首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple derivation of the equations describing the backscatter enhancement (BSE) effect of waves on small inhomogeneities in a randomly inhomogeneous medium is presented. The BSE effect is considered in a locally isotropic turbulent atmosphere. It is shown that a system of remote sounding of atmospheric turbulence can be constructed on the basis of BSE measurements. The scheme of a lidar for BSE measurement, along with routine lidar sounding, is proposed. With the use of models it is shown that regions of increased turbulence can be detected with such a lidar.  相似文献   

2.
The possibility of lidar positioning of regions with higher clear-air turbulence (CAT) is shown. The turbulence is indicated by air density fluctuations generated by it. A scheme with a lidar based on using the backscattering enhecement (BSE) effect in a turbulent medium is considered. A stable solution of the positioning problem is obtained using the statistical regularization method. As is shown on models, CAT regions that are dangerous for civil aviation flights can be detected using such a lidar.  相似文献   

3.
Distributions of the velocity-field helicity in the atmospheric boundary layer have been obtained from acoustic sounding data. The helicity of large-scale motions (0.3–0.6 m/s2) exceeds (by an order of magnitude) its independently measured turbulent values, which are close to helicity averaged over the layer (0.02–0.12 m/s2). In the absence of strong convection, there is good correlation between helicity and wind velocity squared at upper sounding levels of 400 to 600 m.  相似文献   

4.
We perform the experimental verification of the applicability of the theory of similarity to the wave boundary layer and the assessment of wave-induced perturbations of the air flow depending on various conditions of stratification of the atmosphere and the state of the sea. The measurements were carried out from a stationary platform located in the coastal part of the Black Sea. The experimental procedure is based on the simultaneous measurements of the profile and fluctuations of the wind speed at 5–6 levels in the 1.3–21-m layer, the elevations of the sea surface, the directions of waves and winds, and the mean gradients of temperature and humidity of air. The structure of the boundary layer in the region of measurements depends on the direction of the wind. For weak and moderate onshore winds (< 9 m/sec), the approximate balance is preserved between the production and dissipation of turbulent energy in the cases of unstable and neutral stratification. On the average, the estimates of friction velocity according to the profiles are higher than the dissipative estimates by 10% mainly due to the deficiency of dissipation near the surface. For the offshore wind, the structure of the boundary layer abruptly changes and is determined not by the local parameters but by strong turbulent eddies formed over the dry land. The intensity of low-frequency turbulent fluctuations and the gradient of wind velocity near the surface in the coastal zone are 1.5–2 times higher than for the open sea. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 3, pp. 42–61, May–June, 2007.  相似文献   

5.
A modified three-parameter model of turbulence for a thermally stratified atmospheric boundary layer (ABL) is presented. The model is based on tensor-invariant parametrizations for the pressure-strain and pressure-temperature correlations that are more complete than the parametrizations used in the Mellor-Yamada model of level 3.0. The turbulent momentum and heat fluxes are calculated with explicit algebraic models obtained with the aid of symbol algebra from the transport equations for momentum and heat fluxes in the approximation of weakly equilibrium turbulence. The turbulent transport of heat and momentum fluxes is assumed to be negligibly small in this approximation. The three-parameter E ? ε ? 2> model of thermally stratified turbulence is employed to obtain closed-form algebraic expressions for the fluxes. A computational test of a 24-h ABL evolution is implemented for an idealized two-dimensional region. Comparison of the computed results with the available observational data and other numerical models shows that the proposed model is able to reproduce both the most important structural features of the turbulence in an urban canopy layer near the urbanized ABL surface and the effect of urban roughness on a global structure of the fields of wind and temperature over a city. The results of the computational test for the new model indicate that the motion of air in the urban canopy layer is strongly influenced by mechanical factors (buildings) and thermal stratification.  相似文献   

6.
Some changes in the eddy mixing in the atmospheric boundary layer (ABL) are investigated with the use of the mesoscale RANS turbulence model. It is found that the behavior of parameters of the eddy turbulence mixing is in compliance with the recently obtained data of laboratory and atmospheric measurements. In particular, the flow Richardson number (Ri f ) during the transient flow to a strongly stable state can behave nonmonotonically, growing with the increasing gradient Richardson number (Ri g ) to the state of saturation at a certain gradient Richardson number (Ri g ? 1), which separates two different turbulent regimes: the regimes of strong mixing and weak mixing. An analysis of the energetics based on the balance equations of kinetic and potential turbulence energies shows, in particular, that the weak mixing (Ri g > 1) is quite capable of transferring momentum. This phenomenon can be explained not only by the fact that the flow is sustained by propagating internal waves, which effectively transfer momentum under strong stratification conditions, but also by the fact that turbulence permanently arises in the free atmosphere and in the deep ocean at Ri g ? 1.  相似文献   

