首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
<正>Objective The Qinling orogenic belt is a typical complex continental orogenic belt which has experienced multiperiod tectonic evolution and where some important tectonic belts formed.The Luoluan fault is one of the most important belts,which is the boundary fault of the North China Plate and the Qinling orogenic belt.The Shirenshan block is located in the north section between Luanchuan and Fangcheng of the Luoluan fault.The north part is  相似文献   

2.
A series of ductile shear zones of the overthrust and strike-slip-types and related ductile shear metamorphicrocks, including tectonic melange and mylonites. were formed in the core of the Qinling orogenic belt in thecourse of the Caledonian-Indosinian ductilc and brittle-ductile reworking. The study on their petrography. va-riations in composition and conditions of formation is conducive to revealing the metamorphism-deformationhistory of the core of the Qinling orogenic belt and further to understanding the dynamic mechanism of its evo-lution.  相似文献   

3.
The Qinling orogenic belt is a collision zone between the North China andYangtze cratons.The Qinling Complex is a Precambrian metamorphic com-plex,developed in the inner zone of the orogenic belt,which records themetamorphic and deformational history and PTt path of the regional meta-morphism of the collision zone.The present paper studies the metamor-phic and deformational history and the PTt path of various tectono-metamorphic cycles in order to describe the geodynamic processes prevailing inthat part of the Qinling orogenic belt since Proterozoic.The tectonometamorphic history and evolution of the Qinling Complex isdivided into two stages:the stage of formation and the stage of modificationDuring the stage of formation dated as Proterozoic,three deformational se-quences are recognized.The amphibolite facies regional metamorphism is earlierthan or synchronous with the first or second phase of folding.Threemetamorphic zones,i.e.And-Ms,Sil-Ms,Sil-Kfs are delimited.During thestage of modification,the emp  相似文献   

4.
The Tongbai-East Qinling Mountains, an important part of the Central orogenic belt, is one of the most important metallogenic belts in China and contains lots of orogenic-type and VMS-type (Volcanogenic Massive Sulfide type) metallogenic systems. The Dahe and Shuidongling VMS-type Cu-Zn deposits, located in the Erlangping Group in Tongbai and East Qinling Mountains, respectively, show similar geological and geochemical features. The Huoshenmiao Formation in the East Qinling region and the Liushanyan Formation in the Tongbai region are spilite-keratophyre sequences occurring in the western and eastern sides of the Nanyang Basin, respectively, and are interpreted to be equivalent to each other. The orogenic-type Au-Ag deposits can be subdivided into two styles; namely, fault- or structure-controlled (e.g. Yindonggou) and stratabound (e.g. Poshan). The Poshan and Yindongpo orogenic-type Au-Ag deposits, whose ore bodies are strictly hosted in carbonaceous strata in the Tongbai Mountains, show obvious stratabound characteristics. Their ore-fluids are enriched in K+ and SO42? and are regarded as K+-SO42? types. The Pb-isotope ratios of sulfides of the ores are extremely uniform and significantly different from those of the tectonostratigraphic terranes of the Qinling orogens except for the ore-hosting strata of the Waitoushan Formation. The Yindonggou and Xuyaogou orogenic Au-Ag deposits in the East Qinling Mountains, whose ore bodies are hosted in the faults cutting the hosting strata or granite body, show fault-controlled characteristics. Their ore-fluids belong to the Na+-Cl? type. The Pb-isotope ratios of sulfides of ores are similar to those of the northern Qinling orogenic belt. The Waitoushan Formation, dominated by carbonaceous sericite-rich schists and only occurring in Tongbai region, should be detached from the Erlangping Group, which occurs both in the western and eastern sides of the Nanyang Basin. Future ore exploration in the Tongbai-East Qinling Mountains should focus on fault-controlled Au-Ag lodes.  相似文献   

5.
<正>The Tianshui Basin,located inside the western Qinling orogenic belt and northeastern margin of the Tibetan Plateau(Fig.1),is a NE-trending Late Cenozoic basin,which documents the neotectonic response of the northeastward growth of Tibetan Plateau.This basin was  相似文献   

