with the raw CGCM predictions. An inter-model comparison shows that the multi-model ensemble provides the best prediction performance. This study suggests that combining a multi-model ensemble with the SD scheme can improve the prediction skill for precipitation globally, which is valuable for current operational precipitation prediction.  相似文献   

6.
7.
日最高温度统计降尺度方法的比较研究   总被引:4,自引:3,他引:4  
针对日最高温度的降尺度问题,发展了一种统计降尺度的新方法——优选格点回归法(OPR)。利用该方法与双线性插值法(BI)对平原(山东)和高原(云南)的日最高温度进行降尺度对比分析,结果表明:无论对于平原(山东)还是高原(云南)地区以及夏季(7月)还是冬季(1月),OPR方法都明显优于BI方法,特别是从高原地区的均方根误差来看,降尺度效果优势更加明显。进一步对OPR方法降尺度过程中所做的方差放大对比分析显示,方差放大后对日最高温度的降尺度效果不但没有改进,在某些方面如均方根误差和极端误差等还有变差的表现。  相似文献   

8.
The resolution of General Circulation Models (GCMs) is too coarse for climate change impact studies at the catchment or site-specific scales. To overcome this problem, both dynamical and statistical downscaling methods have been developed. Each downscaling method has its advantages and drawbacks, which have been described in great detail in the literature. This paper evaluates the improvement in statistical downscaling (SD) predictive power when using predictors from a Regional Climate Model (RCM) over a GCM for downscaling site-specific precipitation. Our approach uses mixed downscaling, combining both dynamic and statistical methods. Precipitation, a critical element of hydrology studies that is also much more difficult to downscale than temperature, is the only variable evaluated in this study. The SD method selected here uses a stepwise linear regression approach for precipitation quantity and occurrence (similar to the well-known Statistical Downscaling Model (SDSM) and called SDSM-like herein). In addition, a discriminant analysis (DA) was tested to generate precipitation occurrence, and a weather typing approach was used to derive statistical relationships based on weather types, and not only on a seasonal basis as is usually done. The existing data record was separated into a calibration and validation periods. To compare the relative efficiency of the SD approaches, relationships were derived at the same sites using the same predictors at a 300km scale (the National Center for Environmental Prediction (NCEP) reanalysis) and at a 45km scale with data from the limited-area Canadian Regional Climate Model (CRCM) driven by NCEP data at its boundaries. Predictably, using CRCM variables as predictors rather than NCEP data resulted in a much-improved explained variance for precipitation, although it was always less than 50?% overall. For precipitation occurrence, the SDSM-like model slightly overestimated the frequencies of wet and dry periods, while these were well-replicated by the DA-based model. Both the SDSM-like and DA-based models reproduced the percentage of wet days, but the wet and dry statuses for each day were poorly downscaled by both approaches. Overall, precipitation occurrence downscaled by the DA-based model was much better than that predicted by the SDSM-like model. Despite the added complexity, the weather typing approach was not better at downscaling precipitation than approaches without classification. Overall, despite significant improvements in precipitation occurrence prediction by the DA scheme, and even going to finer scales predictors, the SD approach tested here still explained less than 50?% of the total precipitation variance. While going to even smaller scale predictors (10–15?km) might improve results even more, such smaller scales would basically transform the direct outputs of climate models into impact models, thus negating the need for statistical downscaling approaches.  相似文献   

9.
利用中国752个基本、基准地面气象观测站2000—2010年地面温度日值数据,采用具有自适应特征的Kalman滤波类型的递减平均统计降尺度技术,对中国地面温度进行精细化预报研究。分析该方案的降尺度效果,并与常用插值降尺度方法进行比较。结果表明:1)递减平均统计降尺度技术相比插值方法有较大的提高,显著减小东西部预报效果差异,1~3 d预报的均方根误差减小了1.4℃;2)该方案1~3 d预报的均方根误差为1.5℃,预报误差从东南地区(均方根误差为1.4℃)向西北地区(均方根误差为1.8℃)逐渐增大,并且预报效果夏季优于冬季。因此,递减平均统计降尺度技术对中国地面温度进行精细化预报是可行的。  相似文献   

10.
The objective of this study is to compare several statistical downscaling methods for the development of an operational short-term forecast of precipitation in the area of Bilbao (Spain). The ability of statistical downscaling methods nested inside numerical simulations run by both coarse and regional model simulations is tested with several selections of predictors and domain sizes. The selection of predictors is performed both in terms of sound physical mechanisms and also by means of “blind” criteria, such as “give the statistical downscaling methods all the information they can process”.Results show that the use of statistical downscaling methods improves the ability of the mesoscale and coarse resolution models to provide quantitative precipitation forecasts. The selection of predictors in terms of sound physical principles does not necessarily improve the ability of the statistical downscaling method to select the most relevant inputs to feed the precipitation forecasting model, due to the fact that the numerical models do not always fulfil conservation laws or because precipitation events do not reflect simple phenomenological laws. Coarse resolution models are able to provide information usable in combination with a statistical downscaling method to achieve a quantitative precipitation forecast skill comparable to that obtained by other systems currently in use.  相似文献   

