首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用主装药的化学痕迹特性,应对水下爆炸物跟踪与定位技术需求,建立了仿真模型,完成模拟UUV在水中环境对化学羽流追踪及源头定位的过程.所建模型可以通过更改流场信息、羽状物扩散条件等方式,形成不同形式的化学羽流,模拟出不同环境下的化学羽流运动特性.通过水中仿真实验,验证UUV采用追踪方法对不同环境下的化学羽流追踪和定位的有...  相似文献   

2.
水下溢油数值模拟研究   总被引:1,自引:0,他引:1  
基于Lagrange积分法和Lagrange粒子追踪法建立了一个水下溢油数值模型。该溢油模型由两个子模型组成:羽流动力模型和对流扩散模型,其中羽流动力模型用以模拟溢油的喷发阶段和浮力羽流阶段;对流扩散模型用以模拟溢油的对流扩散阶段。通过数值实验,结合实验室水槽实验和水下溢油现场实验的观测资料进行模型验证。实验结果表明,模拟结果与观测资料一致性较好,从而验证了本文溢油模型的合理性和准确性;羽流动力模型为对流扩散模型提供源,海流、海水的垂向密度结构和油滴的直径分布是影响溢油在对流扩散阶段运动和分布的主要因素。  相似文献   

3.
Models of contaminant dispersion in the marine environment have mostly sought to determine the mean concentration field. At a location not far from a pollution source, concentration is intermittently high, depending on whether the site is immersed in the concentrated contaminant plume which emanates from the source. At such a locale the probability of immersion, denoted by visitation frequency, is a more meaningful measure of nuisance than mean concentration. Two methods of computing visitation frequency from moored current meter data, each having particular advantages and drawbacks, are presented. One technique estimates visitation frequency from probability distributions of the position and velocity of water parcels originating from the effluent source. The second method entails simulating the configuration and movement of a contaminant plume. Required by both schemes is the plume cross-axial width as a function of time since release. A simple procedure of approximating this using the results of dye diffusion studies is described. These methods are applied to the coastal region off Long Island, New York, where current meter and dye diffusion data are available.  相似文献   

4.
付金宇  李颖 《海洋通报》2018,(2):235-240
为有效对港区大气污染进行治理、分析船舶尾气,本文详细介绍了一种基于高斯烟羽模型,通过MATLAB模拟仿真模型,其包括实验仿真过程、技术原理及理论模型对船舶尾气扩散进行的研究。该模型是在传统的高斯烟羽模型的基础上,通过对实源像源进行加权选择输入参数;通过矢量合成确定了气体扩散的方向,利用合成后的"风速"进行计算仿真,有效模拟了船舶尾气在港区或者海洋环境中的气体扩散模型。其模型简单且可以有效模拟船舶尾气扩散。并且进一步对后续模型的精确优化进行分析。  相似文献   

5.
High-temperature microbes were present in two hydrothermal event plumes (EP96A and B) resulting from the February–March 1996 eruptions along the North Gorda Ridge. Anaerobic thermophiles were cultured from 17 of 22 plume samples at levels exceeding 200 organisms per liter; no thermophiles were cultured from any of 12 samples of background seawater. As these microorganisms grow at temperatures of 50–90°C, they could not have grown in the event plume and instead most probably derived from a subseafloor environment tapped by the event plume source fluids. Event plumes are thought to derive from a pre-existing subseafloor fluid reservoir, which implies that these thermophiles are members of a native subseafloor community that was present before the eruptive event. Thermophiles also were cultured from continuous chronic-style hydrothermal plumes in April 1996; these plumes may have formed from cooling lava piles. To better understand the nutritional, chemical, and physical constraints of pre-eruptive crustal environments, seven coccoidal isolates from the two event plumes were partially characterized. Results from nutritional and phylogenetic studies indicate that these thermophiles are heterotrophic archaea that represent new species, and probably a new genus, within the Thermococcales.  相似文献   