6.
To study arsenic(As) content and distribution patterns as well as the genesis of different kinds of water, especially the different sources of drinking water in Guanzhong Basin, Shaanxi province, China, 139 water samples were collected at 62 sampling points from wells of different depths, from hot springs, and rivers. The As content of these samples was measured by the intermittent flowhydride generation atomic fluorescence spectrometry method(HG-AFS). The As concentrations in the drinking water in Guanzhong Basin vary greatly(0.00–68.08 μg/L), and the As concentration of groundwater in southern Guanzhong Basin is different from that in the northern Guanzhong Basin. Even within the same location in southern Guanzhong Basin, the As concentrations at different depths vary greatly. As concentration of groundwater from the shallow wells(50 m deep, 0.56–3.87 μg/L) is much lower than from deep wells(110–360 m deep, 19.34–62.91 μg/L), whereas As concentration in water of any depth in northern Guanzhong Basin is 10 μg/L. Southern Guanzhong Basin is a newly discovered high-As groundwater area in China. The high-As groundwater is mainly distributed in areas between the Qinling Mountains and Weihe River; it has only been found at depths ranging from 110 to 360 m in confined aquifers, which store water in the Lishi and Wucheng Loess(Lower and Middle Pleistocene) in the southern Guanzhong Basin. As concentration of hot spring water is 6.47–11.94 μg/L; that of geothermal water between 1000 and 1500 m deep is 43.68–68.08 μg/L. The high-As well water at depths from 110 to 360 m in southern Guanzhong Basin has a very low fluorine(F) value, which is generally 0.10 mg/L. Otherwise, the hot springs of Lintong and Tangyu and the geothermal water in southern Guanzhong Basin have very high F values(8.07–14.96 mg/L). The results indicate that highAs groundwater in depths from 110 to 360 m is unlikely to have a direct relationship with the geothermal water in the same area. As concentration of all reservoirs and rivers(both contaminated and uncontaminated) in the Guanzhong Basin is 10 μg/L. This shows that pollution in the surface water is not the source of the high-As in the southern Guanzhong Basin. The partition boundaries of the high- and low-As groundwater area corresponds to the partition boundaries of the tectonic units in the Guanzhong Basin. This probably indicates that the high-As groundwater areas can be correlated to their geological underpinning and structural framework. In southern Guanzhong Basin, the main sources of drinking water for villages and small towns today are wells between 110–360 m deep. All of their As contents exceed the limit of the Chinese National Standard and the International Standard(10 μg/L) and so local residents should use other sources of clean water that are 50 m deep, instead of deep groundwater(110 to 360 m) for their drinking water supply.  相似文献   

7.
The Tongbai-East Qinling Mountains,an important part of the Central orogenic belt,is one of the most important metallogenic belts in China and contains lots of orogenic-type and VMS-type (Volcanogenic Massive Sulfide type)metallogenic systems.The Dahe and Shuidongling VMS-type Cu-Zn deposits,located in the Erlangping Group in Tongbai and East Qinling Mountains,respectively, show similar geological and geochemical features.The Huoshenmiao Formation in the East Qinling region and the Liushanyan Formation i...  相似文献   

8.
Brittle structures in rock of different ages can be used to establish the tectonic evolution of an orogenic belt through paleostress calculations. Micangshan is located at the southern margin of the Qinling orogenic belt,between the SE-trending Longmenshan fold-and-thrust belt and the arcuate Dabashan thrust-and-fold belt. Structural observations revealed that the dominant structures are reverse and strike-slip faults and folds with E–W and NE–SE trends. To increase knowledge of the tectonic evolution of the Micangshan anticlinorium,faults,joints,veins,and folds were measured at more than eighty sites. On the basis of structural analysis,it emerged that the multiphase paleostress fields became established after the oblique collision between the North and South China plates. The earliest stress field with N–S compression was established during the Micangshan uplift associated with the E–W trending faults and folds. Subsequently,a N–S extension occurred when the Qinling orogenic belt collapsed. Then NW–SE compression developed,with NE trending faults and folds forming in relation to Longmenshan thrusting toward southwest on the eastern margin of the Tibetan plateau. With the development of the arcuate Dabashan orogenic belt,the compression stress orientation of the Micangshan anticlinorium altered from NE–SW to E–W.  相似文献   

