首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider a model for the cyclic brightness variations of a young star with a low-mass companion that accretes matter from the remnants of a protostellar cloud. At small inclinations of the binary orbit to the line of sight, the streams of matter and the density waves excited in the circumbinary disk can screen the primary component of the binary from the observer. To study these phenomena, we have computed grids of hydrodynamic models for binary systems by the SPH method based on which we have calculated the phase light curves for the different orientations of the orbit. The model parameters were varied within the following ranges: the component mass ratio q = 0.01–0.1 and the eccentricity e = 0–0.5. We adopted optical grain characteristics typical of circumstellar dust. Our computations have shown that the brightness oscillations with orbital phase can have a complex structure. The amplitudes and shapes of the light curves depend strongly on the inclination of the binary orbit and its orientation relative to the observer and on the accretion rate. The results of our computations are used to analyze the cyclic activity of UX Ori stars.  相似文献   

2.
We consider a model of cyclic brightness variations in a young star with a low-mass (q = M 2/M 1 ≤ 0.1) companion that accretes matter from the remnants of a protostellar cloud (circumbinary disk). We assume that the orbit of the companion is circular and that its plane does not coincide with the disk plane. We have computed grids of hydrodynamic models for such a binary by the SPH method based on which we have investigated the circumstellar extinction variations produced by the streams of matter and density waves excited in the circumbinary disk by the orbital motion of the companion. We show that, depending on the inclination and orientation of the binary’s line of nodes relative to the observer, the brightness of the primary component can undergo various (in shape and depth) oscillations with a period equal to the orbital one. In contrast to the models with coplanar circular orbits, the accretion rate onto the components of a binary with a noncoplanar orbit depends on the orbital phase. The results of our computations can be used to study the cyclic activity of UX Ori stars and young eclipsing binaries with anomalously long eclipses.  相似文献   

3.
We present the results of our photometric and spectroscopic studies of the new eclipsing cataclysmic variable star 1RXS J180834.7+101041. Its spectrum exhibits double-peaked hydrogen and helium emission lines. The Doppler maps constructed from hydrogen lines show a nonuniform distribution of emission in the disk similar to that observed in IP Peg. This suggests that the object can be a cataclysmic variable with tidal density waves in the disk. We have determined the component masses (M WD = 0.8 ± 0.22M and M RD = 0.14 ± 0.02M ) and the binary inclination (i = 78° ± 1.5°) based on well-known relations between parameters for cataclysmic variable stars. We have modeled the binary light curves and showed that the model of a disk with two spots is capable of explaining the main observed features of the light curves.  相似文献   

4.
The evolution of Population I stars (X = 0.7, Z = 0.02) with initial masses 40M M ZAMS ≤ 120M until core hydrogen exhaustion has been computed. Models of evolutionary sequences have been used as the initial conditions in solving the equations of radiation hydrodynamics that describe the spherically symmetric motion of a self-gravitating gas. Stars with initial masses M ZAMS ≥ 50M are shown to become unstable against radial oscillations during the main-sequence evolution. The instability growth rate and the limit-cycle oscillation amplitude increase as the star evolves and as its initial mass increases. The pulsational instability is attributable to the iron Z-bump κ mechanism (T ∼ 2 × 105 K). Convection that transfers from 20 to 50% of the total energy flux and, thus, reduces the efficiency of the κ mechanism emerges in the same layers. The periods of the radial oscillations of main-sequence stars lie within the range from 0.09 to 8 days. The boundaries of the instability region of radial pulsations in the Hertzsprung-Russell diagram have been determined and observational criteria for revealing pulsating variable main-sequence stars have been proposed.  相似文献   

