首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
爆发余震与强震关系的统计检验   总被引:8,自引:0,他引:8       下载免费PDF全文
马秀芳  傅丽萍 《地震学报》1991,13(3):273-280
本文按地质构造和地震活动水平,分大华北地区成四个子域.并分析了大华北地区1970——1986年地震目录(其中华北平原子域地震目录为1965——1986年)检测得到爆发余震42次.其中7次发生在强震的余震区,17次发生在震群区.研究其余的18次爆发余震与强震关系,并进行统计检验.结果表明:这18次爆发余震与其后强震发生的随机相遇概率小于6%.用许氏 R 值评分方法估算的爆发余震预报强震的效能大于39%.按照本文给出判定爆发余震的参数,对1987——1988年地震目录进行了外推检验预测.1987——1988年仅有一个爆发余震,即1988年1月6日东北岫岩3.6级地震.它预示1988年1月——1989年1月,东北地区可能有 Ms5.0地震.实际情况是在1988年2月25日,在东北章武地区发生了一次 Ms=5.3地震.另一个实例是在1989年10月18日山西大同——阳高地区发生了一次爆发余震,其后3小时在同一地区也发生了预计的 Ms=6.1地震.以上两例都在实际预报中验证了.爆发余震可能具有一定的预报中强震的能力.   相似文献   

2.
We employed layered model joint hypocentral determination (JHD) with station corrections to improve location identification for the 26 January, 2001 Mw 7.7 Bhuj early and late aftershock sequence. We relocated 999 early aftershocks using the data from a close combined network (National Geophysical Research Institute, India and Center for Earthquake Research Institute, USA) of 8–18 digital seismographs during 12–28 February, 2001. Additionally, 350 late aftershocks were also relocated using the data from 4–10 digital seismographs/accelerographs during August 2002 to December 2004. These precisely relocated aftershocks (error in the epicentral location<30 meter, error in the focal depth estimation < 50 meter) delineate an east-west trending blind thrust (North Wagad Fault, NWF) dipping (~ 45°) southward, about 25 km north of Kachchh main land fault (KMF), as the causative fault for the 2001 Bhuj earthquake. The aftershock zone is confined to a 60-km long and 40-km wide region lying between the KMF to the south and NWF to the north, extending from 2 to 45 km depth. Estimated focal depths suggest that the aftershock zone became deeper with the passage of time. The P- and S-wave station corrections determined from the JHD technique indicate that the larger values (both +ve and -ve) characterize the central aftershock zone, which is surrounded by the zones of smaller values. The station corrections vary from −0.9 to +1.1 sec for the P waves and from −0.7 to +1.4 sec for the S waves. The b-value and p-value of the whole aftershock (2001–2004) sequences of Mw ≥ 3 are estimated to be 0.77 ± 0.02 and 0.99 ± 0.02, respectively. The p-value indicates a smaller value than the global median of 1.1, suggesting a relatively slow decay of aftershocks, whereas, the relatively lower b-value (less than the average b-value of 1.0 for stable continental region earthquakes of India) suggests a relatively higher probability for larger earthquakes in Kachchh in comparison to other stable continental regions of the Indian Peninsula. Further, based on the b-value, mainshock magnitude and maximum aftershock magnitude, the Bhuj aftershock sequence is categorized as the Mogi's type II sequence, indicating the region to be of intermediate level of stresses and heterogeneous rocks. It is inferred that the decrease in p-value and increase in aftershock zone, both spatially as well as depth over the passage of time, suggests that the decay of aftershocks perhaps could be controlled by visco-elastic creep in the lower crust.  相似文献   