6.
洋中脊玄武岩(MORB)的微量元素成分和同位素比值具有变化范围大的特点,这些变化很难简单地用地幔部分熔融和结晶分异等岩浆演化过程来解释。传统观点认为洋中脊玄武岩的地球化学成分的多样性是由其下部地幔成分的大尺度不均一性决定的。这种地幔不均一性则是外来物质的加入造成的,如再循环的地壳物质、下大陆岩石圈、交代的岩石圈和外地核等成分加入到上地幔中。在本研究中,我们对大西洋洋中脊的玄武岩展开研究工作,评估了玄武岩源区的温压条件并综合对比了微量元素和同位素比值。靠近地幔柱的洋中脊玄武岩的地球化学和同位素成分具有较大的变化。地幔柱对洋中脊地区的影响范围可以达到1400公里,但并不是每个地幔柱都能够影响其周围1400km范围内的所有洋中脊脊段。未受地幔柱影响的洋中脊玄武岩成分和地幔潜在温度均没有异常表现。我们认为上述现象是由于地幔柱柱头形状不同造成的。地幔柱的流动形状可以分为管状和饼状两种,饼状地幔柱影响其周围的地幔是没有方向性的,而管状地幔柱对其周围地幔的影响在方向上具有选择性。沿着大西洋中脊的玄武岩的元素和同位素比值变化较大,暗示其源区具有较高的不均一性。我们认为该地区地幔不均一性主要是由于上地幔中加入了俯冲板片和拆沉下地壳造成的。另外,地幔柱的活动也不容忽视,它们影响了其周围部分洋脊段的成分变化。  相似文献   

7.
As part of a larger program focused on understanding the biogeochemistry of large river plumes, we participated in two expeditions during 2000 to sample the Mississippi River plume. Surface water samples were collected using a trace metal clean towed fish and analyzed for total dissolved Fe, organic Fe complexing ligands and their associated conditional stability constants. The ligands in the river plume have conditional stability constants (log KFeL between 10.5 and 12.3 with an average of 11.2 and standard deviation of 0.6) very similar to ligands found in the open ocean. Comparison of high flow and low flow regimes indicates that variability in flow may be the main cause of the variability in Fe concentrations in the plume. The organic Fe complexing ligands are in greatest excess during a time of higher flow. These ligands are responsible for maintaining very high (5 nM) Fe concentrations throughout the plume. Due to complexation with these organic ligands, the concentration of Fe remains above the Fe-hydroxide solubility level until a salinity above 35 is reached where there appears to be a sink for Fe in the less productive waters. Therefore, Fe is transported a great distance from the river source and is available for biological utilization in the coastal zone.  相似文献   

8.
This paper presents a computational model of simulating a deep-sea hydrothermal plume based on a Lagrangian particle random walk algorithm. This model achieves the efficient process to calculate a numerical plume developed in a fluid-advected environment with the characteristics such as significant filament intermittency and significant plume meander due to flow variation with both time and location. Especially, this model addresses both non-buoyant and buoyant features of a deep-sea hydrothermal plume in three dimensions, which significantly challenge a strategy for tracing the deep-sea hydrothermal plume and localizing its source. This paper also systematically discusses stochastic initial and boundary conditions that are critical to generate a proper numerical plume. The developed model is a powerful tool to evaluate and optimize strategies for the tracking of a deep-sea hydrothermal plume via an autonomous underwater vehicle (AUV).  相似文献   

9.
The influence of the Columbia River plume on the distributions of nitrate and iron and their sources to coastal and shelf waters were examined. In contrast to other large estuaries, the Columbia River is a unique study area as it supplies very little nitrate (5 μM) and iron (14–30 nM) at salinities of 1–2 to coastal waters. Elevated nitrate and dissolved iron concentrations (as high as 20 μM and 20 nM) were observed, however, in the near field Columbia River plume at salinities of 20. Surface nitrate concentrations were higher than observed in the Columbia River itself and therefore must be added by entrainment of higher nitrate concentrations from subsurface coastal waters. Tidal flow was identified as an important factor in determining the chemical constituents of the Columbia River plume. During the rising flood tide, nitrate and iron were entrained into the plume waters resulting in concentrations of 15 μM and 6 nM, respectively. Conversely, during the ebb tide the concentrations of nitrate and total dissolved iron were reduced to 0.3–3 μM and 1–2 nM, respectively, with a concomitant increase in chlorophyll a concentrations. As these plume waters moved offshore the plume drifted directly westward, over a nitrate depleted water mass (< 0.2 μM). The plume water was also identified to move southwards and offshore during upwelling conditions and nitrate concentrations in this far field plume were also depleted. Iron concentrations in the near-field Columbia River plume are sufficient to meet the biological demand. However, due to the low nitrate in the Columbia River itself, nitrate in the plume is primarily dependent on mixing with nitrate rich, cold, high salinity subsurface waters. Without such an additional source the plume rapidly becomes nitrate limited.  相似文献   