5.
The results of investigations of a number of eclipsing Wolf-Rayet binaries are presented. The ‘core’ radiuses, the ‘core’ temperatures and masses of WR stars in the eclipsing WR+OB binary systems V 444 Cyg, CX Cep, CQ Cep, and CV Ser are obtained (see Table I). The results obtained from the light curves analysis of the V 444 Cyg in the range λλ2460 Å-3.5μ give strong evidence for the Beals (1944) model of WR phenomenon. The chromospheric-coronal effects in the WN5 extended atmosphere are not observed up to a distance ofr?20R . In the Hertzsprung—Russell diagram all the WR stars lie on the left side from the main sequence between the main sequence and the sequence of uniform helium stars (see Figure 9). Their locations are close to those of the helium remnants formed as a result of mass exchange in massive close binary systems. The period variations in the systems V 444 Cyg and CQ Cep have been discovered and a reliable value of the mass loss rateM=10?5 M yr?1 is obtained, for the two WR stars. The results of the photometric and spectroscopic investigations of the WR stars with low mass companions (post X-ray binary stage?) are presented too (see Table II). The masses of the companions are (1–2)M , their optical luminosity is ~1036, erg s?1 which implies that these companions cannot be the normal stars. It is possible that these companions are neutron stars accreting from the stellar wind of the WR stars. Low values of the X-ray luminosities of such WR stars with low mass companions imply that the accretion of matter in such systems is distinct from the accretion process in classical X-ray binary systems. It is noted also that the parameters of low massive companions coupled with WR stars are close to those of helium stars.  相似文献   

6.
Based on the observed energy curves of nine Ap stars, three Am stars, four normal A stars and one F0 V magnetic star, their radii have been estimated.Thence, the bolometric magnitudesM bo1 have been obtained and a plot between logT e andM bo1 of these stars shows that a majority of Ap and Am stars are a little above the zero-age Main-Sequence, suggesting that they are slightly more evolved as compared to the normal A stars.The bolometric corrections derived from the aboveM bo1 are much closer to those computed by Mihalas than to the ones given by Davis and Webb, the latter being about O m 1 more negative than the former.  相似文献   

7.
We consider a model of a young binary with a low-mass secondary component. Mass accretion from the remnants of the protostellar cloud onto the binary components is assumed to take place in accordance with current models; i.e., it proceeds mainly onto the low-mass component. The accretion is accompanied by mass outflow (disk wind), whose low-velocity component can be partially captured by the primary component. As a result, an asymmetric common envelope is formed. Its densest part is involved in the orbital motion of the secondary and can periodically shield the primary component of the binary from the observer. Assuming a standard dust-to-gas ratio for the disk wind (1: 100), we calculated the possible photometric effects from such eclipses and showed that they could be observed even at moderate accretion rates onto the low-mass binary component, ∼10−8–10−9 M per year. In this case, the parameters of the minima depend on the model of the disk wind, on the ratio of its characteristic velocity to the orbital velocity of the secondary, and on its orbital inclination to the line of sight. These results can form the basis for interpreting a wide range of phenomena observed in young stars, such as the activity cycles in UX Ori stars, the unusually broad minima in some young eclipsing systems, etc., and for searching for substellar objects and massive protoplanets. In addition, the peripheral parts of the gas and dust disk around a young binary can fall within the shadow zone produced by the opaque part of the common envelope. In such cases, a shadow from the common envelope must be observed on the disk; this shadow must move over the disk following the orbital motion of the low-mass component. Detection and investigation of such structures in the images of protoplanetary disks may become a method of searching for protoplanets and studying binaries at early stages of their evolution.  相似文献   

8.
V. P. Grinin 《Astrophysics》2000,43(4):446-457
A young binary system is considered, having a mass ratio of components M 2/M 1 1, in which the low-velocity part of the stellar wind of the low-mass component (the so-called disk wind) can be partially captured by the gravitation of the primary component. It is shown that a large-scale redistribution of matter and angular momentum between the inner and outer parts of the gas-dust disk surrounding the binary system occurs as a result, with a consequent increase in the rate of accretion onto the primary component. In cases in which the orbital eccentricity of the secondary component is nonzero, modulation of the rate of accretion onto the primary component should be observed with a period equal to the orbital period, while in the case of a highly elongated orbit the mass accretion acquires a pulsed character. Since dust may be present in the disk wind from the secondary component, the capture of stellar wind will result in an increase in the effective geometrical thickness of the gas-dust disk. For this reason, the infrared (IR) emission excesses of such stars (especially in the near-IR range) and their intrinsic polarization can be considerably greater than in the case of a single star surrounded by a circumstellar disk of the same mass, and a periodic component may also be present in their behavior with time. Moreover, because of disruption of the axial symmetry in the dust distribution in the vicinity of the young binary system, the orbital period may also be present in its brightness variations. The role of these effects in the physics of young stars is discussed.  相似文献   

