首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 843 毫秒
1.
桦树沟铜矿床铜矿石中高含量稀土的发现   总被引:2,自引:0,他引:2  
袁万春 《矿物学报》1998,18(4):462-465
桦树为铜矿床是在河西走廊南山下元古界变质火山-沉积岩系内硅铁建造中新发现的一类富铜矿床。对该矿床铜矿石进行的REE分析表明,一些铜矿石中稀土总量(包括Y)为1011.16×10-6~3555.08×106-,且Y含量超过工业品位,有可能形成化矿物或富含化的矿物。对稀土元素在矿石中赋存状态的研究,将对了解矿床成因/成矿规律有一定意义。  相似文献   

2.
于守南 《西北地质》1992,13(1):42-46
桦树沟铜矿位于北祁连褶皱带西段,与桦树沟铁矿共生,形成一共生铁铜矿床。铜矿直接产于桦树沟铁矿V号铁矿下盘围岩中,含矿岩系为震旦系镜铁山群下亚群一套巨厚浅变质的杂色千枚岩,其中含较丰富的火山物质(如碧玉)与铜矿形成含铜碧玉岩。目前已控制3条铜矿体,其中最大一条长700m、厚2—49.24m、延深500m,Cu平均品位2.05×10~2。矿区向斜褶皱严格控制着矿体形态。根据含矿岩系特征、构造与矿体的关系以及其他成矿地质条件的综合分析,该矿床基本属于火山成因-火山沉积变质-气液矿床。  相似文献   

3.
李生全 《地质与勘探》2018,54(S1):1383-1391
甘肃北祁连西段桦树沟铁铜矿床是西北地区一个非常重要的铁铜矿床,对其地质特征及成矿模式的研究,将会对研究该成矿带铁铜矿床的成矿模式具有深远意义。通过大量的工作,认为桦树沟铁铜矿床为产于长城系上岩组的一套陆源碎屑岩夹碳酸沉积建造的同生海底喷流沉积矿床。铁矿体控矿构造主要是区域褶皱带,主要赋存于长城系上岩组的含铁细碎屑—粘土岩建造中,具体岩性为千枚岩。铜矿体的产出明显受后期韧性剪切带和层间滑动带共同控制,主要矿石类型有含铁碧玉岩型和蚀变千枚岩型两种。  相似文献   

4.
中条山早元古代铜矿成矿作用与演化   总被引:7,自引:1,他引:7  
中条山重要铜矿床都产于早元古代活动带中。它们是:绛县群(2500—2300Ma)下部变质泥质一半泥质岩中的沉积变质铜矿床和中上部变质钾质火山岩建造中的变质火山斑岩铜矿床;中条群(2300—1830Ma)变质碳酸盐黑色页岩建造中的沉积变质-再造铜矿床。这些原生成因不同的矿床,经过180Ma左右的中条运动及其变质作用,而表现了某些相似的热液和地球化学特征,但没有从根本上改变受原岩建造控制的特点。  相似文献   

5.
中条山早元古代铜矿成矿作用与演化   总被引:1,自引:0,他引:1       下载免费PDF全文
中条山重要铜矿床都产于早元古代活动带中。它们是:绛县群(2500—2300 Ma)下部变质泥质—半泥质岩中的沉积变质铜矿床和中上部变质钾质火山岩建造中的变质火山斑岩铜矿床;中条群(2300—1830 Ma)变质碳酸盐黑色页岩建造中的沉积变质-再造铜矿床。这些原生成因不同的矿床,经过180 Ma左右的中条运动及其变质作用,而表现了某些相似的热液和地球化学特征,但没有从根本上改变受原岩建造控制的特点。  相似文献   

6.
甘肃桦树沟(铁)铜矿床的成因机制   总被引:4,自引:0,他引:4  
矿床地质地球化学特征研究结果表明,随着古陆边缘弧-槽-盆体系的发生与发展,元古代基底火山(沉积)岩系经深循环水(海水)-热系统的作用,成矿物质被浸出和搬运,并经海底喷溢作用沉淀于海盆洼地中形成桦树沟矿床含铜建造,后期变质作用使成矿物质活化、转移和富集。桦树沟矿床为喷气(流)沉积-变质改造型(铁)铜矿床。  相似文献   