10.
Quantitative visualization of acoustic images is used to compare the properties and behavior of high temperature hydrothermal plumes at two sites with different source configurations, increasing our understanding of how plume behavior reflects source configuration. Acoustic imaging experiments were conducted at the Clam Acres area of the Southwest Vent Field, 21°N East Pacific Rise and at Monolith Vent, North Cleft segment, Juan de Fuca Ridge. At Clam Acres, black smokers discharge from two adjacent chimneys which act as point sources, whereas multiple vents at Monolith Vent define a distributed elliptical source. Both plumes exhibit consistent dilution patterns, reasonable fits to the expected power law increase in centerline dilution with height, and simple bending of plume centerlines in response to ambient currents. Our data suggest that point source vents are associated with ordered plume structure, normal entrainment rates, and initial expansion of isosurfaces while distributed source vents are associated with disorganized plume structure, variable entrainment rates, and initial contraction of isosurfaces.  相似文献   

11.
围海造陆工程泄水口悬浮物扩散规律分析   总被引:1,自引:1,他引:0  
掌握围海造陆工程泄水口悬浮物扩散规律,对保护海洋水环境质量具有重要意义。选取围海造陆工程泄水口为研究对象,基于泥沙对流扩散方程,推求出泄水口悬浮物扩散平面二维分析解表达式。开展现场观测,确定泄水口源强取值,并对泄水口悬浮物扩散进行理论计算和分析。研究结果显示,围海造陆工程施工后期,泄水口悬浮物流失非常严重。泄水口附近水域出现的最大悬浮物浓度主要由源强的大小来决定,悬浮物扩散范围主要由流速的大小来控制。  相似文献   

12.
在考虑羽流阻力的情况下,采用拉格朗日控制单元积分法建立了羽流动力学模型,并采用数值技术对水下溢油羽流动力学特性进行了模拟,详细分析了释放角对羽流运动的影响。模拟结果及分析表明,当释放方向不同时,浮力在羽流轴线上的投影分量不同。在不同的浮力分量作用下,羽流的运动轨迹及羽流速度、浓度和半径随着流程的变化会呈现不同的特点。羽流的这些运动特点可能会使得溢油到达水面的时间及位置随释放角的不同而发生变化。  相似文献   

13.
Chemoautotrophic production in seafloor hydrothermal systems has the potential to provide an important source of organic carbon that is exported to the surrounding deep-ocean. While hydrothermal plumes may export carbon, entrained from chimney walls and biologically rich diffuse flow areas, away from sites of venting they also have the potential to provide an environment for in-situ carbon fixation. In this study, we have followed the fate of dissolved and particulate organic carbon (DOC and POC) as it is dispersed through and settles beneath a hydrothermal plume system at 9°50′N on the East Pacific Rise. Concentrations of both DOC and POC are elevated in buoyant plume samples that were collected directly above sites of active venting using both DSV Alvin and a CTD-rosette. Similar levels of POC enrichment are also observed in the dispersing non-buoyant plume, ∼500 m downstream from the vent-site. Further, sediment-trap samples collected beneath the same dispersing plume system, show evidence for a close coupling between organic carbon and Fe oxyhydroxide fluxes. We propose, therefore, a process that concentrates POC into hydrothermal plumes as they disperse through the deep-ocean. This is most probably the result of some combination of preferential adsorption of organic carbon onto Fe-oxyhydroxides and/or microbial activity that preferentially concentrates organic carbon in association with Fe-oxyhydroxides (e.g. through the microbial oxidation of Fe(II) and Fe sulfides). This potential for biological production and consumption within hydrothermal plumes highlights the importance of a multidisciplinary approach to understanding the role of the carbon cycle in deep-sea hydrothermal systems as well as the role that hydrothermal systems may play in regulating global deep-ocean carbon budgets.  相似文献   