9.
From the values of period changes for 6 close binary stars the mass transfer rate was calculated. Comparing these values Mt with the values of shell masses Msh, the expression $$lg \dot M_t = \begin{array}{*{20}c} {4.24} \\ { \pm 24} \\ \end{array} + \begin{array}{*{20}c} {0.63} \\ { \pm 6} \\ \end{array} lg M_{sh} $$ Was derived. The analysis of this expression points out the initial character of the outflow of matter, and one may determine the time interval of the substitution of the shell matter. So one may conclude that for a certain mass transfer rate, a certain amount of matter accumulates in the nearby regions of the system. The study of orbital period changes of close binary stellar systems led to the idea that these secular and irregular changes are due to the mass loss and to the redistribution of masses in a close binary. Secular changes of orbital periods are known for approximately 400 eclipsing binary stars. For many stars, including cataclysmic binaries, irregular period changes are known. Thus, the mass loss and the matter redistribution in close binaries are often observed phenomena.  相似文献   

10.
The evolution of Population I stars with initial masses 70M M ZAMS ≤ 130M is considered. The computations were performed under various assumptions about the mass loss rate and were terminated at the phase of gravitational contraction after core helium exhaustion. The mass loss rate at the helium burning phase, ?3α , is shown to be the main parameter that determines the coefficients of the mass—luminosity relation for Wolf—Rayet stars. Several more accurate mass—luminosity relations for mass loss rates ? = f 3α ?3α , where 0.5 ≤ f 3α ≤ 3, are suggested, along with the mass—luminosity relation that combines all of the evolutionary sequences considered. The results of the stellar evolution computations were used as initial conditions in solving the hydrodynamic equations describing the spherically symmetric motions of a self-gravitating gas. The outer layers of massive Population I stars are unstable against radial oscillations throughout the helium burning phase. The oscillation amplitude is largest at enhanced carbon and oxygen abundances in the outer stellar layers, i.e., at a lower initial stellar mass M ZAMS or a lower mass loss rate during the entire preceding evolution. In the course of evolution, the radial oscillation amplitude decreases and the small nonlinearity of the oscillations at M < 10M allow the integral of mechanical work W done by an elementary spherical layer of gas in a closed thermodynamic cycle to be calculated with the necessary accuracy. The maximum of the radial dependence of W is shown to be located in layers with a gas temperature T ~ 2 × 105 K, where the oscillations are excited by the iron Z-bump κ-mechanism. Comparison of the radial dependences of the integral of mechanical work W and the amplitude of the radiative flux variations suggests that the nonlinear radial oscillations of more massive Wolf—Rayet stars are also excited by the κ-mechanism.  相似文献   

11.
The eclipsing binary NN Vir is a short period system showing an EW-type light curve. Photometric observations of NN Vir were done by Gomez–Ferrellad and Garcia–Melendo (1997) at Esteve Duran Observatory. The first spectroscopic observations of this system were obtained by Rucinski and Lu (1999). The radial velocity and light curves analysis was made with the latest version of the Wilson program (1998), and the geometric and physical elements of the system are derived. From the simultaneous solutions of the system, we determined the masses and radii of the components: 1.89 M and 1.65 R for the primary component; 0.93 M and 1.23 R for the secondary component. We estimated effective temperatures of 7030 K for the primary and 6977 K for the secondary component.  相似文献   

12.
Instability of population I (X = 0.7, Z = 0.02) massive stars against radial oscillations during the post-main-sequence gravitational contraction of the helium core is investigated. Initial stellar masses are in the range 65M M ZAMS ≤ 90M . In hydrodynamic computations of self-exciting stellar oscillations we assumed that energy transfer in the envelope of the pulsating star is due to radiative heat conduction and convection. The convective heat transfer was treated in the framework of the theory of time-dependent turbulent convection. During evolutionary expansion of outer layers after hydrogen exhaustion in the stellar core the star is shown to be unstable against radial oscillations while its effective temperature is T eff > 6700 K for M ZAMS = 65M and T eff > 7200 K for M ZAMS = 90M . Pulsational instability is due to the κ-mechanism in helium ionization zones and at lower effective temperature oscillations decay because of significantly increasing convection. The upper limit of the period of radial pulsations on this stage of evolution does not exceed ≈200 day. Radial oscillations of the hypergiant resume during evolutionary contraction of outer layers when the effective temperature is T eff > 7300 K for M ZAMS = 65M and T eff > 7600 K for M ZAMS = 90M . Initially radial oscillations are due to instability of the first overtone and transition to fundamental mode pulsations takes place at higher effective temperatures (T eff > 7700 K for M ZAMS = 65M and T eff > 8200 K for M ZAMS = 90M ). The upper limit of the period of radial oscillations of evolving blueward yellow hypergiants does not exceed ≈130 day. Thus, yellow hypergiants are stable against radial stellar pulsations during the major part of their evolutionary stage.  相似文献   

