首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 15 毫秒
1.
An experimental investigation of the simultaneous absorption of NH3 and SO2 from the ambient atmosphere by freely falling water drops has been carried out in the Mainz vertical wind tunnel. The experimental results were found to be in good agreement with the results derived from computations with the Kronig-Brink convective diffusion model and also with a model which assumes a drop to be well mixed at all times. Encouraged by this agreement, these computation schemes for the uptake of gas by single drops where incorporated in a pollution washout model with realistic SO2, NH3 and CO2 gas profiles. This model allows an entire raindrop size distribution to fall through a gas layer. The results of this plume-model show that the SO2 uptake is strongly dependent on the NH3 concentration in the atmosphere and on the rainrate. We also find that the small drops contribute more towards the washout of these gases. In the case of simultaneous presence of NH3 and SO2, desorption of these gases is negligible.  相似文献   

2.
An extention of our previous theory for trace gas absorption into freely-falling cloud and raindrops is presented. This theory describes the convective diffusion of a trace gas through air and into a water drop with internal circulation, the drop falling at its terminal velocity. Using flow fields for the circulating water inside and for the moving air outside the drop, obtained by numerical solutions to the Navier—Stokes equation of motion, we numerically solved the convective diffusion equation to determine the uptake of SO2 by water drops of various sizes, time exposure to the gas phase, and concentration of SO2 in the gas phase. It was found that for drops of radius larger than 1 mm and relatively low gas concentrations (10 ppb (v)), resistance to gas diffusion lies mainly in the gas phase; while for drops of radius less than 500 m and gas concentrations larger than those found in the atmosphere (1% (v)), the resistance to diffusion lies primarily in the liquid phase. With drop sizes and gas concentrations between these limits, the rate of SO2 uptake is controlled by a coupled resistance to diffusion inside and outside the drop. In addition to our general model, a simplified version was formulated which allows considerable savings in computer time for evaluation and improved ease of handling without significant loss of accuracy. A comparison between our simplified model and that of Barrie (1978) shows that the boundary-layer approach of Barrie may be a useful alternate approach to estimating trace gas absorption by water drops, provided appropriate values are chosen for the thickness of the boundary layers involved.  相似文献   

3.
An experimental and theoretical study has been carried out to investigate the rate of desorption of SO2 from water drops falling at terminal velocity in air. The experiments were carried out in the Mainz vertical wind tunnel in which water drops of various sizes containing S(IV) in various concentrations were freely suspended in the vertical airstream of the tunnel. The results of these experiments were compared with the predictions of three theoretical models, and with the experiments of Walceket al. This comparison shows that the predictions of the diffusion model of Kronig and Brink in the formulation given by Walcek and Pruppacher agree well with the experimental results for all relevant large and small rain-drop sizes, and for all considered concentrations of S(IV) inside the drops. In contrast, the predictions of the diffusion model which assumes complete internal mixing inside a drop agrees with the experimental results only if the concentration of S(IV) inside the drop is less than that equivalent of an equilibrium SO2 concentration of 15 ppbv. At larger concentrations, the theoretical predictions of the model for complete internal mixing progressively deviate from the experimental results. It is further shown that Barrie's double film model can be used to interpret the resistance to diffusion inside a drop in terms of a diffusion boundary layer inside the drop which increases in thickness with decreasing concentration of S(IV). Applying our results to the desorption of SO2 from small and large rain drops falling below an assumed cloud base, shows that for typical contents of S(IV) inside the drops substantial amounts of SO2 will desorb from these drops unless H2O2 is present in the surrounding air.  相似文献   