7.
A method for reconstructing the parameters of postvolcanic stratospheric aerosol from the results of joint measurements of the aerosol backscattering coefficient with lidar systems based on the Nd:YAG laser and the aerosol extinction coefficient with the SAGE III satellite instrumentation is developed. The most informative set of optical characteristics is determined for each of the microphysical parameters under consideration (concentration, surface area, volume, and effective size of particles of the fine and coarse aerosol fractions). Multiple polynomial regressions between optical and microphysical characteristics of aerosol are obtained. These regressions make it possible to determine the microphysical characteristics of aerosol within a wide range without solving incorrect inverse problems. The results are compared with independent experimental data. The errors of reconstructing microphysical parameters of aerosol are estimated for different situations in the stratosphere. The influence of the shape of particles of the dust fraction on the results of a reconstruction of the microphysical parameters of aerosol is considered.  相似文献   

8.
The use of linear estimation for the study of the information content of a given satellite radiance data set for temperature and humidity profile retrievals is first reviewed. A particular formulation of the retrieval approach is then used to obtain an intrinsic characterisation of the Infrared Atmospheric Sounding Interferometer (IASI) data set, in terms of accuracy versus vertical resolution of retrieved profiles. The performance of the IASI instrument alone is analysed and compared to that of the currently‐used HIRS‐TOVS. The problem is then regularized by addition of a priori independent information to the initial data set. The potential use of IASI data for some particular choices of the a priori information associated with practical problems such as profile inversion or data assimilation for weather forecasting is analysed. The approach is finally used to derive an "empirical" objective framework to define the vertical discretization adapted to these problems.  相似文献   

9.
The results of studies into the aerosol optical depth (AOD) for the atmosphere in the Middle Urals in the spectrum range of 0.34–1.02 μm for 2004–2010 is presented. The interannual, annual, seasonal, and daily variations in the AOD are analyzed. The major statistical characteristics of the AOD, the parameters of the probability density function of distributions over different wave lengths, and the parameters of Angstrom’s formula for the different seasons are calculated. The monitoring stations in the Russian segment of the AERONET network are ranked with respect to the AOD value. A shift from March to May in the spring maximum of the AOD is revealed in comparison with the results of the actinometric observations for the period of 1960–1986. A qualitative assessment is given to the influence of forest and peat fires in the region on the AOD. A classification of the states of aerosol haze in the atmosphere according to the AOD values is proposed.  相似文献   

10.
The BIO Mark 8 thrust anemometer measures the drag of the wind on a perforated table tennis ball mounted on a vertical beam. The tri-axial displacement of the beam is sensed by eddy current proximity sensors. This anemometer has a flat frequency response from 0 to 10 Hz and can measure wind from 0 to 28 m s−1 at temperature from − 19 to + 28°C. It is designed for remote operation for extended periods of time such as on stable towers at sea.  相似文献   

11.
Basic characteristics of optical scattering in a mixed-phase cloud (asymmetry parameter of the scattering phase function and efficiency scattering factors and scattering coefficients) are considered. Theoretical consideration is based on the mixed-phase cloud model in the form of a uniform mixture of ice crystals and water droplets. Expressions allowing calculation of asymmetry parameter of the mixed-phase cloud scattering phase function are obtained as functions of the cloud temperature, average size of cloud particles, and ratios of the number densities of differently shaped ice crystals. Data calculated for the asymmetry parameter of infrared scattering in a mixed-phase cloud layer at its given temperature are presented.  相似文献   

12.
Results of measurements of the atmospheric turbulence in the layer between 1.5 and 21 m above sea level and the drag coefficient of the sea surface as the wind blows from a 4-km-long mountainous slope with a mean inclination of 11° are presented. The measurements of wind-speed profiles and its fluctuations at several levels, waves, and the main meteorological parameters were carried out in autumn 2005 and 2008 from a stationary platform located in the Black Sea at a distance of approximately 1 km from the southern coast of Crimea. It is shown that during weak synoptic wind a low-level wind jet develops at night over the sea with a maximum velocity up to 5–6 m/s at a level of approximately 6 m over the sea induced by the katabatic wind over the coastal slope. According to the approximate estimates, the horizontal scale of the low-level jet can reach a few tens of kilometers. This flow is characterized by the dissipation rate of the turbulence energy independent of height and low-frequency velocity fluctuations related to the gravity waves and advection of turbulence from the coast. It is shown that the lower part of the boundary layer (up to a height of 3 m) is adjusted to the sea-surface roughness. The dependencies of the drag coefficient on the wind speed or wave age are steadier than in the data for the open sea. However, the age of the waves is not a universal parameter at long and short fetches.  相似文献   

