首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
We present almost-simultaneous detections of Cygnus X-1 in the radio and mm regimes, obtained during the low/hard X-ray state. The source displays a flat spectrum between 2 and 220 GHz, with a spectral index | α |0.15 (3 σ ). There is no evidence for either a low- or high-frequency cut-off, but in the mid-infrared (∼30 μm) thermal emission from the OB-type companion star becomes dominant. The integrated luminosity of this flat-spectrum emission in quiescence is 2×1031 erg s−1 (2×1024 W). Assuming the emission originates in a jet for which non-radiative (e.g. adiabatic expansion) losses dominate, this is a very conservative lower limit on the power required to maintain the jet. A comparison with Cyg X-3 and GRS 1915+105, the other X-ray binaries for which a flat spectrum at shorter than cm wavelengths has been observed, shows that the jet in Cyg X-1 is significantly less luminous and less variable, and is probably our best example to date of a continuous, steady, outflow from an X-ray binary. The emissive mechanism responsible for such a flat spectral component remains uncertain. Specifically, we note that the radio–mm spectra observed from these X-ray binaries are much flatter than those of the 'flat-spectrum' AGN, and that existing models of synchrotron emission from partially self-absorbed radio cores, which predict a high-frequency cut-off in the mm regime, are not directly applicable.  相似文献   

4.
5.
We present millimetre photometry and submillimetre imaging of the central core and two hotspots in the radio lobes of the galaxy Cygnus A. For both hotspots and the central core, the synchrotron spectrum continues smoothly from the radio to a frequency of 677 GHz. The spectral index of the hotspots is constant over our frequency range, with a spectral index of α ≈ −1.0 ( S ν ∝ να), which is steeper than at lower frequencies and represents the emission from an aged population of electrons. The core is significantly flatter, with α = −0.6 ± 0.1, suggestive of an injected spectrum with no ageing, but some evidence for steepening exists at our highest observing frequency. Although IRAS data suggest the presence of dust in Cygnus A, our 450-μm data show no evidence of cold dust, therefore the dust component must have a temperature lying between 85 and 37 K, corresponding to dust masses of 1.4 × 106 and 1.0 × 108 M respectively.  相似文献   

6.
Observations at millimetre wavelengths are presented for a representative sample of 22 X-ray-selected BL Lac objects (XBLs). This sample comprises 19 high-energy cut-off BL Lac objects (HBLs), 1 low-energy cut-off BL Lac object (LBL) and 2 'intermediate' sources. Data for LBLs, which are mostly radio-selected BL Lac objects (RBLs), are taken from the literature. It is shown that the radio–millimetre spectral indices of HBLs     are slightly steeper than those of the LBLs     . A correlation exists between α 5–230 and 230 GHz luminosity. While this correlation could be an artefact of comparing two populations of BL Lac objects with intrinsically different radio properties, it is also consistent with the predictions of existing unified schemes that relate BL Lac objects to Fanaroff–Riley class I radio galaxies.
The HBLs have significantly flatter submillimetre–X-ray spectral indices     than the LBLs     although the two intermediate sources also have intermediate values of α 230–X∼−0.9. It is argued that this difference cannot be explained entirely by the viewing-angle hypothesis and requires a difference in physical-source parameters. The α 230–X values for the HBLs are close to the canonical value found for large samples of radio sources and thus suggest that synchrotron radiation is the mechanism that produces the X-ray emission. As suggested by Padovani & Giommi, the inverse-Compton mechanism is likely to dominate in the LBLs requiring the synchrotron spectra of these sources to steepen or cut off at lower frequencies than those of the HBLs.  相似文献   

7.
8.
9.
We present model fits to spectral energy distributions in the optical and near-infrared of >100 flat-spectrum radio quasars from the Parkes Half-Jansky Flat-spectrum Sample. We find that ∼40 per cent of the sources have power-law spectral energy distributions (SEDs), while a similar number show evidence for two primary components: a blue power law and optical synchrotron emission. The blue power law is similar to the dominant component observed in the spectra of optically selected quasars. There is strong evidence that the synchrotron component has a turnover in the ultraviolet–optical rest frame of the spectrum. In the remaining sources, it is likely that the synchrotron peaks at longer wavelengths. This mixture of two components is supported by optical polarization measurements in a subgroup of the sources. The sources with power-law SEDs show evidence for an excess number of red power-law slopes compared with optically selected quasars. There are additional spectral components in some of the sources, such as dust and the underlying galaxy, which have not been considered here.  相似文献   