9.
The recently identified Huashan ophiolitic melange was considered as the eastern part of the Mianliie suture in the Qinling orogenic belt. SHRIMP zircon U-Pb geochronology on gabbro from the Huashan ophiolite and granite intruding basic volcanic rocks indicates crystallization ages of 947±14 Ma and 876±17 Ma respectively. These ages do not support a recently proposed Hercynian Huashan Ocean, but rather favor that a Neoproterozoic suture assemblage (ophiolite) is incorporated into the younger (Phanerozoic) Qinling orogenic belt.  相似文献   

10.
The North Qinling Orogenic Belt(NQOB) is a composite orogenic belt in central China. It started evolving during the Meso–Neoproterozoic period and underwent multiple stages of plate subduction and collision before entering intra-continental orogeny in the Late Triassic. The Meso–Cenozoic intra-continental orogeny and tectonic evolution had different responses in various terranes of the belt, with the tectonic evolution of the middle part of the belt being particularly controversial. The granites...  相似文献   

11.
Chun-Ming Wu  Guochun C. Zhao 《Lithos》2007,97(3-4):365-372
In this contribution we have empirically calibrated the garnet–biotite–muscovite–aluminosilicate–quartz (GBMAQ) barometer using low- to medium–high-pressure, mid-grade metapelites. Application of the barometer suggests that the GBMAQ and GASP barometers show quite similar pressure estimates. Furthermore, metapelites within thermal contact aureole or very limited geographic area show no meaningful pressure diversity determined by the GBMAQ and GASP barometers which is the geological reality. The random error of the GBMAQ barometer is expected to be around ± 0.8 kbar, and this barometer shows no systematic bias with respect to either pressure, or temperature, or AlVI in muscovite, or Fe in biotite, or Fe in garnet. The GBMAQ barometer is thermodynamically consistent with the garnet–biotite geothermometer because they share the same activity models of both garnet and biotite. This barometer is especially useful for assemblages with Ca-poor garnet or Ca-poor plagioclase or plagioclase-absent metapelites. Application of this barometer beyond the calibration ranges, i.e., PT range and chemical ranges of the minerals, is not encouraged.  相似文献   

12.
We present, as a progress report, a revised and much enlarged version of the thermodynamic dataset given earlier (Holland & Powell, 1985). This new set includes data for 123 mineral and fluid end-members made consistent with over 200 P–T–XCO2fO2 phase equilibrium experiments. Several improvements and advances have been made, in addition to the increased coverage of mineral phases: the data are now presented in three groups ranked according to reliability; a large number of iron-bearing phases has been included through experimental and, in some cases, natural Fe:Mg partitioning data; H2O and CO2 contents of cordierites are accounted for with the solution model of Kurepin (1985); simple Landau theory is used to model lambda anomalies in heat capacity and the Al/Si order–disorder behaviour in some silicates, and Tschermak-substituted end-members have been derived for iron and magnesium end-members of chlorite, talc, muscovite, biotite, pyroxene and amphibole. For the subset of data which overlap those of Berman (1988), it is encouraging to find both (1) very substantial agreement between the two sets of thermodynamic data and (2) that the two sets reproduce the phase equilibrium experimental brackets to a very similar degree of accuracy. The main differences in the two datasets involve size (123 as compared to 67 end-members), the methods used in data reduction (least squares as compared to linear programming), and the provision for estimation of uncertainties with this dataset. For calculations on mineral assemblages in rocks, we aim to maximize the information available from the dataset, by combining the equilibria from all the reactions which can be written between the end-members in the minerals. For phase diagram calculations, we calculate the compositions of complex solid solutions (together with P and T) involved in invariant, univariant and divariant assemblages. Moreover we strongly believe in attempting to assess the probable uncertainties in calculated equilibria and hence provide a framework for performing simple error propagation in all calculations in thermocalc, the computer program we offer for an effective use of the dataset and the calculation methods we advocate.  相似文献   