7.
甘肃桦树沟蚀变岩型铜矿床的地质特征及成矿作用讨论   总被引:6,自引:0,他引:6  
桦树沟蚀主岩型铜矿床属一种破碎带蚀变岩型铜矿床,区域上具有明显的屋控性,但在矿田和矿区范围,矿体明显受构造破碎蚀变带控制,作者通过对矿床地质特征、矿源层及成矿年龄的分析认为:桦树沟蚀变岩型铜矿床的形成经历了两个阶段的形成过程,第一阶段为中元古代裂谷期铜的预富集作用,表现为含铜条带状铁建造的形成,第二阶段为加里东造山期,条带状铁建造中的铜活化迁移到构造破碎蚀变带进一步富集,形成铜矿床。  相似文献   

8.
甘肃桦树沟铜矿床成矿年龄讨论   总被引:2,自引:1,他引:2       下载免费PDF全文
桦树沟铜矿床是近年来在北祁连山西段镜铁山矿田发现的一种新类型铜矿床。作者在矿床区域地质背景、地质特征分析的基础上 ,通过对与成矿密切相关的石英闪长岩脉中的锆石U_Pb同位素年龄及蚀变岩型铜矿石的40 Ar_3 9Ar同位素年龄测定 ,认为桦树沟铜矿床是在元古宙铜预富集的基础上 ,富含铜元素的条带状铁建造经加里东造山期的挤压、破碎 ,隐伏花岗岩基和石英闪长岩脉侵入及与衍生成矿流体的水岩反应等作用 ,使其中的铜元素活化析出并被带到就近的有利构造空间沉淀成矿 ,其成矿年龄限定于 (36 4 .7± 8.4 )Ma~ (4 76± 15 )Ma之间。  相似文献   

9.
“镜铁山式”铁铜矿床地质特征及其成因探讨   总被引:16,自引:4,他引:12  
探讨了镜铁山桦树沟矿区铁铜矿床成矿地质背景和成岩成矿的演化过程,阐述控制铁铜矿带在水平和垂向分带变化的地质特征。根据线性构造与火山喷发沉积关系,着重探讨“镜铁山式”铁铜矿床的成因机制,并运用δ34S、δ18O、δ13C测试成果,确立含铁铜硅质岩建造,建立上铁下铜结构分带。认为该类型矿床是与海相火山作用有关的喷气沉积成因矿床,具有与块状硫化物矿床共生,组成铁-铜-硫矿床系列双层成矿结构模式  相似文献   

10.
北祁连桦树沟(铁)铜矿床地球化学特征及成因   总被引:7,自引:1,他引:6  
桦树沟( 铁)铜矿床矿石及含矿岩系的稀土元素、微量元素、稳定同位素、流体包裹体以及同位素年代学等地球化学研究表明,铜矿床形成于近大陆边缘的海底裂谷环境,成矿物质主要来自元古代基性火山岩,硫、碳主要来自海水。火山—沉积岩系经深循环水—热系统的作用,成矿物质被浸出和搬运,并经海底喷溢作用沉淀于海盆洼地中形成含矿层,后期变质作用使成矿物质活化、转移和富集。矿床成因为喷气(流)沉积—变质改造型( 铁)铜矿床  相似文献   

11.
王兴保 《地质找矿论丛》2003,18(Z1):118-121
桦树沟铁铜矿床铜矿体呈隐伏、半隐伏状态赋存于铁矿体下部,构成上铁下铜格局.铜矿的形成与海底火山喷气热泉活动关系密切,成矿物质既有正常沉积岩的特征又有火山源的特征,并经变质热液和岩浆热液改造使其进一步富集.  相似文献   

12.
北祁连西段镜铁山式铜矿预测要素及预测模型   总被引:2,自引:0,他引:2  
在北祁连镜铁山地区,近年来发现了与中元古界条带状铁建造有关的破碎带蚀变岩型铜矿,如桦树沟铜矿床和柳沟峡铜矿床。分析了铜矿床的预测要素:矿源层为含铜条带状铁建造;有利于矿质活化的构造为透入性构造裂隙;热源为壳源岩浆活动;储矿构造为构造破碎蚀变带。建立了镜铁山式铜矿资源潜力预测的经验公式,对预测区铜远景资源潜力、铁矿石量、透入性构造裂隙发育程度和热源参数的取值分别进行探讨。据此公式估算,整个北祁连西段镜铁山式铜矿的铜金属资源潜力为147.3万t,其中镜铁山矿田铜资源潜力可达约125万t。实地考察也发现了新的找矿有利地段,因此有必要继续加大找矿力度。  相似文献   

