首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The Deccan Syneclise is considered to have significant hydrocarbon potential.However,significant hydrocarbon discoveries,particularly for Mesozoic sequences,have not been established through conventional exploration due to the thick basalt cover over Mesozoic sedimentary rocks.In this study,near-surface geochemical data are used to understand the petroleum system and also investigate type of source for hydrocarbons generation of the study area.Soil samples were collected from favorable areas identified by integrated geophysical studies.The compositional and isotopic signatures of adsorbed gaseous hydrocarbons(methane through butane) were used as surface indicators of petroleum micro-seepages.An analysis of 75 near-surface soil-gas samples was carried out for light hydrocarbons(C1-C4) and their carbon isotopes from the western part of Tapti graben,Deccan Syneclise,India.The geochemical results reveal sites or clusters of sites containing anomalously high concentrations of light hydrocarbon gases.High concentrations of adsorbed thermogenic methane(C_1 = 518 ppb) and ethane plus higher hydrocarbons(ΣC_(2+) = 977 ppb) were observed.Statistical analysis shows that samples from 13% of the samples contain anomalously high concentrations of light hydrocarbons in the soil-gas constituents.This seepage suggests largest magnitude of soil gas anomalies might be generated/source from Mesozoic sedimentary rocks,beneath Deccan Traps.The carbon isotopic composition of methane,ethane and propane ranges are from-22.5‰ to-30.2‰ PDB,-18.0‰to 27.1‰ PDB and 16.9‰-32.1‰ PDB respectively,which are in thermogenic source.Surface soil sample represents the intersection of a migration conduit from the deep subsurface to the surface connected to sub-trappean Mesozoic sedimentary rocks.Prominent hydrocarbon concentrations were associated with dykes,lineaments and presented on thinner basaltic cover in the study area,which probably acts as channel for the micro-seepage of hydrocarbons.  相似文献   

2.
Based on the analytical data of over 30 gas samples, combined with geochemical and geological backgrounds, the composition and distribution characteristics of shallow biogenetic gases in the Baise Basin, a Tertiary residual basin in southern China, were extensively investigated, and the origin and formation mechanism tentatively approached. The shallow gases are primarily composed of gaseous hydrocarbons, generally accounting for over 90%. The abundances of methane and C2+ homologues show a relatively wide range of variation, mainly 50%-100% and 0%-50%, respectively, depending on the mixing proportions between biogenetic and thermogenic gases. A highly negative carbon isotope is the significant signature for the shallow gases with δ^13C1 values of -55‰ to -75‰. According to molecular and isotopic compositions and light hydrocarbon parameters, the shallow gases in the basin can be classified into three types of origins: biogenetic gas, biogenetic/thermogenic mixed gas, and oii-biodegraded gas. They exhibit regular distribution both spatially and temporally, and are believed to be associated with the maturity of adjoining gas source rocks and biodegraded oil accumulation. The Baigang and Nadu source rocks can be considered to have experienced early and late gas generation during early burial and after basin uplift respectively. A late accumulation mechanism of multiple gas sources is put forward for the formation of the shallow gas reservoirs, which is responsible for the variations in chemical and isotopic composition of the gases in depth profile.  相似文献   

3.
裂谷盆地的火山热液活动和油气生成   总被引:18,自引:0,他引:18  
金强  翟庆龙 《地质科学》2003,38(3):342-349
我国东部裂谷盆地主力烃源岩中均不同程度地发育有玄武岩和辉长岩等基性火成岩,并且伴有规模不等的热液活动。火山热液活动会给烃源岩带来热量,促使有机质快速生烃和异常成熟。玄武岩活动期间的热液作用为烃源岩提供了大量矿物质和养料,使周围泥质岩富含碳酸盐和有机质,可以形成优质烃源岩;热液活动向烃源岩提供了大量过渡金属元素,作者的实验证明了过渡金属对有机质生烃具有强烈的催化作用,使烃源岩在较低温度下生成较多数量的油气;火成岩周围的烃源岩可以提前进入生烃门限。  相似文献   

4.
A scientific exploration well(CK1) was drilled to expand the oil/gas production in the western Sichuan depression, SW, China. Seventy-three core samples and four natural gas samples from the Middle–Late Triassic strata were analyzed to determine the paleo-depositional setting and the abundance of organic matter(OM) and to evaluate the hydrocarbon-generation process and potential. This information was then used to identify the origin of the natural gas. The OM is characterized by medium n-alkanes(n C_(15)–n C_(19)), low pristane/phytane and terrigenous aquatic ratios(TAR), a carbon preference index(CPI) of ~1, regular steranes with C_(29) C_(27) C_(28), gammacerane/C_(30) hopane ratios of 0.15–0.32, and δD_(org) of-132‰ to-58‰, suggesting a marine algal/phytoplankton source with terrestrial input deposited in a reducing–transitional saline/marine sedimentary environment. Based on the TOC, HI index, and chloroform bitumen "A" the algalrich dolomites of the Leikoupo Formation are fair–good source rocks; the grey limestones of the Maantang Formation are fair source rocks; and the shales of the Xiaotangzi Formation are moderately good source rocks. In addition, maceral and carbon isotopes indicate that the kerogen of the Leikoupo and Maantang formations is type Ⅱ and that of the Xiaotangzi Formation is type Ⅱ–Ⅲ. The maturity parameters and the hopane and sterane isomerization suggest that the OM was advanced mature and produced wet–dry gases. One-dimensional modeling of the thermal-burial history suggests that hydrocarbon-generation occurred at 220–60 Ma. The gas components and C–H–He–Ar–Ne isotopes indicate that the oilassociated gases were generated in the Leikoupo and Maantang formations, and then, they mixed with gases from the Xiaotangzi Formation, which were probably contributed by the underlying Permian marine source rocks. Therefore, the deeply-buried Middle–Late Triassic marine source rocks in the western Sichuan depression and in similar basins have a great significant hydrocarbon potential.  相似文献   