3.
The 2018,Songyuan,Jilin M_S5. 7 earthquake occurred at the intersection of the FuyuZhaodong fault and the Second Songhua River fault. The moment magnitude of this earthquake is M_W5. 3,the centroid depth by the waveform fitting is 12 km,and it is a strike-slip type event. In this paper,with the seismic phase data provided by the China Earthquake Network, the double-difference location method is used to relocate the earthquake sequence,finally the relocation results of 60 earthquakes are obtained. The results show that the aftershock zone is about 4. 3km long and 3. 1km wide,which is distributed in the NE direction. The depth distribution of the seismic sequence is 9km-10 km. 1-2 days after the main shock,the aftershocks were scattered throughout the aftershock zone,and the largest aftershock occurred in the northeastern part of the aftershock zone. After 3-8 days,the aftershocks mainly occurred in the southwestern part of the aftershock zone. The profile distribution of the earthquake sequence shows that the fault plane dips to the southeast with the dip angle of about 75°. Combined with the regional tectonic setting,focal mechanism solution and intensity distribution,we conclude that the concealed fault of the Fuyu-Zhaodong fault is the seismogenic fault of the Songyuan M_S5. 7 earthquake. This paper also relocates the earthquake sequence of the previous magnitude 5. 0 earthquake in 2017. Combined with the results of the focal mechanism solution,we believe that the two earthquakes have the same seismogenic structure,and the earthquake sequence generally develops to the southwest. The historical seismic activity since 2009 shows that after the magnitude 5. 0 earthquake in 2017,the frequency and intensity of earthquakes in the earthquake zone are obviously enhanced,and attention should be paid to the development of seismic activity in the southwest direction of the earthquake zone.  相似文献   

4.
The intterrelation among strong earthquakes and its application are emphatically studied in this paper. Taking North China seismic region as study area, we have investigated how a great earthquake influence other strong earthqukaes in neighbouring area? Does there exist earthqukae immunity phenomenon? If it exists, what distributional pattern did it has in space-time domain? The results show that occurrence of earthquakes withM⩾7 has cetain immunity phenomenon to earthquakes withM⩾6 in North China. Among others, the immunity area of earthquakes withM=8 is much larger than that ofM=7. For earthquakes withM⩾8, the immunity area to the earthquakes ofM=7 is larger than toM=6. Based on the above analysis, using some statistical methods, we gave the variational regularity of seismic immunity factor with space and time, and explored its concrete application in seismic hazard analysis. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,15, 339–346, 1993.  相似文献   

5.
2018年9月4日新疆伽师发生MS5.5地震,震中处于塔里木地块西北缘,位于1997~1998年伽师强震群震区内。此次伽师地震前发生了MS4.7前震,截至9月30日最大余震震级为MS4.6(ML5.0),初步判定为前-主-余型地震序列。序列精定位结果显示,余震沿近NE向展布,主震震源深度与1997~1998年伽师强震主震基本一致,发震断层陡立。本文从区域的构造环境、地震震源机制解和余震分布特征等方面分析认为,地震发生在伽师隐伏断裂东南端部,为1997~1998年伽师强震群震区的一次新的构造活动。序列参数、视应力等计算结果显示,伽师MS5.5地震的预测最大余震震级与最大余震震级MS4.6接近,表明序列最大余震已经发生。  相似文献   