11.
Three statistical downscaling methods (conditional resampling statistical downscaling model: CR-SDSM, the generalised linear model for daily climate time series: GLIMCLIM, and the non-homogeneous hidden Markov model: NHMM) for multi-site daily rainfall were evaluated and compared in the North China Plain (NCP). The comparison focused on a range of statistics important for hydrological studies including rainfall amount, extreme rainfall, intra-annual variability, and spatial coherency. The results showed that no single model performed well over all statistics/timescales, suggesting that the user should chose appropriate methods after assessing their advantages and limitations when applying downscaling methods for particular purposes. Specifically, the CR-SDSM provided relatively robust results for annual/monthly statistics and extreme characteristics, but exhibited weakness for some daily statistics, such as daily rainfall amount, dry-spell length, and annual wet/dry days. GLIMCLIM performed well for annual dry/wet days, dry/wet spell length, and spatial coherency, but slightly overestimated the daily rainfall. Additionally, NHMM performed better for daily rainfall and annual wet/dry days, but slightly underestimated dry/wet spell length and overestimated the daily extremes. The results of this study could be applied when investigating climate change impact on hydrology and water availability for the NCP, which suffers from intense water shortages due to climate change and human activities in recent years.  相似文献   

12.
利用1999—2009年安徽省淮河以南地区60个县市站夏季逐日降水资料和安庆市探空站逐日资料,研究了中低层不同风向配置下局地降水与大尺度降水场之间的关系,以3种不同预报对象及相应的预报因子分别采用神经网络和线性回归方法设计6种预报模型对观测资料进行逼近和优化,从而实现空间降尺度.分析对比6种预报模型46站逐日降水量的拟合和预报效果,结果表明:采取相同的预报对象及预报因子的BP神经网络模型在拟合和预报效果上均好于线性回归模型,可见夏季降水场之间以非线性相关为主;神经网络模型预报结果同常用的Cressman插值预报相比,能很好地反映出降水的基本分布及局地特征;预报对象为单站降水序列的神经网络模型在以平原、河流为主要地形的区域预报效果较好,预报对象为REOF主成分的神经网络模型则在山地和丘陵地形区域预报效果较好.  相似文献   

13.
针对江苏夏季旱涝和高温热浪等异常气候的预测难题,以江苏夏季站点降水和气温为预测目标,建立了一种基于全球动力模式BCC_CSM1.1(m)和最优可预测气候模态和异常相对倾向(SMART)原理结合的统计降尺度季节气候预测方法。利用历史观测资料和SVD方法提取决定中国夏季降水异常相对倾向的同期热带地区向外长波辐射(Outgoing Longwave Radiation,OLR)和北半球中高纬500 hPa位势高度场异常相对倾向的最优可预测气候模态,并利用逐步回归法构建其与同期江苏站点降水和气温异常相对倾向同期关系的统计降尺度模型;将动力模式对最优可预测气候模态的预测带入统计降尺度模型,实现对区域降水和气温异常相对倾向的预测;最后通过引入观测的近期背景异常实现对降尺度的降水和气温总距平的预测。通过对1991—2019年江苏夏季降水和气温的回报检验表明,本文建立的统计降尺度模型效果较BCC_CSM1.1(m)动力模式的直接预测效果有显著提高,为区域精细化季节气候预测提供了一种有效的手段。  相似文献   

14.
Predictor selection is a critical factor affecting the statistical downscaling of daily precipitation. This study provides a general comparison between uncertainties in downscaled results from three commonly used predictor selection methods (correlation analysis, partial correlation analysis, and stepwise regression analysis). Uncertainty is analyzed by comparing statistical indices, including the mean, variance, and the distribution of monthly mean daily precipitation, wet spell length, and the number of wet days. The downscaled results are produced by the artificial neural network (ANN) statistical downscaling model and 50 years (1961–2010) of observed daily precipitation together with reanalysis predictors. Although results show little difference between downscaling methods, stepwise regression analysis is generally the best method for selecting predictors for the ANN statistical downscaling model of daily precipitation, followed by partial correlation analysis and then correlation analysis.  相似文献   