13.
论华南喷流—沉积块状硫化物矿床   总被引:29,自引:1,他引:29  
现代海底喷流-沉积硫化物矿床的发现极大地推动了海底热液成矿理论的发展,也大大地提高了对古代海底喷流块充化物矿术的研究水平。本文指出喷流-沉积是重要的成矿作用,提出喷流-沉积矿床是华南Cu、Pb、Zn、Sn、Ag、Au等矿产资源的重要来源,形成了一批超大型矿床,并将华南许多曾被认为属夕卡岩矿床重新确认为喷流-沉积岩床。文章还论述了华南喷流-沉积块状硫化物矿床的特征、分类、时空分布及其成矿特点等问题,提出断裂拗陷带型喷流-沉积块状硫化物矿床是华南具有特色的类型,而陆相断陷盆地中喷流-沉积矿床值得进一步深入研究。  相似文献   

14.
新疆昆仑式火山岩型块状硫化物铜矿床及成矿地质环境   总被引:7,自引:0,他引:7  
新疆西昆仑奥依塔克-恰尔隆拗陷带内阿克塔什-萨落依成矿带发现多处火山岩型块状硫化物铜矿床。这些矿床产在石炭系双峰式火山岩系之内,沿着下石炭统基性火山岩和上石炭统酸性火山岩两个层位产出,分别以玄武岩和流纹岩为容矿主岩,可以明显地分成基性火山岩型和酸性火山岩型两种类型。矿石主成矿元素均以铜为主,含少量的锌,几乎不含铅,矿床类型属于铜型。这些基性火山岩型和酸性火山岩型矿床被统称为昆仑式火山岩型块状硫化物铜矿床。根据矿床产出地质环境、双峰式火山岩系、沉积建造以及火山岩地球化学特征,推断昆仑式火山岩型块状硫化物铜矿床最可能形成于泥盆纪-石炭纪弧后拉张构造环境。  相似文献   

15.
Abstract. Early Cretaceous granitic intrusions are associated with Au‐quartz veins and Cu‐Fe skarns in the the Kitakami Mountains, which are underlain by the late Paleozoic of continental margin‐type sedimentary rocks and Mesozoic accretionary complexes. The plutonic rocks are divided into potassic, high‐Sr/Y calc‐alkaline and low‐Sr/Y calc‐alkaline series. All the metallic mineral deposits are spatially associated with small stocks and plugs; they show no consistent association with the larger plutonic bodies. The plutonic rocks generally belong to the magnetite series but less oxidized in the southwestern part of the Kitakami Mountains where Au‐quartz veins occur. The gold deposits are classified into high and low sulfide types. The high sulfide type contains a high volume of sulfide minerals mostly of chalcopyrite, arsenopyrite and pyrrhotite with low bulk Au/Ag ratios. This type occurs almost exclusively in and surrounding the Orikabe pluton, including two most important gold deposits (Oya and Kohoku) of the Kitakami Mountains. The pluton is composed of potassic gabbroids, potassic granitoids of the shoshonite ‐ high‐K calc‐alkaline series (Orikabe type), and less potassic Sasamori‐type granodiorite. All these rocks belong to a moderately oxidized magnetite series. The Orikabe pluton has one of the lowest initial Sr ratio (0.70392) in the Kitakami Mountains, and the Au‐Cu‐dominant ore components of the high sulfide type Au deposits are considered magmatic in origin carried by the juvenile magmas from the upper mantle. The low sulfide type is generally plain quartz vein with a low volume of sulfides and a high bulk Au/Ag ratio. The associated minerals are often scheelite and/or arsenopyrite and pyrrhotite. The ore deposits include historically famed Au‐quartz veins at Shishiori and Ogayu. They are widespread in the southwestern Kitakami Mountains and may be later than the high sulfide type in age, and are hosted most commonly in the sedimentary rocks, which surround small weakly oxidized magnetite‐series plutons of low to intermediate Sr/Y series. These less differentiated intrusions typically include quartz dior‐ite and granodiorite. Some ore components of this type may have derived from the host sedimentary rocks. Among other mineral deposit types in the region, the largest ore deposit is Kamaishi Cu‐Fe skarn (magnetite ores of 58 MT, Fe 50–64 %; Cu 143 KT). It is related to the high‐Sr/Y series Ganidake granodiorite stock, which is a strongly oxidized magnetite‐series body. In contrast, the second largest deposit in the mountains, Akagane deposit, is a similar‐type skarn but associated with an intrusion classified as less oxidized, ilmenite to intermediate series, and that is intermediate in Sr/Y of calc‐alkaline series granodiorite. Degree of magmatic differentiation appears to be not critical factor in the formation of Au‐quartz vein and Cu‐Fe skarn deposits in the region, but is definitely significant for controlling the distribution of the Mo‐mineralization to the east.  相似文献   