6.
Northeast India and adjoining regions (20°–32° N and 87°–100° E) are highly vulnerable to earthquake hazard in the Indian sub-continent, which fall under seismic zones V, IV and III in the seismic zoning map of India with magnitudes M exceeding 8, 7 and 6, respectively. It has experienced two devastating earthquakes, namely, the Shillong Plateau earthquake of June 12, 1897 (M w 8.1) and the Assam earthquake of August 15, 1950 (M w 8.5) that caused huge loss of lives and property in the Indian sub-continent. In the present study, the probabilities of the occurrences of earthquakes with magnitude M ≥ 7.0 during a specified interval of time has been estimated on the basis of three probabilistic models, namely, Weibull, Gamma and Lognormal, with the help of the earthquake catalogue spanning the period 1846 to 1995. The method of maximum likelihood has been used to estimate the earthquake hazard parameters. The logarithmic probability of likelihood function (ln L) is estimated and used to compare the suitability of models and it was found that the Gamma model fits best with the actual data. The sample mean interval of occurrence of such earthquakes is estimated as 7.82 years in the northeast India region and the expected mean values for Weibull, Gamma and Lognormal distributions are estimated as 7.837, 7.820 and 8.269 years, respectively. The estimated cumulative probability for an earthquake M ≥ 7.0 reaches 0.8 after about 15–16 (2010–2011) years and 0.9 after about 18–20 (2013–2015) years from the occurrence of the last earthquake (1995) in the region. The estimated conditional probability also reaches 0.8 to 0.9 after about 13–17 (2008–2012) years in the considered region for an earthquake M ≥ 7.0 when the elapsed time is zero years. However, the conditional probability reaches 0.8 to 0.9 after about 9–13 (2018–2022) years for earthquake M ≥ 7.0 when the elapsed time is 14 years (i.e. 2009).  相似文献   

7.
采用双差定位方法,利用中国地震台网的数据对2017年8月9日精河6.6级地震的余震序列进行了重新定位。截至2017年8月14日16时,共获得209个余震的重新定位结果。结果显示,余震主要呈近EW向或NWW向分布,余震区长约50km,宽约17km。余震分布在主震的西侧,推断此次地震单侧破裂。余震震源深度为1~25km,其中,震级较大余震深度为8~17km。精河地震序列的余震活动随时间呈起伏状衰减,震后2天内比较活跃,此后出现较快衰减。随时间推移,余震区呈现中西部衰减慢、东部衰减快的特点。此次地震震中距2011年精河5.0级地震震中21km,相比2011年精河地震,其震源更深,震级更大,但震源机制解相近,均为逆冲型。结合区域构造背景分析认为,库松木契克山前断裂为此次地震发震构造的可能性较大。  相似文献   

8.
针对九寨沟MS7.0地震之后不同时间段的余震序列目录,利用推定最大余震震级,给出了实际最大余震震级的估计值。结果表明,推定最大余震震级随主震后时间尺度的延长而趋于稳定,且该值与实际发生的最大余震的震级一致。需要强调的是,就九寨沟地震序列而言,当余震数据较为完备时,采用主震后较短时间段内(1~2天)的余震目录就可以较准确地估算出主震区域内可能发生的最大余震震级。实际上,主震后12h(0.5天)的余震数据已完全可以给出最大余震震级的有效下限。此外,计算中我们采用了里氏震级ML和面波震级MS的余震目录,结果显示,2种震级类型目录的估算结果完全一致,表明利用推定最大余震震级估算实际最大余震震级的方法不受震级类型的影响。据此,该最大余震震级快速评估方法可进一步推广应用于我国大陆地区中强震后强余震灾害分析评估中。目前的拟合技术也显示出随着测震技术的不断进步以及余震识别能力的提高,快速评估方法可以在主震后短时间(<1天)内准确地预测可能发生的最大余震震级。  相似文献   

9.
The 2004 Mid Niigata Prefecture earthquake (MJMA 6.8) and its aftershock sequences generated complicated, i.e., several conjugate fault planes in their source region. In order to understand the generating process of these earthquakes, we estimated a 3-D distribution of relative scattering coefficients in the source region. The large slip area during the main shock rupture seems to be bounded by strong heterogeneous zones with larger scattering coefficients. Hypocenters of the main shock and major large aftershocks with M 5-6 classes tend to be located close to stronger scattering areas. We found that one of these strong heterogeneities already existed before the occurrence of the M 5.9 aftershock on November 8. We suppose that heterogeneous structures in the source region of this earthquake sequence affected the initiation and growth of ruptures of the main shock and major large aftershocks.  相似文献   