13.
Photoelectric observations of the WR binary CQ Cephei (WN6+O9) are presented. the depths of the eclipses in the light curves are best represented by an inclination of the orbit i = (68°.8±0.6) and the width of the very asymmetric eclipse curves can be represented by only an overcontact configuration (Ω1 = Ω2 = 3.65 ± 0.05, and f = 27%). Simultaneous solution of the light and radial velocity curves strongly supports CQ Cep's membership of the Cep OB1 association. By considering this membership we obtained absolute dimensions of the system, which lead to a consistent physical model for CQ Cephei. The more luminous WR primary turns out to be the hotter but slightly less massive component: MWR = 20.8 M⊙, RWR = 8.2R⊙, Teff(WR) = 43600 K, and Mo = 21.4 M⊙, Ro = 8.3 R⊙, Teff(O) = 37000 K.  相似文献   

14.
This paper presents the first analysis of spectroscopic and photometric observations of the neglected southern eclipsing binary star, QY Tel. Spectroscopic observations were carried out at the South African Astronomical Observatory in 2013. New radial velocity curves from this study and V light curves from the All Sky Automated Survey were solved simultaneously using modern light and radial velocity curve synthesis methods. The final model describes QY Tel as a detached binary star where both component stars fill at least half of their Roche limiting lobes. The masses and radii were found to be 1.32 (± 0.06) M, 1.74 (± 0.15) R and 1.44 (± 0.09) M, 2.70 (± 0.16) R for the primary and secondary components of the system, respectively. The distance to QY Tel was calculated as 365 (± 40) pc, taking into account interstellar extinction. The evolution case of QY Tel is also examined. Both components of the system are evolved main-sequence stars with an age of approximately 3.2  Gy, when compared to Geneva theoretical evolution models.  相似文献   

15.
The models of non-rotating and rotating 2.31M \ stars of Population I composition have been calculated, starting at the threshold of stability. A 2.31M \ star was chosen to compare the results with the observational parameters of the primary component of the well-known detached binary YZ Cassiopeiae. The effects of rotation on the internal structure during the evolution of the star were studied by constructing sequences of axisymmetric rotating models under the assumption that angular momentum was conserved according to a predetermined angular velocity distribution depending on the structure of the star.The first section of this paper deals with effects of rotation on the evolutionary behaviours of the 2.31M \ star through the pre-Main-Sequence evolution as well as the zero-age Main Sequence.In the second section of this paper, the evolutionary studies have been extended up to near-hydrogen exhaustion phase in order to obtain a theoretical model corresponding to the given mass and radius of the primary component of YZ Cassiopeiae. The theoretical models were found to be in a good agreement with observational parameters. The computed rotating models of the primary of YZ Cassiopeiae indicates that its evolutionary age is 6.01×108 years; and the central hydrogen content 0.183 — which means that about 75% of its original value was depleted.  相似文献   

16.
The formations of the blue straggler stars and the FK Com-type stars are unsolved problems in stellar astrophysics. One of the possibilities for their formations is from the coalescence of W UMa-type overcontact binary systems. Therefore, deep (f > 50%), low-mass ratio (q < 0.25) overcontact binary stars are a very important source to understand the phenomena of Blue Straggler/FK Com-type stars. Recently, 12 W UMa-type binary stars, FG Hya, GR Vir, IK Per, TV Mus, CU Tau, V857 Her, V410 Aur, XY Boo, SX CrV, QX And, GSC 619-232, and AH Cnc, were investigated photometrically. Apart from TV Mus, XY boo, and GSC 619-232, new observations of the other 9 binaries were obtained. Complete light curves of the 10 systems, FG Hya, GR Vir, IK Per, TV Mus, CU Tau, V857 Her, GSC 619-232, V410 Aur, XY Boo, and AH Cnc, were analyzed with the 2003 version of the W-D code. It is shown that all of those systems are deep (f > 50%), low-mass ratio (q < 0.25) overcontact binary stars. We found that the system GSC 619-232 has the highest degree of overcontact (f = 93.4%). The derived photometric mass ratio of V857 Her, q = 0.0653, indicates that it is the lowest-mass ratio system among W UMa-type binaries.Of the 12 sample stars, long-term period changes of 11 systems were found. About 58% (seven) of the sample binaries show cyclic period oscillation. No cyclic period changes were discovered for the other 5 systems, which may be caused by the short observational time interval or by insufficient observations. Therefore, we think that all W UMa-type binary stars may contain cyclic period variations. By considering the long-term period changes (both increase and decrease) of those binary stars, we proposed two evolutionary scenarios evolving from deep, low-mass ratio overcontact binaries into Blue Straggler/FK Com-type stars.  相似文献   