16.
The Da Hinggan Mountains mineral province (DHMP), northeastern China, is divided into three tectonic units and corresponding metallogenic belts. The tectonic units of the Da Hinggan Mountains are the Erguna fold zone on the northwest, the Hercynian fold zone on the north, and the Hercynian fold zone on the south. The corresponding metallogenic belts are the Erguna Cu-Pb-Zn-Ag-Mo-Au belt of the NW DHMP, the Cu-Pb-Zn-Mo-Fe-Au belt of the northern DHMP, and the Pb-Zn-Ag-Cu-Sn-Fe-Mo belt of the southern DHMP. Distinct ore bodies, mostly associated with Mesozoic granites and volcanics, comprise (1) hydrothermal vein deposits including Pb-Zn-Ag-(Cu) and W‐Sn-Cu, (2) exhalative (Pb-Zn-Ag, Cu) deposits, (3) porphyry (Cu, Au, Mo), (4) skarn (Fe, Zn, Cu), and (5) epithermal Au-Ag deposits. The hydrothermal veins are hosted by a range of different rock types, whereas the exhalative ores are confined to Permian strata. The porphyry deposits occur within granite porphyries. The epithermal deposits are related to Mesozoic volcanic-subvolcanic rocks and occur within superjacent igneous structures. The first type, represented by the Bairendaba deposit, shows many characteristics of hydrothermal deposits. The second type occurs in a Permian clastic-chemical sedimentary sequence. Most Fe-Zn-Cu deposits related to granites and granodiorites are skarns. Granodiorite and granite-related deposits are typical porphyry ores, formed during Hercynian and Mesozoic time. Promising metallogenic conditions and the recent discovery of many large metal deposits indicate that this mineral province has a great exploration potential.  相似文献   

17.
Mesozoic mineral deposits in South China include world-class deposits of W, Sn and Sb and those that provide the major sources of Ta, Cu, Hg, As, Tl, Pb, Zn, Au and Ag for the entire country. These deposits can be classified into polymetallic hydrothermal systems closely related to felsic intrusive rocks (Sn–W –Mo granites, Cu porphyries, polymetallic and Fe skarns, and polymetallic vein deposits) and low-temperature hydrothermal systems with no direct connection to igneous activities (MVT deposits, epithermal Au and Sb deposits). Recent studies have shown that they formed in the Triassic (Indosinian), Jurassic–Cretaceous (Early Yanshanian), and Cretaceous (Late Yanshanian) stages. Indosinian deposits include major MVT (Pb–Zn–Ag) deposits and granite-related W–Sn deposits. Early Yanshanian deposits are low-temperature Sb–Au and high-temperature W–Sn and Cu porphyry types. Many Late Yanshanian deposits are low-temperature Au–As–Sb–Hg and U deposits, and also include high-temperature W–Sn polymetallic deposits. The formation of these deposits is linked with a specific tectonothermal evolution and igneous activities. This special issue brings together some of the latest information in eight papers that deal with the origins and tectonic environments of mineral deposits formed in these stages. We anticipate that this issue will stimulate more interests in these ore deposits in South China.  相似文献   

18.
海相火山-沉积建造铁铜矿床类型及地质特征   总被引:4,自引:1,他引:4  
于浦生  邬介人 《地球学报》1996,17(Z1):50-56
铁-铜型矿床产出的时代从元古宙到新生代均有,与其有关的火山岩大多数为中基性与中酸性或偏碱性岩石。作者以镜的山桦树沟、陇山陈家庙和陕西铜厂不同时代的铁-铜矿床为例,概述了该类型矿床的地质特征、成矿环境并着重探了铁-铜矿床的成因机制,认为该类型矿床是与火山作用有关的喷气-沉积型矿床,同时指出柳沟峡地区及其以西(东缰地区)铁-铜型铜矿化带的发现,是进一步寻找铁-铜-金矿床的有利地段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号