10.
本文基于匹配滤波技术,通过SEPD(Seismic Events and Phase Detection)对2018年11月25日新疆博乐MS4.9地震序列进行检测,检测出遗漏地震32条,84.4%地震为ML0.0—1.0,9.4%地震小于ML0.0,较地震目录中原有15条地震多213%,检测出的遗漏地震事件使地震目录更加完整。检测后的最小完整性震级由检测前的ML1.6减至ML0.8,地震目录最小完整性震级的减小有利于地震工作者对区域地震活动性作出更准确全面的结论,并使地震危险性分析更可靠。  相似文献   

11.
Site response in the aftershock zone of 2001 Bhuj Mw 7.7 earthquake has been studied using the H/V spectral ratio method using 454 aftershocks (Mw 2.5–4.7) recorded at twelve three-component digital strong motion and eight three-component digital seismograph sites. The mean amplification factor obtained for soft sediment sites (Quaternary/Tertiary) varies from 0.75–6.03 times for 1–3 Hz and 0.49–3.27 times for 3–10 Hz. The mean amplification factors obtained for hard sediment sites (hard Jurassic/Mesozoic sediments) range from 0.32–3.24 times for 1–3 Hz and 0.37–2.18 times for 310 Hz. The upper bounds of the larger mean amplification factors for 1–3 Hz are found to be of the order of 3.13–6.03 at Chopadwa, Vadawa, Kavada, Vondh, Adhoi, Jahwarnagar and Gadhada, whereas, the upper bounds of the higher mean amplification factors at 3–10 Hz are estimated to be of the order of 2.00–3.27° at Tapar, Chopadwa, Adhoi, Jahwarnagar, Gandhidham and Khingarpur. The site response estimated at Bhuj suggests a typical hard-rock site behavior. Preliminary site response maps for 1–3 Hz and 310 Hz frequency ranges have been prepared for the area extending from 23–23.85 °N and 69.65–70.85°E. These frequency ranges are considered on the basis of the fact that the natural frequencies of multi-story buildings (3 to 10 floor) range between 1–3 Hz, while the natural frequencies for 1 to 3 story buildings vary from 3–10 Hz. The 1–3 Hz map delineates two distinct zones of maximum site amplification (>3 times): one lying in the NW quadrant of the study area covering Jahwarnagar, Kavada and Gadadha and the other in the SE quadrant of the study area with a peak of 6.03 at Chopadwa covering an area of 70 km × 50 km. While the 3–10 Hz map shows more than 2 times site amplification value over the entire study area except, NE quadrant, two patches in the southwest corner covering Bhuj and Anjar, and one patch at the center covering Vondh, Manfara and Sikara. The zones for large site amplification values (∼3 times) are found at Tapar, Chopadwa, Adhoi and Chobari. The estimated site response values show a good correlation with the distribution of geological formations as well as observed ground deformation in the epicentral zone.  相似文献   

12.
2022年1月8日青海省海北州门源县发生MS6.9地震,震中距离2016年1月21日门源MS6.4地震震中约33km,两次门源地震均发生在冷龙岭断裂附近,但在震源机制、主发震断层破裂过程及地震序列余震活动等方面显著不同。针对两次门源地震序列的比较分析,对研究冷龙岭断裂及其附近区域强震序列和余震衰减特征等具有重要研究意义。通过对比分析2022年门源MS6.9地震和2016年门源MS6.4地震余震的时空演化特征,发现二者在震源过程和断层破裂尺度上存在明显差异,前者发震断层破裂充分,震后能量释放充分,余震丰富且震级偏高;而后者发震断层未破裂至地表,余震震级水平偏低。综合分析两次门源地震序列表现出来的差异性,认为其可能与地震发震断层的破裂过程密切相关,且同时受到区域构造环境的影响。  相似文献   

13.
Using the ground motion attenuation relation, we calculated and compared the effective peak acceleration (EPA) generated by main shocks and their strong aftershocks of 21 earthquake sequences with MS≥7 occurred in Chinese mainland and offing of China during 1966~2002. The result shows that EPA of strong aftershocks usually exceed that of main shock for 76.2% earthquake sequences and EPA of more than 50% strong aftershocks are greatly lar-ger than that of main shocks in large area, which suggests that it is necessary to take damage produced by strong aftershock into account in the probabilistic seismic hazard analysis and the seismic design.  相似文献   

