首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
北太平洋中尺度涡时空特征分析   总被引:5,自引:0,他引:5  
郑聪聪  杨宇星  王法明 《海洋科学》2014,38(10):105-112
利用1993~2011年19 a的AVISO卫星高度计资料研究了北太平洋(10°~60°N,120°E~100°W)中尺度涡的时空分布特征,结果表明:北太平洋每年约产生1 800余个涡旋,其中气旋涡稍多。北太平洋东部沿岸、西北沿岸、黑潮延伸体北侧、副热带逆流区是中尺度涡的高发区,春、冬季是涡旋的高发季节。涡极性分布以35°N为界,北部多反气旋涡,南部多气旋涡。涡旋半径以100 km左右为主,并且基本随纬度升高而减小,涡旋数量随着周期增长而急剧下降。反气旋涡的平均半径和周期均大于气旋涡。利用Argo浮标剖面资料分析的6个个例涡旋的垂直结构显示,每个涡旋都有其独特的冷暖核结构,深度不同。研究结果对于分析北太平洋涡动能分布及传输具有一定的参考价值。  相似文献   

2.
基于观测的南海越南沿岸次表层涡旋   总被引:1,自引:0,他引:1  
In this study, subsurface eddies near the Vietnam coast of the South China Sea were observed with in situ observations, including Argo, CTD, XBT and some processed and quality controlled data. Based on temperature profiles from four Argo floats near the coast of Vietnam, a subsurface warm eddy was identified in spring and summer. The multi-year Argo and Global Temperature and Salinity Profile Programme(GTSPP) data were merged on a seasonal basis based on the data interpolating variational analysis(DIVA) method to reconstruct the three-dimensional temperature structure. There is a warm eddy in the central subsurface at 12.5°N, 111°E below300 m depth in spring, which does not exist in autumn and is weak in winter and summer. From CSIRO Atlas of Regional Seas(CARS) and Generalized Digital Environment Model(GDEM) reanalysis data, this subsurface warm eddy is also verified in spring.  相似文献   

3.
The statistical characteristics and vertical thermohaline properties of mesoscale eddies in the Bay of Bengal are studied from the view of satellite altimetry data and Argo profiles. Eddy propagation preferences in different lifetimes, eddy evolution process, and geographical distribution of eddy kinetic properties are analyzed in this area. Eddies exist principally in the western Bay of Bengal, and most of them propagate westward. There is a clear southward(equatorward) preference for eddies with long lifetimes, especially for cyclones. Moreover, the eddies in different areas of the bay show different north-southward preferences. Evolution of eddy kinetic properties with lifetime shows that eddies have the significant three-stage feature: the growth period in the former one-fifth lifetime, the stable period in the middle two-fifth to four-fifth lifetime, and the dying period in the last one-fifth lifetime. Large-amplitude and high-intensity eddies occur only in the relatively confined regions of highly unstable currents, such as the East Indian Coastal Current and eastern Sri Lanka. Based on Argo profile data and climatology data, the eddy synthesis method was used to construct three-dimensional temperature and salt structures of eddies in this area. The mean temperature anomaly is negative/positive to the cyclonic/anticyclonic eddies in the upper 300×10~4 Pa, and below this depth, the anomaly becomes weak. The salinity structures of positive anomalies inside cyclonic eddies and negative anomalies inside anticyclonic eddies in the Bay of Bengal are not consistent with other regions. Due to the special characteristics of the water mass in the bay, especially under the control of the low-salinity Bay of Bengal water at the surface and the Indian equatorial water in the deep ocean, the salinity of seawater shows a monotonic increase with depth. For regional varieties of temperature and salinity structures, as the eddies move westward, the temperature anomaly induced by the eddies increases, the effecting depth of the eddies deepens, and the salinity structures are more affected by inflows. In the north-south direction, the salinity structures of the eddies are associated with the local water masses, which comprise lowsalinity water in the northern bay due to the inflow of freshwater from rivers and salty water in the southern bay due to the invasion of Arabian Sea high-salinity water from the north Indian Ocean.  相似文献   