13.
《Resource Geology》2018,68(3):209-226
Shin‐Otoyo, Suttsu, Teine, Date, Chitose, and Koryu are sites rich in precious and base metal Miocene–Pleistocene epithermal deposits, and located in southwestern Hokkaido, Japan. The deposits are predominantly hosted by the Green Tuff Formation of Middle Miocene age. Ore petrographic study of these deposits shows the occurrence of variable quantities of Cu–As–Sb–Ag–Bi–Pb–Te sulfosalt minerals. Determination of mineralogical and chemical compositions of the sulfosalt minerals was undertaken to elucidate the time and spatial changes of the sulfide‐sulfosalt minerals. Various types of sulfosalt minerals identified from gold–silver and base metal quartz–sulfide veins represented some sulfosalt mineralization phases, such as the Cu–Fe–Sn–S phase of mawsonite and stannite; Cu–(As,Sb)–S phase of tetrahedrite–tennantite and luzonite–famatinite series minerals; (Cu,Ag)–Bi–Pb–S phase of emplectite, pavonite, friedrichite, aikinite, and lillianite–gustavite series minerals; (Ag,Cu)–(As,Sb)–S phase of proustite–pyrargyrite and pearceite–polybasite series minerals; and Bi–Te–S phase of tetradymite and kawazulite minerals. There are some trends in the paragenetic sequence of sulfosalt mineralization in southwestern Hokkaido (in complete or partial) as follows: sulfide → Cu–Fe–Sn–S → (Cu,Ag)–Bi–Pb–S → (Bi–Te–S) → Cu–(As,Sb)–S → ([Ag,Cu]–[As,Sb]–S). The formation of sulfosalt minerals is characterized by the introduction of some elements such as Sn, Bi, and Te at an earlier stage and an increase or decrease of some elements such as As and Sb, followed by the introduction of Ag at the later stage of ore mineral paragenesis sequence. Mineral composition of the Chitose and Koryu deposits are slightly different from those of Shin‐Otoyo, Suttsu, Teine, and Date due to their lack of Sn (tin) and Bi (bismuth) mineralization. The variable concentrations and relationships are not simply with redistributed trace elements from the original sulfide minerals of chalcopyrite, pyrite, galena, and sphalerite. Some heavier elements were also introduced during the replacement reaction, which is consistent with the occurrence of their associated minerals.  相似文献   

14.
The garnet–biotite–muscovite–plagioclase (GBMP) barometer was empirically revised for P–T conditions of 1–14 kbar and 450–840 °C, using 263 metapelitic rock samples from all over the world. This barometer is based on activity models for garnet, biotite and plagioclase identical to those of the well‐calibrated garnet–biotite thermometer and the garnet–aluminosilicate–plagioclase–quartz (GASP) barometer. The GBMP barometer is less temperature dependent than the GASP barometer and can be applied to either Al2SiO5‐absent or Al2SiO5‐bearing metapelites. The total error of the GBMP barometer is estimated to be about ±1.2 kbar on considering input temperature error and analytical errors of chemical compositions of the phases involved. The random error of the GBMP barometer is evenly distributed with respect to pressure, temperature and mineral composition. Simultaneous application of the GBMP barometer and the garnet–biotite thermometer identifies the correct stability field for Al2SiO5‐bearing metapelites. Application of the GBMP barometer to metapelitic rocks within the same geological terranes or thermal contact aureoles yielded similar pressures within error. A spreadsheet for implementing the proposed GBMP geobarometer is supplied on the journal's website.  相似文献   

15.
The Holland and Powell internally consistent data set version 5.5 has been augmented to include pyrite, troilite, trov (Fe0.875S), anhydrite, H2S, elemental S and S2 gas. Phase changes in troilite and pyrrhotite are modelled with a combination of multiple end‐members and a Landau tricritical model. Pyrrhotite is modelled as a solid solution between hypothetical end‐member troilite (trot) and Fe0.875S (trov); observed activity–composition relationships fit well to a symmetric formalism model with a value for wtrot?trov of ?3.19 kJ mol?1. The hypothetical end‐member approach is required to compensate for iron distribution irregularities in compositions close to troilite. Mixing in fluids is described with the van Laar asymmetric formalism model with aij values for H2O–H2S, H2S–CH4 and H2S–CO2 of 6.5, 4.15 and 0.045 kJ mol?1 respectively. The derived data set is statistically acceptable and replicates the input data and data from experiments that were not included in the initial regression. The new data set is applied to the construction of pseudosections for the bulk composition of mafic greenschist facies rocks from the Golden Mile, Kalgoorlie, Western Australia. The sequence of mineral assemblages is replicated successfully, with observed assemblages predicted to be stable at X(CO2) increasing with increasing degree of hydrothermal alteration. Results are compatible with those of previous work. Assemblages are insensitive to the S bulk content at S contents of less than 1 wt%, which means that volatilization of S‐bearing fluids and sulphidation are unlikely to have had major effects on the stable mineral assemblage in less metasomatized rocks. The sequence of sulphide and oxide phases is predicted successfully and there is potential to use these phases qualitatively for geobarometry. Increases in X(CO2) stabilized, in turn, pyrite–magnetite, pyrite–hematite and anhydrite–pyrite. Magnetite–pyrrhotite is predicted at temperatures greater than 410 °C. The prediction of a variety of sulphide and oxide phases in a rock of fixed bulk composition as a function of changes in fluid composition and temperature is of particular interest because it has been proposed that such a variation in phase assemblage is produced by the infiltration of multiple fluids with contrasting redox state. The work presented here shows that this need not be the case.  相似文献   