14.
Between 2 and 3 km depth, North Pacific deep waters contain a plume of water with high silicic acid concentrations. The plume extends outward from Cascadia Basin (the Washington Margin), where waters can contain in excess of 200 μM off the coast of Oregon and Washington. To identify the source of the high Si concentrations in Cascadia Basin, we measured silicic acid and germanium concentrations in deep waters, and their fluxes from sediments using incubated cores. The mean flux of silicic acid into bottom waters is 0.81±0.05 mmol/m2-day, and the Ge/Si ratio of this flux is 0.7±0.1 μmol/mol. A box model, incorporating these results with hydrographic data, indicates that (1) no more than 5% of the silicic acid added to Basin deep waters can have a hydrothermal source (either hot or warm seeps), and (2) the total input of silicic acid to Basin deep waters is 0.06±0.02 Tmol/y. This input is nearly all from remineralized biogenic debris and should contribute about 0.5% of the 14 Tmol/y that are estimated to be necessary to maintain the North Pacific plume.  相似文献   

15.
Methane is a useful tracer for studying hydrothermal discharge, especially where the source fluids are of low temperature and lack metal precipitates. However, the dual origins of deep-sea methane, both chemical and biological, complicate the interpretation of methane observations. Here, we use both the concentration and stable carbon isotopic composition (δ13C) of dissolved methane to trace hydrothermal plumes and identify the source and behavior of methane at two sites of newly discovered hydrothermal activity on the Central Indian Ridge (11–13°S). At both sites, methane and optical anomalies between 2500 and 3500 m at all stations indicate active hydrothermal discharge. We compared methane concentrations and δ13C at three stations, two (CTIR110136 and CTIR110208) with the most prominent anomalies at each site, and a third (CTIR110140) with near-background methane values. At stations CTIR110136 and CTIR110208, the concentration and δ13C of methane in distinct plumes ranged from 3.3 to 42.3 nmol kg−1 and −30.0 to −15.4‰, respectively, compared to deep-water values of 0.5 to 1.2 nmol kg−1 and −35.1 to −28.9‰ at the station with a near-background distal plume (CTIR110140). δ13C was highest in the center of the plumes at CTIR110136 (−15.4‰) and CTIR110208 (−17.8‰). From the plume values we estimate that the δ13C of methane in the hydrothermal fluids at these stations was approximately −19‰ and thus the methane was most likely derived from magmatic outgassing or the chemical synthesis of inorganic matter. We used the relationship between δ13C and methane concentration to examine the behavior of methane at the plume stations. In the CTIR110208 plume, simple physical mixing was likely the major process controlling the methane profile. In the CTIR110136 plume we interpret a more complicated relationship as resulting from microbial oxidation as well as physical mixing. We argue that this difference in methane behavior between the two areas stems from a distinct bathymetric dissimilarity between the two stations. The location of CTIR110208 on the open slope of a ridge allowed rapid plume dispersion and physical mixing, whereas the location of CTIR110136 in a small basin surrounded by wall structures inhibited physical mixing and enhanced microbial oxidation.  相似文献   

16.
Produced formation waters (PFWs), a by-product of both oil and gas extraction, are separated from hydrocarbons onboard oil platforms and then discharged into the sea through submarine outfalls. The dispersion of PFWs into the environment may have a potential impact on marine ecosystems. We reproduce the initial PFW-seawater mixing process by means of the UM3 model applied to offshore natural gas platforms currently active in the Northern Adriatic Sea (Mediterranean Sea). Chemical analyses lead to the identification of a chemical tracer (diethylene glycol) which enables us to follow the fate of PFWs into receiving waters. The numerical simulations are realized in different seasonal conditions using both measured oceanographic data and tracer concentrations. The numerical results show the spatial and temporal plume development in different stratification and ambient current conditions. The analytical approach measures concentrations of the diethylene glycol at a maximum sampling distance of 25 m. The results show a good agreement between field observations and model predictions in the near-field area. The integration of numerical results with chemical analyses also provides new insight to plan and optimize PFW monitoring and discharge.  相似文献   