14.
Introduction On January 10, 1998, at 11h50min Beijing Time (03h50min UTC), an earthquake of ML=6.2 occurred in the border region between the Zhangbei County and Shangyi County of Hebei Province. In total 87 events with ML3.0 were recorded by Beijing Telemetry Seismic Network (BTSN) before March of 1999. Before relocation the preliminary hypocenters determined by BTSN showed an epicentral distribution of 25 km long and 25 km wide without any predominate orientation. The epicentral a…  相似文献   

15.
The Tohoku megathrust earthquake, which occurred on March 11, 2011 and had an epicenter that was 70 km east of Tohoku, Japan, resulted in an estimated ten's of billions of dollars in damage and a death toll of more than 15 thousand lives, yet few studies have documented key spatio-temporal seismogenic characteristics. Specifically, the temporal decay of aftershock activity, the number of strong aftershocks (with magnitudes greater than or equal to 7.0), the magnitude of the greatest aftershock, and area of possible aftershocks. Forecasted results from this study are based on Gutenberg-Richter's relation, Bath's law, Omori's law, and Well's relation of rupture scale utilizing the magnitude and statistical parameters of earthquakes in USA and China (Landers, Northridge, Hector Mine, San Simeon and Wenchuan earthquakes). The number of strong aftershocks, the parameters of Gutenberg-Richter's relation, and the modified form of Omori's law are confirmed based on the aftershock sequence data from the MW9.0 Tohoku earthquake. Moreover, for a large earthquake, the seismogenic structure could be a fault, a fault system, or an intersection of several faults. The seismogenic structure of the earthquake suggests that the event occurred on a thrust fault near the Japan trench within the overriding plate that subsequently triggered three or more active faults producing large aftershocks.  相似文献   

16.
Applying genetic algorithm to inversion of seismic moment tensor solution and using the data of P waveform from digital network and initial motion directions of P waves of Taiwan network stations, we studied the moment tensor solutions and focal parameters of the earthquake of M=7.3 on 16 September of 1994 in Taiwan Strait and other four quakes of M L≥5.8 in the near region (21°–26°N, 115°–120°E). Among the five earthquakes, the quake of M=7.3 on September 16, 1994 in Taiwan Strait is the strongest one in the southeastern coast area since Nan’ao earthquake of M=7.3 in 1918. The results show that moment tensor solution of M=7.3 earthquake is mainly double-couple component, and is normal fault whose fault plane is near NW. The strike of the fault plane resembles that of the distributive bands of earthquakes before the main event and fracture pattern shown by aftershocks. The tension stress axis of focal mechanism is about horizontal, near in NE strike, the compressive stress axis is approximately vertical, near in NWW strike. It seems that this quake is controlled by the force of Philippine plate’s pressing Eurasian plate in NW direction. But from the viewpoint of P axis of near vertical and T axis of near horizontal, it is a normal fault of strong tensibility. There are relatively big difference between focal mechanism solution of this quake and those of the four other strong quakes. The complexity of source mechanism solution of these quakes represents the complexity of the process of the strait earthquake sequences. Contribution No. 98A01001, Institute of Geophysics, State Seismological Bureau, China. The subject is supported and helped by Academician Yun-Tai CHEN, Profs. Qing-Yao HONG, Zhen-Xing YAO, Tian-Yu ZHENG, Yao-Lin SHI, Ji-An XU, Bo-Shou HUANG and colleague Mei-Jian AN, Xue-Reng DING, Rui-Feng LIU. De-Chong ZHANG and Ming Li provided the digital data warm-heartedly. Lin-Ying WANG offered us the catalogue of earthquakes in southeastern coastal area in China. Xi-Li WANG and Tong-Xia BAI provided us the issued annual reports data. The authors would like to express their gratitude to all of these people. This paper is sponsored by the National Natural Science Foundation of China and Scientific and Technological Commission of Shantou, Guangdong Province.  相似文献   