16.
The metaturbidites of the Palaeoproterozoic Jormua–Outokumpu thrust belt in eastern Finland enclose m- to km-scale ultramafic massifs that are distributed over an area of more than 5000 km2. These bodies, which almost entirely consist of highly depleted mantle peridotites (now metaserpentinites and metaperidotites), are intimately associated with massive to semimassive, polymetallic Cu–Co–Zn–Ni–Ag–Au sulphide deposits that sustained mining in the region between 1913 and 1988. Currently, one deposit (Kylylahti) is proceeding into a definitive feasibility study emphasising the renewed economic interest for Outokumpu-type deposits.The origin of these Outokumpu-type Cu–Co–Zn–Ni–Ag–Au deposits is now re-interpreted to be polygenetic. First, their formation requires deposition of a Cu-rich proto-ore within peridotitic sea floor at  1950 Ma. Close modern analogues to the proto-ore setting include, for example, the Logatchev and Rainbow fields at the Mid-Atlantic Ridge, where venting of high-T–low-pH hydrothermal fluid resulted in accumulations of Cu–Zn–Co–Ag–Au sulphides on serpentinised ultramafic seafloor. Second, the Ni-rich composition of Outokumpu sulphide ores calls for a separate source for nickel: Some 40 Ma after the deposition of the Cu-rich proto-ore – concomitant with the obduction of the ultramafic massifs – disseminated Ni sulphides formed through chemical interaction between obducting peridotite massifs and adjacent black schists. This process was related to listwaenite–birbirite type carbonate–silica alteration at margins of the ultramafic massifs. Due to this alteration, silicate nickel was released from the primary Fe–Mg silicates and redeposited as Ni sulphides in the alteration fringes of the massifs.We propose that syntectonic mixing of these two “end-member” sulphides, i.e., the primary Cu-rich proto-ore and the secondary Ni-sulphide disseminations, resulted in the uncommon metal combination of the Outokumpu-type sulphides. Late tectonic solid-state re-mobilisation, related to the duplexing of the ore by isoclinal folding, upgraded the sulphides into economic deposits.  相似文献   

17.
A thermodynamic model for haplogranitic melts in the system Na2O–CaO–K2O–Al2O3–SiO2–H2O (NCKASH) is extended by the addition of FeO and MgO, with the data for the additional end‐members of the liquid incorporated in the Holland & Powell (1998) internally consistent thermodynamic dataset. The resulting dataset, with the software thermocalc , is then used to calculate melting relationships for metapelitic rock compositions. The main forms for this are PT and TX pseudosections calculated for particular rock compositions and composition ranges. The relationships in these full‐system pseudosections are controlled by the low‐variance equilibria in subsystems of NCKFMASH. In particular, the solidus relationships are controlled by the solidus relationships in NKASH, and the ferromagnesian mineral relationships are controlled by those in KFMASH. However, calculations in NCKFMASH allow the relationships between the common metapelitic minerals and silicate melt to be determined. In particular, the production of silicate melt and melt loss from such rocks allow observations to be made about the processes involved in producing granulite facies rocks, particularly relating to open‐system behaviour of rocks under high‐grade conditions.  相似文献   