4.
The circulation in the Shikoku Basin plays a very important role in the pathway of the Kuroshio and the water exchange in the subtropical gyre in the North Pacific Ocean. The Argo profiling floats deployed in the Shikoku Basin are used to study the circulations and water masses in the basin. The trajectories and parking depth velocity fields derived from all Argo floats show an anticyclonic circulation at 2 000 m in the Shikoku Basin. There are inhanced eddy activities in the Shikoku Basin, which have large influence on the Shikoku Basin circulation patterns. The characteristics of temperature-salinity curves indicate that there are North Pacific Ocean tropical water (NPTW), North Pacific Ocean subtropical mode water (NPSTMW) and North Pacific Ocean intermediate water (NPIW) in the Shikoku Basin. The NPTW is only exists south of 32°N. In the middle part of the basin, which is 28°~31°N,133°~135°E, there is a confluence region. Water masses coming from the Kuroshio mix with the water in the Shikoku Basin.  相似文献   

5.
We present here a detailed analysis of the time-dependent large-scale and mesoscale features observed in the Greenland Sea during winter and spring 1993 and 1994. Based on a comprehensive data set, this study gives particular emphasis to the data from hydrology and RAFOS-VCM floats. In both years, the basin underwent an overturning to 1000 and 800 m depth, respectively, with extensive horizontal variability. These inhomogeneities are shown to be closely linked with mesoscale eddies identified at a late stage during the preconditioning phase to deep convection. It is suggested that these eddies are remnants of previous convective events. One of them, found at 500 m depth in 1994, was thoroughly studied. The dynamical coupling between the eddy and the modified Atlantic Water (mAW), advected over it from the northwest, led to the deepest convected water column found within the basin during this particular year. Sea ice, absent in the gyre in winter 1994, but partly present in the colder 1993 winter, does not appear to be a strong prerequisite for deep convection. Heat loss at the surface, combined with salt input by the mAW, and remnant subsurface mesoscale eddies of past convective events, are the most likely agents that determine the depth reached by convection and the characteristics of the new Greenland Arctic Intermediate Water formed in the Greenland Gyre in 1993 and 1994.  相似文献   

6.
Mesoscale eddies, which are mainly caused by baroclinic effects in the ocean, are common oceanic phenomena in the Northwest Pacific Ocean and play very important roles in ocean circulation, ocean dynamics and material energy transport. The temperature structure of mesoscale eddies will lead to variations in oceanic baroclinity, which can be reflected in the sea level anomaly (SLA). Deep learning can automatically extract different features of data at multiple levels without human intervention, and find the hidden relations of data. Therefore, combining satellite SLA data with deep learning is a good way to invert the temperature structure inside eddies. This paper proposes a deep learning algorithm, eddy convolution neural network (ECN), which can train the relationship between mesoscale eddy temperature anomalies and sea level anomalies (SLAs), relying on the powerful feature extraction and learning abilities of convolutional neural networks. After obtaining the temperature structure model through ECN, according to climatic temperature data, the temperature structure of mesoscale eddies in the Northwest Pacific is retrieved with a spatial resolution of 0.25° at depths of 0–1 000 m. The overall accuracy of the ECN temperature structure is verified using Argo profiles at the locations of cyclonic and anticyclonic eddies during 2015–2016. Taking 10% error as the acceptable threshold of accuracy, 89.64% and 87.25% of the cyclonic and anticyclonic eddy temperature structures obtained by ECN met the threshold, respectively.  相似文献   