13.
14.
This paper derives the explicit expressions for the average intensity, beam width and angular spread of Gaussian Schell-model (GSM) beams with edge dislocation propagating through atmospheric turbulence along a slant path. The propagation of GSM beams with edge dislocation through horizontal atmospheric turbulence can be treated as a special case through a slant one. The propagation properties of GSM beams with edge dislocation through slant atmospheric turbulence are studied, where the influence of edge dislocation parameters including the slope p and off-axis distance d on the spreading of GSM beams with edge dislocation in atmospheric turbulence is stressed. It shows that the spreading of the intensity profile of GSM beams with edge dislocation along a slant path is smaller than that along a horizontal path in the long-distance atmospheric propagation. The larger the slope vert pvert and the smaller the off-axis distance vert dvert are, the less the beam-width spreading and angular spread of GSM beams with edge dislocation are affected by turbulence. The GSM beams with edge dislocation is less affected by turbulence than that of GSM beams without edge dislocation. The results are illustrated numerically and their validity is interpreted physically.  相似文献   

15.
The dependence that the structure and intensity of turbulent and large-scale quasiordered eddies in the atmospheric boundary layer (ABL) have on the direction of geostrophic wind has been studied on the basis of a series of numerical experiments with a three-dimensional nonstationary model of high spatial resolution. The presence of the meridional component of the angular velocity of the Earth’s rotation results in a significant intensification of velocity fluctuations in a neutrally stratified turbulent flow during the easterly and northeasterly winds and in their decay during the westerly and southwesterly winds. This, in turn, results in significant variations in the mean velocity profile. It is shown that these variations are associated with the largest scale fluctuations and are comparable (in scale) to the depth of Ekman’s turbulent layer. It is found that, in the neutrally stratified ABL bounded in height and under stable stratification inside the ABL, the wind-direction dependence significantly decreases. The possibilities of parameterizing these effects in locally one-dimensional ABL models are discussed.  相似文献   

16.
多普勒激光测风雷达是近年来方兴未艾的 1种全新的大气风场探测手段。但是激光测风雷达直接测量的是视线方向上的激光反射光的频移 (视线风速 )。在这个基础上 ,激光雷达还必须能够获得多方位的风速数据才能够反演出风场。这就需要相应的光学扫描系统 ,它在保证发射、接收视场重叠的前提下 ,控制激光束投射到指定的方向 ,使激光雷达获得不同视线角度的风速数据。本文介绍的激光雷达测风系统中的光学扫描部分实现了上述要求 ,在水平旋转和俯仰控制上的精度都达到了<0 .5°。完全能够满足激光测风系统的实用需要。  相似文献   

17.
We have estimated and compensated the error in long-term series of the aerosol optical thickness (AOT) calculated from the data on direct integral solar radiation measured by a standard actinometer at the Meteorological Observatory of the Moscow State University (MO MSU) for strong atmospheric turbidity conditions. The necessary corrections have been obtained by the Monte-Carlo simulation of the actinometry measurements for different atmospheric conditions, taking into account the angular size of the field of view of the instrument; and a special correctional formula has been obtained. This correction formula has been applied for all timed AOT values of above 0.5 observed at the MO MSU for the entire time period from 1955 to 2013. Changes in the long-term average AOT values in Moscow occurred only when the smoky haze from the forest and peat fires affected the aerosol turbidity of the atmosphere. Here, the significant decreasing trend of aerosol optical depth of the atmosphere from 1955 to 2013 has been retained with the same confidence level.  相似文献   

18.
Preliminary results of a space experiment using the IKFS-2 infrared sounder (Meteor-M2 satellite) showed high-quality of measurements of spectra of the outgoing thermal radiation of the atmosphere–surface system and the adequacy of developed IR radiation atmospheric models in the 15-μm carbon gas absorption band used to recover the vertical profiles of the atmospheric temperature. Outgoing radiation spectra measured by IKFS-2 instruments make it possible to restore vertical temperature profiles with errors close to 1K in most of the 0–30 km high-altitude region, except for the lower troposphere and altitudes above 30 km, where these errors are close to 2–3K.  相似文献   

19.
20.
The results of lidar sensing of the sea surface carried out from an oceanographic platform in the Black Sea under different hydrometeorological conditions are considered. It is found that the frequency, time, and intensity of the mirror-reflected lidar specks of light vary essentially when the wind wave structure anomalies appear, which arise owing to some physical processes evolving in the air-sea boundary layers. The effects conditioned by an unsteady and non-uniform wind, the hydrological front, the slicks related to internal waves and Langmuir circulation, industrial pollution of the sea surface by surface-active substances, and rainfall are estimated quantitatively. A conclusion about the prospects of application of the lidar specks indication method for ecological monitoring and control of the sea surface state and internal basins is drawn.Translated by Mikhail M. Trufanov.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号