10.
We estimate the power of relativistic, extragalactic jets by modelling the spectral energy distribution of a large number of blazars. We adopt a simple one-zone, homogeneous, leptonic synchrotron and inverse Compton model, taking into account seed photons originating both locally in the jet and externally. The blazars under study have an often dominant high-energy component which, if interpreted as due to inverse Compton radiation, limits the value of the magnetic field within the emission region. As a consequence, the corresponding Poynting flux cannot be energetically dominant. Also the bulk kinetic power in relativistic leptons is often smaller than the dissipated luminosity. This suggests that the typical jet should comprise an energetically dominant proton component. If there is one proton per relativistic electrons, jets radiate around 2–10 per cent of their power in high-power blazars and 3–30 per cent in less powerful BL Lacs.  相似文献   

11.
In the course of the formation of cosmological structures, large shock waves are generated in the intracluster medium (ICM). In analogy to processes in supernova remnants, these shock waves may generate a significant population of relativistic electrons which, in turn, produce observable synchrotron emission. The extended radio relics found at the periphery of several clusters and possibly also a fraction of radio halo emission may have this origin. Here, we derive an analytic expression for (i) the total radio power in the downstream region of a cosmological shock wave, and (ii) the width of the radio-emitting region. These expressions predict a spectral slope close to −1 for strong shocks. Moderate shocks, such as those produced in mergers between clusters of galaxies, lead to a somewhat steeper spectrum. Moreover, we predict an upper limit for the radio power of cosmological shocks. Comparing our results to the radio relics in Abell 115, 2256 and 3667, we conclude that the magnetic field in these relics is typically at a level of 0.1 μG. Magnetic fields in the ICM are presumably generated by the shocks themselves; this allows us to calculate the radio emission as a function of the cluster temperature. The resulting emissions agree very well with the radio power–temperature relation found for cluster haloes. Finally, we show that cosmic accretion shocks generate less radio emission than merger shock waves. The latter may, however, be detected with upcoming radio telescopes.  相似文献   

12.
We present a model for the short time-scale spectral variability of accreting black holes. It describes the time-averaged spectra well, and also temporal characteristics such as the power-density spectrum, time/phase lags, and coherence function of Cygnus X-1. We assume that X/ γ -rays are produced in compact magnetic flares at radii ≲100 GM c 2 from the central black hole. The tendency for magnetic loops to inflate and detach from the underlying accretion disc causes the spectrum of a flare to evolve from soft to hard because of the decrease of the feedback from the cold disc, so causing time delays between hard and soft photons. We identify the observed time lags with the evolution time-scales of the flares, which are of the order of the Keplerian time-scale. We model the overall temporal variability using a pulse avalanche model in which each flare has a certain probability of triggering a neighbouring flare, thus occasionally producing long avalanches. The duration of the avalanches determines the Fourier frequencies at which most of the power emerges.  相似文献   

13.
We present a numerical simulation of the bulk Lorentz factor of a relativistic electron–positron jet driven by the Compton rocket effect from accretion disc radiation. The plasma is assumed to have a power-law distribution n e(γ) ∝ γ− s with 1 < γ < γmax and is continuously reheated to compensate for radiation losses. We include the full Klein–Nishina (hereafter KN) cross-section, and study the role of the energy upper cut-off γmax, spectral index s and source compactness. We determine the terminal bulk Lorentz factor in the cases of supermassive black holes, relevant to AGN, and stellar black holes, relevant to galactic microquasars. In the latter case, Klein–Nishina cross-section effects are more important and induce a terminal bulk Lorentz factor smaller than in the former case. Our result are in good agreement with bulk Lorentz factors observed in Galactic (GRS 1915+105, GRO J1655−40) and extragalactic sources. Differences in scattered radiation and acceleration mechanism efficiency in the AGN environment can be responsible for the variety of relativistic motion in those objects. We also take into account the influence of the size of the accretion disc; if the external radius is small enough, the bulk Lorentz factor can be as high as 60.  相似文献   