7.
Observations of the Labrador Sea eddy field   总被引:2,自引:0,他引:2  
This paper is an observational study of small-scale coherent eddies in the Labrador Sea, a region of dense water formation thought to be of considerable importance to the North Atlantic overturning circulation. Numerical studies of deep convection emphasize coherent eddies as a mechanism for the lateral transport of heat, yet their small size has hindered observational progress. A large part of this paper is therefore devoted to developing new methods for identifying and describing coherent eddies in two observational platforms, current meter moorings and satellite altimetry. Details of the current and water mass structure of individual eddy events, as they are swept past by an advecting flow, can then be extracted from the mooring data. A transition is seen during mid-1997, with long-lived boundary current eddies dominating the central Labrador Sea year-round after this time, and convectively formed eddies similar to those seen in deep convection modeling studies apparent prior to this time. The TOPEX / Poseidon altimeter covers the Labrador Sea with a loose “net” of observations, through which coherent eddies can seem to appear and disappear. By concentrating on locating and describing anomalous events in individual altimeter tracks, a portrait of the spatial and temporal variability of the underlying eddy field can be constructed. The altimeter results reveal an annual “pulsation” of energy and of coherent eddies originating during the late fall at a particular location in the boundary current, pinpointing the time and place of the boundary current-type eddy formation. The interannual variability seen at the mooring is reproduced, but the mooring site is found to be within a localized region of greatly enhanced eddy activity. Notably lacking in both the annual cycle and interannual variability is a clear relationship between the eddies or eddy energy and the intensity of wintertime cooling. These eddy observations, as well as hydrographic evidence, suggest an active role for boundary current dynamics in shaping the energetics and water mass properties of the interior region.  相似文献   

8.
The present work describes the basic features of super typhoon Meranti(2016) by multiple data sources. We mainly focus on the upper ocean response to Meranti using multiplatform satellites, in situ surface drifter and Argo floats, and compare the results with the widely used idealized wind vortex model and reanalysis datasets.The pre-existing meso-scale eddy provided a favor underlying surface boundary condition and also modulated the upper ocean response to Meranti. Results show that the maximu...  相似文献   

9.
南印度洋是海洋中尺度涡的多发区域。本文利用卫星高度计资料及Argo浮标资料,对南印度洋(10°~35°S, 50°~120°E)区域中尺度涡的分布、表观特征等进行了统计分析,采用合成方法,构建了该区域中尺度涡的三维温盐结构。结果表明,涡旋频率呈明显的纬向带状分布,在18°~30°S存在一个明显的涡旋频率带状高值区;涡旋半径具有由南至北逐渐增大的趋势;长周期涡旋在其生命周期内,半径、涡动能、涡能量密度、涡度等性质均经历了先增大而后减小的过程;涡旋以西向运动为主,在经向上移动距离较小,长周期气旋(反气旋)涡具有明显的偏向极地(赤道)移动的倾向;涡旋平均移动速度为5.9 cm/s,速度大小大致沿纬向呈带状分布。在混合层以下,气旋涡(反气旋涡)内部分别呈现明显的温度负(正)异常,且分别存在两个位温负(正)异常的冷(暖)核结构;气旋涡(反气旋涡)整体上呈现"正-负"("负-正")上下层相反的盐度异常结构。中尺度涡对温盐的平均影响深度可达1 000×104 Pa以上。  相似文献   

10.
在南大洋印度洋扇区中部海域,除了地形控制(凯尔盖朗高台),南极绕极流和厄加勒斯回流的汇合流进一步加强了下游的斜压剪切强度,导致涡旋能量显著增强,因此,对该海域涡旋的研究有助于了解该海域的涡旋特征以及地形与涡旋的分布关系。基于2005~2019年卫星遥感数据,对该海域涡旋特征进行统计,并对涡旋产生地分布、跨锋面涡旋的移动状况进行分析,同时结合Argo剖面数据,进一步剖析涡旋内部水文分布特征。结果表明:该海域涡旋生命周期多在20 d以内(64.25%),平均半径多在30~100 km(96.13%);平均半径与平均振幅呈正相关关系(相关系数R=0.55);生命周期越大的涡旋平均传播距离也越大。2014年开始涡旋数量明显增加,主要由短寿命涡旋(<30 d)数量增加所贡献。反之, 21世纪10年代后期年平均涡动能异常呈减小趋势。涡旋产生地随着寿命增长,逐渐从亚南极锋与南极绕极流南部边界之间的锋面区域向亚南极锋以北移动。跨锋面涡旋中,暖涡向高纬,冷涡向低纬移动,大部分具有携带水团移动的能力。由涡旋内部水文特征分析结果可知,不同极性的涡旋能够实现完全不同来源水团的远距离输送,对同一来源水团,气旋涡具有抬升作用,而反气旋涡具有压沉作用。该研究工作有助于提升对南大洋涡旋特征及变动的认识,为进一步的涡旋动力研究提供支撑。  相似文献   