17.
We propose that single stars in the mass range 4–6·5M , that explode as Supernovae of Type I, are totally disrupted by the explosion and form shell-type remnants. More massive single stars which explode as Supernovae of Type II also give rise to shell-type remnants, but in this case a neutron star or a black hole is left behind. The first supernova explosion in a close binary also gives rise to a shell-type supernova remnant. The Crab-like filled-centre supernova remnants are formed by the second supernova explosion in a close binary. The hybrid supernova remnants, consisting of a filled centre surrounded by a shell, are formed if there is an active neutron star inside the shell.  相似文献   

18.
Hydrodynamic calculations of nonlinear radial oscillations of LBV stars with effective temperatures 1.5 × 104 K ⩽ T eff ⩽ 3 × 104 K and luminosities 1.2 × 106 L L ⩽ 1.9 × 106 L have been performed. Models for the evolutionary sequences of Population I stars (X = 0.7, Z = 0.02) with initial masses 70M M ZAMS ⩽ 90M at the initial helium burning stage have been used as the initial conditions. The radial oscillations develop on a dynamical time scale and are nonlinear traveling waves propagating from the core boundary to the stellar surface. The amplitude of the velocity variations for the outer layers is several hundred km s−1, while the bolometric magnitude variations are within ΔM bol ⩽ 0· m 2. The onset of oscillations is not related to the κ-mechanism and is attributable to the instability of a self-gravitating envelope gas whose adiabatic index is close to its critical value of Γ1 = 4/3 due to the dominant contribution of radiation in the internal energy and pressure. The interval of magnitude variation periods (6 days ≤ II ≤ 31 days) encompasses all currently available estimates of the microvariability periods for LBV stars, suggesting that this type of nonstationarity is pulsational in origin.  相似文献   

19.
We study here the dynamics of an extended shell of relatively low-mass (almost zero-mass) particles around massive binary systems by computer simulations in the framework of approximately restricted three-body problem with a set of several initial conditions concerning the massesM 1 andM 2 of the binary components surrounded byN test particles in uniform random distribution on a spherical envelope of radiusR expanding with a velocityV. We apply this model to binary galaxy systems with a halo of baryonic dark matter, e.g., massive black holes, globular clusters, and giant molecular clouds. It is shown that, initially, the shell expands homologously with decreasing velocity and then, falls back into the system forming zones of compressed matter. At some moment there could be a collapse or these particles onto the heavier component of the binary. Further in time, a number of particles escape from the system. We consider a number of different models with different initial parameters. For models with smallerR andV, about one-half of the particles escape from the system; while for larger values the shell disrupts as a whole. The escaping particles form a collimated flow in the plane of the orbit of the binary. The position of the flow and the directions of motions depend on the position of the heavier component of the binary at the moment of the closest approach of the particles and on the ratioM 1/M 2.  相似文献   

20.
New BV light curves and times of minimum light for the short period W UMa system LO And were analyzed to derive the preliminary physical parameters of the system. The light curves were obtained at Ankara University Observatory during 5 nights in 2003. A new ephemeris is determined for the times of primary minimum. The analysis of the light curves is made using the Wilson‐Devinney 2003 code. The present solution reveals that LO And has a photometric mass ratio q = 0.371 and is an A‐type contact binary. The period of the system is still increasing, which can be attributed to light‐time effect and mass transfer between the components. With the assumption of coplanar orbit of the third body the revealed mass is M3 = 0.21M. If the period change dP/dt = 0.0212 sec/yr is caused only by the mass transfer between components (from the lighter component to the heavier) the calculated mass transfer rate is dm/dt = 1.682×10−7M/yr. The absolute radii and masses estimated for the components, based on our photometric solution and the absolute parameters of the systems which have nearly same period are R1 = 1.30R, R2 = 0.85R, M1 = 1.31M, M2 = 0.49M respectively for the primary and secondary components. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号