15.
An algorithm for the estimation of root zone soil moisture is presented. Global fields of the soil moisture within the uppermost metre of soil are derived with a temporal resolution of 10 days. For calibration, long-term soil moisture observations from the former Soviet Union are used. The variance of the measurements is largely dominated by the spatial variability of the long-term mean soil moisture, while the temporal variability gives comparatively small contribution. Consequently, the algorithm is organised into two steps. The first step concentrates on the retrieval of the spatial variance of the long-term means, which comprises more than 85% of the total soil moisture variability. A major part of the spatial variance can be explained by four easily available fields: the climatological precipitation, land use, soil texture, and terrain slope. The second step of the algorithm is dedicated to the local temporal variability. This part of variability is recovered by using passive microwave data from scanning multichannel microwave radiometre (SMMR) supported by monthly averaged fields of air temperature and precipitation. The 6-GHz channel of SMMR is shown to be severely disturbed by radio frequency interference, so that information from the 10-GHz channel is used instead. The algorithm provides reasonable soil moisture fields which is confirmed by a comparison with independent measurements from Illinois.  相似文献   

16.
A statistical downscaling procedure based on an analogue technique is used to determine projections for future climate change in western France. Three ocean and atmosphere coupled models are used as the starting point of the regionalization technique. Models' climatology and day to day variability are found to reproduce the broad main characteristics seen in the reanalyses. The response of the coupled models to a similar CO2 increase scenario exhibit marked differences for mean sea-level pressure; precipitable water and temperature show arguably less spread. Using the reanalysis fields as predictors, the statistical model parameters are set for daily extreme temperatures and rain occurrences for seventeen stations in western France. The technique shows some amount of skill for all three predictands and across all seasons but failed to give reliable estimates of rainfall amounts. The quality of both local observations and large-scale predictors has an impact on the statistical model skill. The technique is partially able to reproduce the observed climatic trends and inter annual variability, showing the sensitivity of the analogue approach to changed climatic conditions albeit an incomplete explained variance by the statistical technique. The model is applied to the coupled model control simulations and the gain compared with direct model grid-average outputs is shown to be substantial at station level. The method is then applied to altered climate conditions; the impact of large-scale model uncertain responses and model sensitivities are quantified using the three coupled models. The warming in the downscaled projections are reduced compared with their global model counterparts.  相似文献   

17.
Theoretical and Applied Climatology - Climate is changing and evidence suggests that the impact of climate change would influence our everyday lives, including agriculture, built environment,...  相似文献   

18.
Regression-based statistical downscaling is a method broadly used to resolve the coarse spatial resolution of general circulation models. Nevertheless, the assessment of uncertainties linked with climatic variables is essential to climate impact studies. This study presents a procedure to characterize the uncertainty in regression-based statistical downscaling of daily precipitation and temperature over a highly vulnerable area (semiarid catchment) in the west of Iran, based on two downscaling models: a statistical downscaling model (SDSM) and an artificial neural network (ANN) model. Biases in mean, variance, and wet/dry spells are estimated for downscaled data using vigorous statistical tests for 30 years of observed and downscaled daily precipitation and temperature data taken from the National Center for Environmental Prediction reanalysis predictors for the years of 1961 to 1990. In the case of daily temperature, uncertainty is estimated by comparing monthly mean and variance of downscaled and observed daily data at a 95 % confidence level. In daily precipitation, downscaling uncertainties were evaluated from comparing monthly mean dry and wet spell lengths and their confidence intervals, cumulative frequency distributions of monthly mean of daily precipitation, and the distributions of monthly wet and dry days for observed and modeled daily precipitation. Results showed that uncertainty in downscaled precipitation is high, but simulation of daily temperature can reproduce extreme events accurately. Finally, this study shows that the SDSM is the most proficient model at reproducing various statistical characteristics of observed data at a 95 % confidence level, while the ANN model is the least capable in this respect. This study attempts to test uncertainties of regression-based statistical downscaling techniques in a semiarid area and therefore contributes to an improvement of the quality of predictions of climate change impact assessment in regions of this type.  相似文献   

19.
20.
华东地区月平均气温统计降尺度方法比较   总被引:1,自引:0,他引:1  
高红霞  汤剑平 《气象科学》2015,35(6):760-768
用中国地面气象观测站的逐日气温观测资料和NCEP/NCAR再分析资料,分别使用基于多元线性回归(MLR)和3种主成分分析(PCA)的统计降尺度方法,对1959-2008年的华东地区的月平均气温分两个时段进行统计降尺度分析并加以检验,比较了不同降尺度方法的结果。结果表明:对于华东地区气温的统计降尺度预报,基于MLR的统计降尺度方法相对于3种PCA方法而言,对单站年际变化模拟方面有一定优势。PCA方法应用于统计降尺度时,预报因子的区域选择是影响统计降尺度结果的重要因素之一。对于温度进行统计降尺度分析时,预报因子中包含温度因子是非常必要的;所试验的4种降尺度方法,对各站点多年平均情况的模拟要好于对区域平均的年际变化的模拟。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号