11.
The comprehensive three-dimensional structures of an anti-cyclonic mesoscale eddy(AE) in the subtropical northwestern Pacific Ocean were investigated by combining the Argo floats profiles with enhanced vertical and temporal sampling and satellite altimetry data. The AE originated near the Kuroshio Extension and then propagated westward with mean velocity of 8.9 cm/s. Significant changes and evolutions during the AE's growing stage(T1) and further growing stage(T2) were revealed through composite analysis. In the composite eddy core,maximum temperature(T) and salinity(S) anomalies were of 1.7(1.9)°C and 0.04(0.07) psu in T1(T2) period,respectively. The composite T anomalies showed positive in almost whole depth, but the S anomalies exhibited a sandwich-like pattern. The eddy's intensification and its influence on the intermediate ocean became more significant during its growth. The trapping depth increased from 400×10~4 Pa to 580×10~4 Pa while it was growing up, which means more water volume, heat and salt content in deeper layers can be transported. The AE was strongly nonlinear in upper oceans and can yield a typical mean volume transport of 0.17×10~6 m~3/s and a mean heat and salt transport anomaly of 3.6×10~(11) W and –2.1×10~3 kg/s during the observation period. The Energy analysis showed that eddy potential and kinetic energy increased notably as it propagated westward and the baroclinic instability is the major energy source of the eddy growth. The variation of the remained Argo float trapped within the eddy indicated significant water advection during the eddy's propagation.  相似文献   

12.
南海自动剖面浮标轨迹模拟系统包括高分辨率模式流场、拉格朗日追踪模型和垂向浮标运动参数化方案等三个核心部分。该系统可在南海范围内模拟两类自动剖面浮标: 传统自动剖面浮标(停滞深度为1000m, 最大下潜深度为2000m)和新型深海自动剖面浮标(停滞深度为距海底500m)。通过对南海现有的6个传统浮标的模拟, 该系统可以预测其100d内的漂流轨迹。通过与真实浮标轨迹数据的对比, 验证了该模拟系统的准确性。此外, 根据该系统, 我们初步探讨了深海自动剖面浮标阵列(时空分辨率为2°×2°×30d)在南海内区布放方案的可行性。该模拟系统的建立和完善将有助于对现有传统剖面浮标布放策略进行优化, 并对未来深海剖面浮标在南海的推广应用提供初步的理论依据。  相似文献   