4.
For the purpose of testing our previously described theory of SO2 scavenging a laboratory investigation was carried out in the UCLA 33 m long rainshaft. Drops with radii between 250 and 2500 m were allowed to come to terminal velocity, after which they passed through a chamber of variable length filled with various SO2 concentrations in air. After falling through a gas separating chamber consisting of a fluorocarbon gas the drops were collected and analyzed for their total S content in order to determine the rate of SO 2 absorption.The SO2 concentration in air studied ranged between 1 and 60% (v). Such relatively large concentrations were necessary due to the short times the drops were exposed to SO2 in the present setup. The present experimental results were therefore not used to simulate atmospheric conditions but rather to test our previously derived theory which is applicable to any laboratory or atmospheric condition. Comparison of our studies with the results from our theory applied to our laboratory conditions led to predicted values for the S concentration in the drops which agreed well with those observed if the drops had radii smaller than 500 m. In order to obtain agreement between predicted and observed S concentrations in larger drops, an empirically derived eddy diffusivity for SO2 in water had to be included in the theory to take into account the effect of turbulent mixing inside such large drops.In a subsequent set of experiments, drops initially saturated with S (IV) were allowed to fall through S-free air to determine the rate of SO 2 desorption. The results of these studies also agreed well with the results of our theoretical model, thus justifying the reversibility assumption made in our theoretical models.In a final set of experiments, the effects of oxidation on SO2 absorption was studied by means of drops containing various amounts of H2O2. For comparable exposure times to SO2, the S concentration in drops with H2O2 was found to be up to 10 times higher than the concentration in drops in which no oxidation occurred.  相似文献   

5.
Theoretical models that describe the uptake of trace gases by water drops falling at terminal velocity in air have been extended to include the effects of aqueous phase chemical processes that occur on time scales comparable with or greater than that over which the relevant physical scavenging processes operate. In particular, the case of reversible dervative formation by the absorbed species has been treated, and illustrated by application to the absorption of acetaldehyde under conditions prevailing in the atmosphere. In addition, the relative influences of aqueous phase chemistry and of convective-diffusion on the efficiency of the scavenging process have been explored more generally, using the revised models. A brief comparison of the factors controlling the uptake of sulfur dioxide, dichloromethane, and acetaldehyde is presented.  相似文献   

6.
An experimental study involving the Mainz vertical wind tunnel is described where the rate of SO2 removed from the air by freely suspended water drops was measured for SO2 concentrations in the gas phase ranging between 50 and 500 ppb, and for various H2O2 concentrations in the liquid phase. In a first set of experiments, the pH inside the SO2 absorbing drops was monitored by means of colour pH indicators added to the drops. In a second set of experiments, the amount of SO2 scavenged by the drops was determined as sulfate by an ionchromatograph after the drops had been removed from the vertical air stream of the wind tunnel after various times of exposure to SO2. The results of our experimental study were compared with the theoretical gas diffusion model of Walcek and Pruppacher which was reformulated for the case of SO2 concentrations in the ppbv(v) range for which the main resistance to diffusion lies in the gas phase surrounding the drop. Excellent agreement between experiment and theory was obtained. Encouraged by this agreement, the theory was used to investigate the rate of sulfate production inside a drop as a function of pH. The sulfate production rate, which includes transport and oxidation, was compared with the production rate based on bulk equilibrium, as cited in the literature.  相似文献   

7.
We present here experimental determinations of mass accommodation coefficients using a low pressure tube reactor in which monodispersed droplets, generated by a vibrating orifice, are brought into contact with known amounts of trace gases. The uptake of the gases and the accommodation coefficient are determined by chemical analysis of the aqueous phase.We report in this article measurements of exp=(6.0±0.8)×10–2 at 298 K and with a total pressure of 38 Torr for SO2, (5.0±1.0)×10–2 at 297 K and total pressure of 52 Torr for HNO3, (1.5±0.6)×10–3 at 298 K and total pressure of 50 Torr for NO2, (2.4±1.0)×10–2 at 290 K and total pressure of 70 Torr for NH3.These values are corrected for mass transport limitations in the gas phase leading to =(1.3±0.1)×10–1 (298 K) for SO2, (1.1±0.1)×10–1 (298 K) for HNO3, (9.7±0.9)×10–2 (290 K) for NH3, (1.5±0.8)×10–3 (298 K) for NO2 but this last value should not be considered as the true value of for NO2 because of possible chemical interferences.Results are discussed in terms of experimental conditions which determine the presence of limitations on the mass transport rates of gaseous species into an aqueous phase, which permits the correction of the experimental values.  相似文献   