18.
The Weiquan Ag-polymetallic deposit is located on the southern margin of the Central Asian Orogenic Belt and in the western segment of the Aqishan-Yamansu arc belt in East Tianshan,northwestern China. Its orebodies, controlled by faults, occur in the lower Carboniferous volcanosedimentary rocks of the Yamansu Formation as irregular veins and lenses. Four stages of mineralization have been recognized on the basis of mineral assemblages, ore fabrics, and crosscutting relationships among the ore veins. Stage I is the skarn stage(garnet + pyroxene), Stage Ⅱ is the retrograde alteration stage(epidote + chlorite + magnetite ± hematite 士 actinolite ± quartz),Stage Ⅲ is the sulfide stage(Ag and Bi minerals + pyrite + chalcopyrite + galena + sphalerite + quartz ± calcite ± tetrahedrite),and Stage IV is the carbonate stage(quartz + calcite ± pyrite). Skarnization,silicification, carbonatization,epidotization,chloritization, sericitization, and actinolitization are the principal types of hydrothermal alteration. LAICP-MS U-Pb dating yielded ages of 326.5±4.5 and 298.5±1.5 Ma for zircons from the tuff and diorite porphyry, respectively. Given that the tuff is wall rock and that the orebodies are cut by a late diorite porphyry dike, the ages of the tuff and the diorite porphyry provide lower and upper time limits on the age of ore formation. The δ~(13)C values of the calcite samples range from-2.5‰ to 2.3‰, the δ~(18)O_(H2 O) and δD_(VSMOW) values of the sulfide stage(Stage Ⅲ) vary from 1.1‰ to 5.2‰ and-111.7‰ to-66.1‰, respectively,and the δ~(13)C, δ~(18)O_(H2 O) and δD_(V-SMOW) values of calcite in one Stage IV sample are 1.5‰,-0.3‰, and-115.6‰, respectively. Carbon, hydrogen, and oxygen isotopic compositions indicate that the ore-forming fluids evolved gradually from magmatic to meteoric sources. The δ~(34)S_(V-CDT) values of the sulfides have a large range from-6.9‰ to 1.4‰, with an average of-2.2‰, indicating a magmatic source, possibly with sedimentary contributions. The ~(206)Pb/~(204)Pb, ~(207)Pb/~(204)Pb, and ~(208)Pb/~(204)Pb ratios of the sulfides are 17.9848-18.2785,15.5188-15.6536, and 37.8125-38.4650, respectively, and one whole-rock sample at Weiquan yields~(206)Pb/~(204)Pb,~(207)Pb/~(204)Pb, and ~(208)Pb/~(204)Pb ratios of 18.2060, 15.5674, and 38.0511,respectively. Lead isotopic systems suggest that the ore-forming materials of the Weiquan deposit were derived from a mixed source involving mantle and crustal components. Based on geological features, zircon U-Pb dating, and C-H-OS-Pb isotopic data, it can be concluded that the Weiquan polymetallic deposit is a skarn type that formed in a tectonic setting spanning a period from subduction to post-collision. The ore materials were sourced from magmatic ore-forming fluids that mixed with components derived from host rocks during their ascent, and a gradual mixing with meteoric water took place in the later stages.  相似文献   

19.
The activity–composition (ax) relations of sapphirine are re‐evaluated in the light of a recent new internally‐consistent data set of phase end‐members for use in phase equilibria modelling, particularly of ultra‐high‐temperature (UHT) rocks. This is achieved with the aid of relatively oxidized sapphirine+quartz‐bearing granulites from Wilson Lake, Canada. Calculated PT projections and compatibility diagrams in the K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 (KFMASHTO) system are used to illustrate sapphirine+quartz‐bearing phase equilibria in the context of UHT metamorphism. These new ax relations for sapphirine should allow pseudosection thermobarometry in NCKFMASHTO for estimating peak PT conditions of sapphirine‐bearing rocks.  相似文献   

20.
Jan-Marten Huizenga 《Lithos》2001,55(1-4):101-114
H2O, CO2, CH4, CO, H2 and O2 are the most important species in crustal fluids. The composition of these C–O–H fluids can be calculated if the pressure, temperature, carbon activity, and either the oxygen fugacity or the atomic H/O ratio of the fluid is known. The calculation methods are discussed and calculation results are illustrated with isobaric TXi, PT, and isobaric–isothermal ternary C–O–H diagrams. Fluid inclusion compositions, in particular, the XCO2/(XCO2+XCH4) ratio, can be used for C–O–H model calculations. However, care should be taken about possible post-entrapment changes, which may have modified the chemical composition of the fluid inclusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号