13.
The transfer of upper kilometer water from the Indian Ocean into the South Atlantic, the Agulhas leakage, is believed to be accomplished primarily through meso-scale eddy processes. There have been various studies investigating eddies of the “Cape Basin Cauldron” from specific data sets. The hydrographic data archive acquired during the last century within the Cape Basin region of the South Atlantic provides additional insight into the distribution and water mass properties of the Cape Basin eddies. Eddies are identified by mid-thermocline isopycnal depth anomalies relative to the long-term mean. Positive depth anomalies (the reference isopycnal is deeper than the long-term mean isopycnal depth) mark the presence of anticyclonic eddies; negative anomalies mark cyclonic eddies. Numerous eddies are identified in the whole region; the larger isopycnal displacements are attributed to the energetic eddies characteristic of the Cape Basin and indicate that there is a 2:1 anticyclone/cyclone ratio. Smaller displacements of the less energetic features are almost equally split between anticyclones and cyclones (1.4:1 ratio). Potential temperature, salinity and oxygen relationships at thermocline and intermediate levels within each eddy reveal their likely origin. The eddy core water is not solely drawn from Indian Ocean: tropical and subtropical South Atlantic water are also present. Anticyclones and cyclones carrying Agulhas Water properties are identified throughout the Cape Basin. Anticyclones with Agulhas Water characteristics show a predominant northwest dispersal, whereas the cyclones are identified mainly along the western margin of the African continent, possibly related to their origin as shear eddies at the boundary between the Agulhas axis and Africa. Cyclones and anticyclones carrying pure South Atlantic origin water are identified south of 30°S and west of the Walvis Ridge. Tropical Atlantic water at depth is found for cyclones north of the Walvis Ridge, west of 10°E and for stations deeper than 4000 m, and a few anticyclones with the same characteristics are found south of the ridge.  相似文献   

14.
本文基于Chelton提供的涡旋数据集和浮标漂流轨迹提取的涡旋结果,对1993—2015年的全球涡旋进行特征信息对比分析。结果表明,在全球范围内高度计涡旋数据集中的欧拉涡旋和浮标漂流轨迹提取的拉格朗日涡旋的配对成功率在空间分布上并不均衡,在中纬度(20°—60°S,20°—60°N)配对成功率最高可达25%,而在20°S—20°N区域内配对成功率不到10%。由于低纬度地转效应并不显著,卫星高度计无法有效观测到涡旋,但通过浮标漂流轨迹识别出的拉格朗日涡旋却大量存在,这说明在低纬度区域内,采用漂流浮标手段对涡旋进行观测,能够有效地弥补卫星高度计识别涡旋的区域限制。进一步分析表明,总体而言,提取的欧拉涡旋半径要大于拉格朗日涡旋闭合回路半径。两种识别方法获得的涡旋(闭合回路)在20°—50°S, 20°—50°N的副热带和中纬度海区半径大致相当; 20°S—20°N度以内(特别是近赤道区域)、高纬度区域以及西边界流区域,欧拉涡旋半径是同期拉格朗日涡旋闭合回路半径的3倍或更多。此外,对配对涡旋的Rossby数分析结果显示,拉格朗日涡旋较小的闭合回路对应较大的平均相对涡度,这表明浮标在被中尺度涡俘获后,更容易在相对涡度较大的地方(如中尺度涡中心、中尺度涡边缘等)形成闭合回路。  相似文献   

15.
In the winter Kuroshio Extension region, the atmospheric response to oceanic eddies is studied using reanalysis and satellite data. The detected eddies in this region are mostly under the force of northwesterly wind, with the sea surface temperature (SST) anomaly located within the eddy. By examining the patterns of surface wind divergence, three types of atmospheric response are identified. The first type, which occupies 60%, is characterized by significant sea surface wind convergence and divergence at the edge and a vertical secondary circulation (SC) aloft, supporting the “vertical momentum mixing mechanism”. The SCs on anticyclonic eddies (AEs) can reach up to 300 hPa, but those on cyclonic eddies (CEs) are limited to 700 hPa. This can be explained by analyzing vertical eddy heat transport: When northwesterly wind passes the warmer center of an AE, it is from the cold to warm sea surface, resulting in stronger evaporation and convection, triggering stronger upward velocity and moist static heat flux. For the cases of CEs, the wind blows from warm to cold, which means less instability and less evaporation, resulting in weaker SCs. The second type, which occupies 10%, is characterized by divergence and a sea level pressure anomaly in the center, supported by the “pressure adjustment mechanism”. The other 30% are mostly weak eddies, and the atmospheric variation aloft is unrelated to the SST anomaly. Our work provides evidence for the different atmospheric responses over oceanic eddies and explains why SCs over AEs are much stronger than those over CEs by vertical heat flux analysis.  相似文献   