17.
精确识别和定位中强地震序列中的微震事件对于准确判定发震构造具有重要的意义。文章对2022年1月8日发生在青藏高原东北缘的青海门源MS6.9地震序列进行精定位及微震检测研究。首先运用双差定位法对2022年1月8—16日由中国地震台网中心记录的1 010个门源地震序列原始目录进行重定位,得到404个精定位地震目录。分别采用原始地震目录(CENC)和双差重定位目录(HypoDD),对震源区150 km范围内9个台站的连续波形数据进行微震检测。结果表明,基于CENC目录识别的余震个数是原始目录地震数量的3.0倍,基于HypoDD目录识别的地震个数是原始目录的2.1倍,是HypoDD目录的5.8倍;两种地震目录的微震检测均使得ML震级完备性从1.7级降低至1.1级。新的地震目录空间位置显示,主震发生后余震主要沿托莱山断裂向西侧扩展,8分钟以后,在托莱山断裂和冷龙岭断裂均发生破裂。根据本研究获取的更高空间分辨率的地震序列,同时结合震源机制解,认为2022年门源MS6.9地震初始破裂位于近E-W向的托莱山断裂,并触发了NW-SE向的冷...  相似文献   

18.
Based on abundant aftershock sequence data of the Wenchuan MS8.0 earthquake on May 12, 2008, we studied the spatio-temporal variation process and segmentation rupture characteristic. Dense aftershocks distribute along Longmenshan central fault zone of NE direction and form a narrow strip with the length of 325 km and the depth between several and 40 km. The depth profile (section of NW direction) vertical to the strike of aftershock zone (NE direction) shows anisomerous wedgy distribution characteristic of aftershock concentrated regions; it is related to the force form of the Longmenshan nappe tectonic belt. The stronger aftershocks could be divided into northern segment and southern segment apparently and the focal depths of strong aftershocks in the 50 km area between northern segment and southern segment are shallower. It seems like 'to be going to rupture' segment. We also study focal mechanisms and segmentation of strong aftershocks. The principal compressive stress azimuth of aftershock area is WNW direction and the faulting types of aftershocks at southern and northern segment have the same proportion. Because aftershocks distribute on different secondary faults, their focal mechanisms present complex local tectonic stress field. The faulting of seven strong earthquakes on the Longmenshan central fault is mainly characterized by thrust with the component of right-lateral strike-slip. Meantime six strong aftershocks on the Longmenshan back-range fault and Qingchuan fault present strike-slip faulting. At last we discuss the complex segmentation rupture mechanism of the Wenchuan earthquake.  相似文献   

19.
Aftershocks of the 2011 Tohoku-Oki great earthquake have a wide range of focal depths and fault plane mechanisms. We constrain the focal depths and focal mechanisms of 69 aftershocks with M w > 5.4 by modeling the waveforms of teleseismic P and its trailing near-surface reflections pP and sP. We find that the “thrust events” are within 10 km from the plate interface. The dip angles of these thrust events increase with depth from ~5° to ~25°. The “non-thrust events” vary from 60 km above to 40 km below the plate interface. Normal and strike-slip events within the overriding plate point to redistribution of stress following the primary great earthquake; however, due to the spatially variable stress change in the Tohoku-Oki earthquake, an understanding of how the mainshock affected the stresses that led to the aftershocks requires accurate knowledge of the aftershock location.  相似文献   

20.
High frequency fall-off of source spectra using Q -free spectra estimation   总被引:1,自引:0,他引:1  
IntroductionTheearthquakesourcespectrastudiesmaybetracedbacktolate1960s(Aki,1967;Brune,1970;Hanks,1979).Foritsimportanceinstr...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号