首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method to register sea-wave spectra using optical aerospace imagery has been developed. The method is based on the use of retrieval operators both in areas of high and low spatial frequencies, including the areas of spectral maximum. The approach to adjust and validate the method developed using sea truth data obtained by string wave recorders has been suggested. This paper presents the results of using the suggested method to study sea-wave spectra using high-resolution satellite imagery for various water areas under different conditions of wave generation.  相似文献   

2.
An approach to the retrieval of sea wave spatial spectra based on satellite optical imagery in linear and nonlinear approximations is described. Physical mechanisms of the formation of disturbed sea surface brightness fields recorded by remote sensing equipment are analyzed. Wave spectra retrieval methods using brightness field formation models that consider linear and nonlinear dependencies on sea surface slopes are suggested. A method for the construction of operators that retrieve the spatial spectra of surface wave slopes and elevations from aerospace imagery and take into account nonlinear modulations of disturbed sea surface brightness fields is developed. This method is based on the numerical simulation of sea surface images and the construction of a retrieving operator with respect to a set of parameters determined by aerospace imaging conditions. Examples of the use of the developed methods are given.  相似文献   

3.
本文基于海浪波折射现象和浅水波理论,提出了一种基于单景高分辨率光学遥感影像的浅海地形提取方法。首先,基于浅水波理论推导出适用于浅海区域的水深与海浪波长、频率的定量关系,针对近岸光学遥感图像复杂的海浪特征,讨论了两种海浪波长提取方法,即FFT方法和剖面线法。然后提出了基于长距离波长波动分析的海浪频率计算方法,解决了单景遥感影像的波浪频率计算难题。最后,利用单景QuickBird高分辨率光学遥感影像,以海南岛三亚湾为研究区域进行了应用实验,结果表明,对12m以浅的浅海区域,在不需要任何辅助参数的情况下,反演获得了浅海地形(DEM),经与1:25000比例尺海图的水深对比验证,地形趋势吻合良好,反演水深的均方根误差为1.07m,相对水深误差为16.2%,表明该方法适合于浅海水下地形的提取,且具有无需实测水深数据和环境参数的支持的优点。  相似文献   

4.
Many synthetic aperture radar(SAR) wave height retrieval algorithms have been developed.However,the wave height retrievals from most existing methods either depend on other input as the first guess or are restricted to the long wave regime.A semiempirical algorithm is presented,which has the objective to estimate the wave height from SAR imagery without any prior knowledge.The proposed novel algorithm was developed based on the theoretical SAR ocean wave imaging mechanism and the empirical relation between two types of wave period.The dependency of the proposed model on radar incident and wave direction was analyzed.For Envisat advanced synthetic aperture radar(ASAR) wave mode data,the model can be reduced to the simple form with two input parameters,i.e.,the cutoff wavelength and peak wavelength of ocean wave,which can be retrieved from SAR imagery without any prior knowledge of wind or wave.Using Envisat ASAR wave mode data and the collocated buoy measurements from NDBC,the semiempirical algorithm is validated and compared with the Envisat ASAR level 2 products.The root-mean-square-error(RMSE) and scatter index(SI) in respect to the in situ measurements are 0.52 m and 19% respectively.Validation results indicate that,for Envisat ASAR wave mode data,the proposed method works well.  相似文献   

5.
卫星海洋水色遥感的辐射模式研究   总被引:6,自引:3,他引:6  
海洋水体向上的辐射由水中多种成分的浓度所决定,同时辐射的强度十分微弱并随着时间和空间在变化。因此,海洋水色遥感需要从水体和大气辐射传递机理出发,研究到达卫星遥感器的辐射模式,以达到模拟仿真卫星水色遥感图像和卫星图像质量预测的目的。本研究通过叶绿素、悬浮泥沙和黄色物质等海洋水色的主要因子,分别从可见光波段和荧光波段对辐射的贡献出发,发展了海洋水体离水辐射率模式。在卫星水色遥感机理的基础上,同时运用Iqbal,Gordon和Sturm等的大气程辐射模式和太阳耀光模式,使卫星海洋水色遥感的辐射模式系统化,模拟仿真了我国1990年9月3日发射的FYIB卫星两个海洋水色通道的全轨道辐射图像,同时利用从德国柏林大学气象中心接收到的1990年9月23-25日卫星图像进行验证。结果认为,本文所发展的模式可应用于卫星图像质量的预测和水色信息的提取。  相似文献   