8.
The growth of monodisperse particles (0.07 to 0.5 µm) exposed to SO2 (0–860 ppb), H2O2 (0–150 ppb) and sometimes NH3 (0–550 ppb) in purified air at 22 °C at relative humidities ranging from 25 to 75% were measured using the Tandem Differential Mobility Analyzer technique. The experiments were performed in a flow reactor with aqueous (NH4)2SO4 and Na2SO4 droplets. For (NH4)2SO4 droplets the fractional diameter growth was independent of size above 0.3 µm but decreased with decreasing size below that. When NH3 was added the fractional growth increased with decreasing size. Measurements were compared with predictions of a model that accounts for solubility of the reactive gases, the liquid phase oxidation of SO2 by H2O2, and ionic equilibria. Agreement between measured and predicted droplet growth is reasonable when the ionic strength effects are included. Theory and experiments suggest that NH3 evaporation is responsible for the decrease in relative growth rates for small aqueous ammonium sulfate particles. The observed droplet growth rates are too slow to explain observed growth rates of secondary atmospheric sulfate particles.  相似文献   

9.
Our previously developed theoretical models for describing the rate at which water-soluble atmospheric trace gases are scavenged by cloud and rindrops were evaluated for the case of acetaldehyde being absorbed and desorbed by water drops of radii between 250 to 2500 m radius. The experimental verification of our theoretical predictions was carried out in the UCLA 33 m high precipitation shaft in which falling water drops were allowed to come to terminal velocity before passing through a chamber of variable lengths filled with air containing acetaldehyde at various partial pressures. For all drop sizes studied, the experimental results and the theoretical predictions were in reasonable agreement.  相似文献   

10.
Emissions of N2O, CH4, and CO2 from soils at two sites in the tropical savanna of central Venezuela were determined during the dry season in February 1987. Measured arithmetic mean fluxes of N2O, CH4, and CO2 from undisturbed soil plots to the atmosphere were 2.5×109, 4.3×1010, and 3.0×1013 molecules cm-2 s-1, respectively. These fluxes were not significantly affected by burning the grass layer. Emissions of N2O increased fourfold after simulated rainfall, suggesting that production of N2O in savanna soils during the rainy season may be an important source for atmospheric N2O. The CH4 flux measurements indicate that these savanna soils were not a sink, but a small source, for atmospheric methane. Fluxes of CO2 from savanna soils increased ninefold two hours after simulated rainfall, and remained three times higher than normal after 16 hours. More research is needed to clarify the significance of savannas in the global cycles of N2O, CH4, CO2, and other trace gases, especially during the rainy season.  相似文献   

11.
An experimental micrometeorological set-up was established at the CARBOEURO-FLUX site in Tharandt, Germany, to measure all relevant variables for the calculation of the vertical and horizontal advective fluxes of carbon dioxide. The set-up includes two auxiliary towers to measure horizontal and vertical CO2 and H2O gradients through the canopy, and to make ultrasonic wind measurements in the trunk space. In combination with the long-term flux tower an approximately even-sided prism with a typical side-length of 50 m was established. It is shown that under stable (nighttime) conditions the mean advective fluxes have magnitudes on the same order as the daily eddy covariance (EC) flux, which implies that they play a significant, but not yet fully understood, role in the carbon budget equation. The two advective fluxes are opposite and seem to cancel each other at night (at least for these measurements). During the day, vertical advection tends to zero, while horizontal advection is still present implying a flow of CO2 out of the control volume. From our measurements, a mean daily gain of 2.2 gC m–2 d–1 for the horizontal advection and a mean daily loss of 2.5 gC m–2d–1 for the vertical advection is calculated for a period of 20 days. However the large scatter of the advective fluxes has to be further investigated. It is not clear yet whether the large variability is natural or due to measurement errors and conceptual deficiencies of the experiment. Similar results are found in the few comparable studies.  相似文献   

12.
The heterogeneous removal of N2O5 by sulphuric acid aerosols as been invoked to explain the decline of mid-latitude ozone in the last decade. We have used a photochemical model to study measurements of odd-nitrogen made by Spacelab 3. The gas-phase photochemical model overestimates the amount of N2O5 present. The loss of N2O5 by aerosols does reduce N2O5, but is likely to be slower than assumed in WMO (1992). The sunset measurements at 25.5 km cannot be explained by heterogeneous loss of N2O5 and is more likely to be due to a faster photolysis than assumed. New absorption cross-sections of HNO3 reduce the photolysis of HNO3 so that the model with gas-phase chemistry only gives better agreement at 19 km, than a model including heterogeneous chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号