16.
The Levantine Basin circulation derived from recent data consists of a series of sub-basin-scale to mesoscale eddies interconnected by jets. The basin-scale circulation is masked by eddy variability that modulates and modifies it on seasonal and interannual time scales. Long-term qualitative changes in the circulation are reflected in the bifurcation pattterns of ther mid-basin jets, relative strengths of eddies and the hydrographic properties at the core of these eddies. Confinement within the Basin geometry strongly influences the co-evolution of the circulation features.Surface measurements, satellite images and the mass field indicate an entire range of scales of dynamical features in the region. The complexity of the circulation is consistent with the basin-wide and mesoscale heterogeneity of the hydrographic properties. The interannual variability of LIW (Levantine Intermediate Water) formation in the region appears correlated with the changes in the circulation. Wintertime convective overturning of water masses reach intermediate depths and constitute a dominant mechanism of LIW formation, especially in anticyclonic eddies and along the coasts of the northern Levantine Basin.  相似文献   

17.
《Ocean Modelling》2008,20(1):1-16
Argo is a global array of profiling floats that provides temperature (T) and salinity (S) profiles from 2000 m to the surface every ten days with a nominal spatial resolution of 3°. Here we present idealized experiments where the adjoint method is used to synthesize simulated sets of Argo profiles with a general circulation model, over a one-year period, in the North Atlantic. Using a number of drifting profilers consistent with Argo deployment objectives, the simulated array permits one to identify large-scale anomalies in the hydrography and circulation, despite the presence of a simulated eddy noise of large amplitude. Model dynamics provide an objective means to distinguish eddy noise from large-scale oceanic variability, and to infer the absolute velocity field (including abyssal velocities and sea surface height) from sets of Argo profiles of T and S. In particular, our idealized experiments suggest that volume and heat transports can be efficiently constrained by sets of Argo profiles. Increasing the number of Argo floats seems to be an adequate strategy to further reduce errors in circulation estimates.  相似文献   

18.
This paper describes the water circulation in the Kuril Basin and its role in the formation and seasonal variation in intensity of the large anticyclonic eddies which occur in the basin. Oceanographic data for the period June 1977 through June 1979 suggest that these eddies develop in summer and decay in winter. In summer, the eddy development is associated with a deepening of the isopycnals caused by the surface flow of the Soya Warm Current over the basin, and the deep advection of cold, less saline, oxygen-rich water from Terpenia Bay and the eastern continental shelf of Sakhalin Island. In winter, the eddy decay is caused by surface cooling and convective mixing downward of the warm, saline surface water, which causes the isopycnals to rise and leads to an attenuation of the eddies. This combination of the summer influx of water into the region, and the fall and winter cooling of the eddies leads to the annual variation in eddy intensity.  相似文献   

19.
20.
Observations of Eddies in the Japan Basin Interior   总被引:1,自引:0,他引:1  
Eddy features in the Japan Basin have been studied by combining satellite-derived sea surface temperature (SST) images and WOCE drifter tracks with recent current meter data from a deep mooring in the interior of the Basin. SST images indicate that anticyclonic eddies often appear around the Subpolar Front in cold seasons and move into the northern cold water region entraining warm water of the frontal zone. The anti-cyclonic eddies "visualized" by the entrained warm water and trajectories of some drifters are typically 30 km in radius and have rotational speeds of 0.15 to 0.3 m/s at the surface. On the other hand, the current meter data of 3-year duration show that vertically coherent eddy-like currents of the order of 0.1 m/s occur every year in cold seasons in the deep (1000 to 3000 m) layer of the Japan Basin interior. An important finding is that available time series of SST patterns are well correlated to the vertically coherent deep currents. This correlation suggests that the anticyclonic eddies indicated by both SST images and drifter tracks are actually barotropic or quasi-barotropic, extending from the surface to the bottom. It is argued that the unique current features in the deep layer of the Japan Basin can be explained in terms of barotropic eddies. A brief discussion is also made of the possible source of the eddy kinetic energy. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号