6.
1 IntroductionCurrently, the ocean eddy plays an important rolein energy flowand matter exchange in ocean. The ex-traction and analysisof the oceaneddave beeninves-tigated bylots of people in pastdecades. Currentmeth-ods to deal with the ocean eddy include static and dy-namic methods. The static method is to analyze indi-rectly ocean eddies using the spatial feature distribu-tion, change, growthand decline of the watermass (Suet al., 1996; Guo et al., 1995; Guo and Ge, 1997);the dynamic meth…  相似文献   

7.
目前提取遥感影像中的涡旋信息主要用边缘探测技术,例如Canny算子和Hough算子等,然而由于涡旋信息和遥感影像本身的复杂性和模糊性,用传统的方法不能取得理想的提取结果.基于多重分形技术,利用海洋涡旋信息的物理特征时空形态的自相似性来提取涡旋,用NASA MODIS,Sea WiFS和NOAA在典型海区如边界流的卫星影像进行试验,研究结果表明,用多重分形方法获取的涡旋信息非常有利于对海洋涡旋的深刻认识和分析研究.  相似文献   

8.
Traditional methods of extracting the ocean wave eddy information from remotely sensed imagery mainly use the edge detection technology such as Canny and Hough operators. However, due to the complexities of ocean eddies and image itself, it is sometimes difficult to successfully detect ocean eddies using these methods. A mnltifractal filtering technology is proposed for extraction of ocean eddies and demonstrated using NASA MODIS, SeaWiFS and NOAA satellite data set in the typical area, such as ocean west boundary current. Results showed that the new method has a superior performance over the traditional methods.  相似文献   

9.
Fourier and wavelet spectra of time series for the ozone column abundance in the atmospheric 0–25 and 25–60 km layers are analyzed from SBUV satellite observations and from numerical simulations based on the RSHU and EMAC models. The analysis uses datasets for three subarctic locations (St. Petersburg, Harestua, and Kiruna) for 2000–2014. The Fourier and wavelet spectra show periodicities in the range from ~10 days to ~10 years and from ~1 day to ~2 years, respectively. The comparison of the spectra shows overall agreement between the observational and modeled datasets. However, the analysis has revealed differences both between the measurements and the models and between the models themselves. The differences primarily concern the Rossby wave period region and the 11-year and semiannual periodicities. Possible reasons are given for the differences between the models and the measurements.  相似文献   

10.
对ENVISAT ASAR level 2算法固有误差的分析   总被引:1,自引:0,他引:1  
欧洲空间局的ENVISAT ASAR level 2算法是从合成孔径雷达(SAR)单视复图像反演涌浪方向谱的算法.该算法假设双峰海浪谱的SAR图像交叉谱是涌浪的图像交叉谱和风浪的图像交叉谱之和.实际上双峰海浪谱的SAR图像交叉谱中还有一个混合项,正是该混合项导致ENVI-SAT ASAR level 2算法有固有误差.利用遥感仿真的方法分析了不同海况条件下该算法的这一固有误差,结果表明,只有在有效波高较小、或风浪的成分较少、或双峰海浪的传播方向较靠近SAR距离向、或波长较长时固有误差才较小,ENVISAT ASAR level 2算法对海浪谱的反演才较为适用.  相似文献   