14.
15.
The properties of thermal material co-existing with non-thermal emitting plasma and strong magnetic fields in the powerful jets of active galactic nuclei (AGN) are examined. Theoretical and observational constraints on the physical properties of this 'cold' component are determined. While the presence of a thermal component occupying a fraction ∼ 10−8 of the jet volume is possible, it seems unlikely that such a component is capable of contributing significantly to the total jet energy budget, since the thermal reprocessing signatures that should appear in the spectra have not, as yet, been detected.  相似文献   

16.
There is currently a clear discrepancy in the proper motions measured on different angular scales in the approaching radio jets of the black hole X-ray binary GRS 1915+105. Lower velocities were measured with the Very Large Array (VLA) prior to 1996 than were subsequently found from higher resolution observations made with the Very Long Baseline Array and the Multi-Element Radio Linked Interferometer Network. We initiated an observing campaign to use all three arrays to attempt to track the motion of the jet knots from the 2006 February outburst of the source, giving us unprecedented simultaneous coverage of all angular scales, from milliarcsecond scales out to arcsecond scales. The derived proper motion, which was dominated by the VLA measurements, was found to be 17.0 mas d−1, demonstrating that there has been no significant permanent change in the properties of the jets since 1994. We find no conclusive evidence for deceleration of the jet knots, unless this occurs within 70 mas of the core. We discuss possible causes for the varying proper motions recorded in the literature.  相似文献   

17.
We consider resonant absorption in a spectral line in the outflowing plasma within several tens of Schwarzschild radii from a compact object. We take into account both Doppler and gravitational shifting effects and reformulate the theory of P Cygni profiles in these new circumstances. It is found that a spectral line may have multiple absorption and emission components depending on how far the region of interaction is from the compact object and what the distribution of velocity and opacity is. Profiles of spectral lines produced near a neutron star or a black hole can be strongly distorted by Doppler blue- or redshifting and gravitational redshifting. These profiles may have both red- and blueshifted absorption troughs. The result should be contrasted with classical P Cygni profiles, which consist of redshifted emission and blueshifted absorption features.
We suggest that this property of line profiles to have complicated narrow absorption and emission components in the presence of strong gravity may help researchers to study spectroscopically the innermost parts of an outflow.  相似文献   

18.
19.
We present the results of a 2.5-yr multiwavelength monitoring programme of Cygnus X-1, making use of hard and soft X-ray data, optical spectroscopy, UBVJHK photometry and radio data. In particular, we confirm that the 5.6-d orbital period is apparent in all wavebands, and note the existence of a wavelength dependence to the modulation, in the sense that higher energies reach minimum first. We also find a strong modulation at a period of 142±7 d, which we suggest is caused by precession and/or radiative warping of the accretion disc. Strong modulation of the hard and soft X-ray flux at this long period may not be compatible with simple models of an optically thin accretion flow and corona in the low state. We present the basic components required for more detailed future modelling of the system – including a partially optically thick jet, quasi-continuous in the low state, the base of which acts as the Comptonizing corona. In addition, we find that there are a number of flares that appear to be correlated in at least two wavebands and generally in more. We choose two of these flares to study in further detail, and find that the hard and soft X-rays are well correlated in the first, and that the soft X-rays and radio are correlated in the second. In general, the optical and infrared show similar behaviour to each other, but are not correlated with the X-rays or radio.  相似文献   

20.
Active galactic nuclei and pulsars as cosmic ray sources   总被引:2,自引:0,他引:2  
Relativistic e± particles and cosmic rays are accelerated in the magnetospheres of supermassive black holes and neutron stars. The possibility of synchrotron radiation with extremely high intensity inside the deepest regions of magnetospheres is investigated. Very high brightness temperatures are expected for such radiation by relativistic protons, which can be made even higher in the presence of non-stationary conditions, Doppler boosting and coherent processes. The main parameters for models of such high-brightness-temperature radiation are determined. Two types of active galactic nuclei (AGNs) are expected. One type is associated with the acceleration and ejection of relativistic e± particles only (probably non-IDV sources and FR-I radio galaxies). The second type of AGN is also associated with e± acceleration, but is dominated by the contribution of relativistic protons (probably IDV sources and FR-II radio galaxies). Analogous objects for pulsars are plerion and shell supernova remnants with neutron stars or pulsars without synchrotron nebulae, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号