17.
A computational fluid dynamics (CFD) model was developed to simulate the turbulent flow and species transport of deep-sea high temperature hydrothermal plumes. The model solves numerically the density weighted unsteady Reynolds-averaged Navier–Stokes equations and energy equation and the species transport equation. Turbulent entrainment and mixing is modeled by a kε turbulence closure model. The CFD model explicitly considers realistic vent chimney geometry, vent exit fluid temperature and velocity, and background stratification. The model uses field measurements as model inputs and has been validated by field data. These measurements and data, including vent temperature and plume physical structure, were made in the ABE hydrothermal field of the Eastern Lau Spreading Center. A parametric sensitivity study based on this CFD model was conducted to determine the relative importance of vent exit velocity, background stratification, and chimney height on the mixing of vent fluid and seawater. The CFD model was also used to derive several important scalings that are relevant to understanding plume impact on the ocean. These scalings include maximum plume rise height, neutrally buoyant plume height, maximum plume induced turbulent diffusivity, and total plume vertically transported water mass flux. These scaling relationships can be used for constructing simplified 1-dimensional models of geochemistry and microbial activity in hydrothermal plumes. Simulation results show that the classical entrainment assumptions, typically invoked to describe hydrothermal plume transport, only apply up to the vertical level of ~0.6 times the maximum plume rise height. Below that level, the entrainment coefficient remains relatively constant (~0.15). Above that level, the plume flow consists of a pronounced lateral spreading flow, two branches of inward flow immediately above and below the lateral spreading, and recirculation flanking the plume cap region. Both turbulent kinetic energy and turbulence dissipation rate reach their maximum near the vent; however, turbulent viscosity attains its maximum near the plume top, indicating strong turbulent mixing in that region. The parametric study shows that near vent physical conditions, including chimney height and fluid exit velocity, influence plume mixing from the vent orifice to a distance of ~10 times the vent orifice diameter. Thus, physical parameters place a strong kinetic constraint on the chemical reactions occurring in the initial particle-forming zone of hydrothermal plumes.  相似文献   

18.
Seafloor hydrothermal polymetallic sulfide deposits are a new type of resource, with great potential economic value and good prospect development. This paper discusses turbidity, oxidation–reduction potential, and temperature anomalies of hydrothermal plumes from the Zouyu-1 and Zouyu-2 hydrothermal fields on the southern Mid-Atlantic Ridge. We use the known location of these vent fields and plume data collected in multiple years (2009, 2011, 2013) to demonstrate how real-time plume exploration can be used to locate active vent fields, and thus associated sulfide deposits. Turbidity anomalies can be detected 10 s of km from an active source, but the location precision is no better than a few kilometers because fine-grained particles are quasi-conservative over periods of many days. Temperature and oxidation–reduction potential anomalies provide location precision of a few hundred meters. Temperature anomalies are generally weak and difficult to reliably detect, except by chance encounters of a buoyant plume. Oxidation–reduction potential is highly sensitive (nmol concentrations of reduced hydrothermal chemicals) to discharges of all temperatures and responds immediately to a plume encounter. Real-time surveys using continuous tows of turbidity and oxidation–reduction potential sensors offer the most efficient and precise surface ship exploration presently possible.  相似文献   

19.
We study the spreading of wastewaters from an underwater source in a stratified coastal environment using the results of satellite monitoring and mathematical modeling. The problem is considered as applied to deepwater discharge in the region of Golubaya Bay of the Black Sea near Sebastopol. The main factors preventing upwelling of pollution to the sea surface are analyzed on the basis of a numerical model. It is shown that peculiarities of wastewater spreading depend on the character of stratification and velocity of the background current. The main factor influencing the uplift of these waters to the surface is the existence of water layers with high vertical gradients of water density. We reveal the structure of the wastewater field consisting of a plume and a jet extended in the direction of the background current, which is located in the density interface. If stratification is weak, the plume may reach the sea surface and form a local region of water pollution, which is recorded in multispectral satellite images. It is found that the mass of polluted waters is characterized by negative anomalies of temperature and salinity.  相似文献   

20.
Rates, concentrations, and composition of mining discharge and the size and structure of the ensuing surface plumes were examined during North Pacific tests of scaled manganese nodule mining systems. Discharge was composed principally of bottom water and pelagic silts and clays, although nodule fragments with diameters less than 1 mm were also discharged at widely varying rates. Average flow rates of the discharge varied from 95 to 160 litres/s, with the solid fraction varying from 550 to approximately 2000g/s. The plume, as determined by particulate concentrations in excess of ambient oceanic conditions, extended approximately 5 km from the mining ship and had a width of about 1 km. Fe and Mn signatures allowed detection of the plume nearly 35 km from the source. The plume provided evidence of settling more rapidly than expected of silt and clay-size particles: a mean settling velocity of 6 × 10?2 cm/s for the particulates in the plume and a mixed layer vertical turbulent eddy diffusivity of 1 × 10?2m2/s have been inferred from the data. Field and laboratory data together suggest that the rapid settling was due to flocculation of the discharge particulates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号