11.
Abstract

Studies of coastal bathymetry are important where littoral drift has implications on the planning of fishing and dredging operations. Also, there is a possibility of finding hitherto unknown bottom features in relatively less explored regions of the shallow seas around the globe. High resolution satellite imagery over oceans provides us with quantitative methods for estimating depth in shallow parts of the seas. One of the methods is the analysis of the refraction of coastal gravity waves observed on satellite imagery. A panchromatic image acquired by SPOT with 10 m resolution on March 22, 1986, over Bay of Bengal near Madras Coast, was used for this analysis. The image was enhanced to clearly bring out the wave structure seen on the sea surface. The image was then superimposed with a 1 km × 1 km grid. For each grid cell, 64 × 64 pixels at the center were considered for getting a Fast Fourier Transform to determine the wave spectrum and the dominant wavelength present there. The classical theory of gravity waves was used to relate the shallow water wavelengths obtained as above with the corresponding wavelengths in the deep water. The deep‐water wavelength was estimated to be 110 m using the known chart depths at a set of control points. The resulting depth estimates, when compared with standard bathymetric charts, were found, in general, to be well in agreement up to a depth of 30 m in the sea, with an r.m.s. error of 2.6 meters. The method seems to be very useful for remotely sensed bathymetric work. However, further research is required to reduce the error margin and operationalize the method.  相似文献   

12.
A new global archive of wind wave characteristics has been developed based on Voluntary Observing Ship (VOS) data for the period of 1888–2015. In addition to the basic meteorological variables, we have derived the records of visually observed heights, periods, and wind sea and swell directions. The main parameters have been supplemented by significant wave height and dominant period estimates, as well as wave geometry characteristics: steepness, wave age, and wavelength. Multistage quality control has been applied to correct or eliminate spurious values. Data are presented as individual records for every month and as original monthly means fields for every parameter. Easy access and use, along with representative data, make the new archive particularly special and applicable in different ways without any additional preprocessing. Visual wave observations assimilated in the new archive can be used to develop global and regional climatologies, estimate extreme wave characteristics and long-term trends in wave climate, verify and compare them with satellite measurements and model analysis, and test the theoretical laws of ocean wave development and propagation.  相似文献   

13.
14.
The paper examines how radar imagery of the sea surface observed by a satellite-mounted lateral-view radar is generated. The lateral-view radar on the SICH-1 satellite, in comparison with that of the KOSMOS-1500 satellite, is shown to provide better linearity of radar imagery, with identical information capabilities; the RMS strobe deviation within the survey band has been dimiished from about 30–35 to 17–20 m. Translated by Vladimir A. Puchkin.  相似文献   

15.
Laboratory experiments were performed to study the wave damping induced by a porous bed. During the propagation of waves over a porous medium the wave characteristics change: a significant wave height attenuation of about 20–30% is observed and, in almost all cases, an increase in wavelength. The wave decay is found to depend on the wave characteristics like the wave height, the wavelength and the wave shape. We have also studied the influence of the geometric properties of the porous bed (i.e. thickness and length) on the wave dissipation. It is found that the attenuation of the wave height increases with the permeable bed thickness and that there is a maximum wave dissipation for a length of the porous seabed equal to 2.0–2.5 times the wavelength. A comparison is also made of our findings with available literature results. A parametric study of the wave damping has been performed by varying the values of the resistance coefficients derived by both literature and experiments. Literature analytical models have been applied by using the resistance coefficients that better describe our flow conditions. All models in use underpredict the observed wave attenuation for any sensible values of the resistance coefficients.  相似文献   

16.
Shoreline change analysis and prediction are important for integrated coastal zone management, and are conventionally performed by field and aerial surveys. This paper discusses an alternative cost-effective methodology involving satellite remote sensing images and statistics. Multi-date satellite images have been used to demarcate shoreline positions, from which shoreline change rates have been estimated using linear regression. Shoreline interpretation error, uncertainty in shoreline change rate, and cross-validation of the calculated past shorelines have been performed using the statistical methods, namely, Regression coefficient (R2) and Root Mean Square Error (RMSE). This study has been carried out along 113.5 km of coast adjoining Bay of Bengal in eastern India, over the time interval 1973 to 2003. The study area has been subdivided into seven littoral cells, and transects at uniform interval have been chosen within each cell. The past and future shoreline positions have been estimated over two time periods of short and long terms in three modes, viz., transect-wise, littoral cell-wise and regionally.The result shows that 39% of transects have uncertainties in shoreline change rate estimations, which are usually nearer to cell boundaries. On the other hand, 69% of transects exhibit lower RMSE values for the short-term period, indicating better agreement between the estimated and satellite based shoreline positions. It is also found that cells dominated by natural processes have lower RMSE, when considered for long term period, while cells affected by anthropogenic interventions show better agreement for the short-term period. However, on regional considerations, there is not much difference in the RMSE values for the two periods. Geomorphological evidence corroborates the results. The present study demonstrates that combined use of satellite imagery and statistical methods can be a reliable method for shoreline related studies.  相似文献   

17.
A microwave technique for the measurement of ocean wave spectra has been compared with wave gauge output during extensive field testing. The method is based on the dual-frequency technique for detecting long ocean waves by matching the modulation of short waves with the beat wavelength between two transmitted microwave frequencies. The new method, however, utilizes three microwave frequencies in order to reduce mean backscatter not related to short-wave modulation. Two prototype scatterometers have been built using three frequencies at L-band and at Ku-band. Wave spectra have been measured by both radar systems which, when properly normalized, agree well with simultaneous in situ measurements taken by conventional wave gauges at the pier site. Thirteen sets of spectra have been computed, five of which correspond to a situation in which a local wind sea was generated and then decayed. The present experiment does not demonstrate the directionality of this new technique  相似文献   

18.
Widespread short-period internal wave (SPIW) activity in the White Sea has been revealed for the first time based on long-term (2009–2013) monitoring performed using satellite and in situ observations, and the statistical characteristics of these waves have been obtained. Two main regions where short-period waves constantly exist have been identified: the shelf area near the frontal zone at the boundary between the Basin and the Gorlo Strait and the shallow shelf area where the depths are about 30–50 m near Solovetskie Islands. Intense internal waves (IIWs), which are substantially nonlinear and are related to specific phases of a barotropic tide, are regularly observed near frontal zones. The wave height can reach half the sea depth and the wave periods vary from 7 to 18 min.  相似文献   

19.
Ron Li  Kaichang Di  Ruijin Ma 《Marine Geodesy》2013,36(1-2):107-115
Shorelines are recognized as unique features on Earth. They have valuable properties for a diverse user community. At present, photogrammetry is the most popular technique used to capture a shoreline. With improved resolution and accuracy, commercial high-resolution satellite imagery is demonstrating a great potential in the photogrammetry application domain. One example is the utilization of IKONOS satellite imagery in shoreline extraction. IKONOS panchromatic imagery has a resolution of approximately one meter as well as the capabilities of stereo imaging. This article presents the results of an experiment in which we attempted to improve IKONOS Rational Functions (RF) for a better ground accuracy and to employ the improved RF for 3-D shoreline extraction using 1-meter panchromatic stereo images in a Lake Erie coastal area. Two approaches were investigated. One was to rectify the ground coordinates derived from vendor-provided RF coefficients using ground control points (GCPs). The other was to refine the RF coefficients using the GCPs. We compare the results from these two approaches. An assessment of the shoreline extracted from IKONOS images compared with the existing shoreline is also conducted to demonstrate the potential of the IKONOS imagery for shoreline mapping.  相似文献   

20.
3-D Shoreline Extraction from IKONOS Satellite Imagery   总被引:1,自引:0,他引:1  
Ron Li  Kaichang Di  Ruijin 《Marine Geodesy》2003,26(1):107-115
Shorelines are recognized as unique features on Earth. They have valuable properties for a diverse user community. At present, photogrammetry is the most popular technique used to capture a shoreline. With improved resolution and accuracy, commercial high-resolution satellite imagery is demonstrating a great potential in the photogrammetry application domain. One example is the utilization of IKONOS satellite imagery in shoreline extraction. IKONOS panchromatic imagery has a resolution of approximately one meter as well as the capabilities of stereo imaging. This article presents the results of an experiment in which we attempted to improve IKONOS Rational Functions (RF) for a better ground accuracy and to employ the improved RF for 3-D shoreline extraction using 1-meter panchromatic stereo images in a Lake Erie coastal area. Two approaches were investigated. One was to rectify the ground coordinates derived from vendor-provided RF coefficients using ground control points (GCPs). The other was to refine the RF coefficients using the GCPs. We compare the results from these two approaches. An assessment of the shoreline extracted from IKONOS images compared with the existing shoreline is also conducted to demonstrate the potential of the IKONOS imagery for shoreline mapping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号