5.
The petroliferous central Junggar Basin in northwest China is predominantly an oil exploration region. However, its gas exploration also might have good prospects. Thus to assist in gas exploration, the geochemistry and origins of gases are discussed in this paper based on relatively comprehensive analyses of compositions, carbon isotopes and light hydrocarbons of gases. Based on the results, the gas genetic types are grouped into families and combined with the geological setting (e.g., biomarkers of retrograde condensates and source rock characteristics). We show that there are four representative genetic types of gases. The first consists of gases derived from Permian lacustrine mudstones with type I–II kerogen and type III kerogen sources in the Penyijingxi sag. Their representative geochemical feature is δ13C2 ranging from −31.4‰ to −24.7‰. The second is gas sourced from Carboniferous tufaceous mudstones of type III kerogen in the Dishuiquan sag, whose representative geochemical feature is the heaviest values of δ13C1 in the studied samples, ranging from −32.0‰ to −30.4‰. The third consists of gases sourced from Jurassic coals and mudstones in the Shawan–Fukang sag. The light hydrocarbon fingerprints of these gases are similar to those of gases and oils typically derived from Jurassic source rocks in the southern Junggar Basin. The fourth is gas most likely generated from the degradation of crude oil. It is mainly found in the Luliang area and has dryness values as much as 0.999 and δ13C1 ranging from −54.8‰ to −43.2‰. Among these four types of gases, the first (mainly sourced from the Permian lacustrine mudstones in the Penyijingxi sag) is the predominant type.  相似文献   

6.
烃源岩的排烃是准确预测含油气盆地油气资源必须涉及的一个非常重要的环节,为了得到不同有机质类型烃源岩的排烃效率、排烃机理,选取不同有机质类型烃源岩进行了黄金管模拟实验,总结了不同类型烃源岩在各演化阶段产物的变化特征与排烃效率。结果表明,烃源岩类型对总生成油与残留油中轻重烃的比例影响较大,但是对排出油中轻重烃的比例影响较低,排出油中均表现为在未熟—成熟阶段以重烃为主,在高熟—过熟阶段以轻烃为主。烃源岩的类型对生排油量的影响明显,烃源岩的类型越好,生排油量越高。Ⅰ型烃源岩的生排油量最高,Ⅲ型烃源岩最低。烃源岩类型越好,排油效率越高。Ⅲ型烃源岩排油效率低,与其生成气态烃较多、显微组分中镜质组含量较高有关。   相似文献   

7.
《Applied Geochemistry》1999,14(5):547-558
Major oil reserves in rift basins in eastern China are correlated with high quality source rocks. The high quality source rocks and their hydrocarbon generation are often related to volcanic activity in the basins. Three kinds of volcanic rocks in source rocks have been defined in the Songliao, Bohaiwan and North Jiangsu basins. Some of the volcanic rocks were formed in lacustrine environments during the deposition of source rocks. It is remarkable that a part of volcanic-derived materials serves as a source of nutrients for lacustrine organisms which resulted in the formation of the organic matter in source rocks with high organic C contents. Besides hydrothermal alteration, the volcanic minerals contributed catalysis and H2 to thermal alteration of organic matter into hydrocarbons during burial and diagenesis of source rocks and volcanics. A series of thermal laboratory simulations were performed with various combinations of immature source rocks and natural mineral assemblages. Results indicate that a significant volume of H2 was produced from the source rock mixed with olivine and zeolite; moreover, this combination provided a 3-fold increase in hydrocarbons. It is proposed that catalysis and hydrogenation by the volcanic minerals promote hydrocarbon generation, although organic matter type is significantly variable. Hydrocarbons are generated at a lower degree of thermal stress when the reaction mixture contains volcanic minerals, and have a heavier C isotopic composition, compared to the control set of experiments.  相似文献   

8.
祁连山木里地区侏罗系窑街组烃源岩生烃潜力评价   总被引:1,自引:0,他引:1  
祁连山木里坳陷侏罗系窑街组煤系泥岩和煤有机质丰度、有机质类型和有机质成熟度分析结果表明, 窑街组煤系泥岩为好的烃源岩, 有机质类型为Ⅱ1型, 处于成熟阶段, 以生油为主, 生气为辅; 煤为差等烃源岩, 有机质类型为Ⅲ型, 处于成熟阶段, 富氢基质镜质体含量高, 具有一定的生烃潜力。综合其它层位烃源岩分析结果, 认为窑街组煤系泥岩和晚三叠世尕勒得寺组湖相泥岩为祁连山木里地区天然气水合物的主要气源岩。   相似文献   

9.
Oil and gas exploration in eastern Tarim Basin, NW China has been successful in recent years, with several commercial gas accumulations being discovered in a thermally mature to over-mature region. The Yingnan2 (YN2) gas field, situated in the Yingnan structure of the Yingjisu Depression, produces gases that are relatively enriched in nitrogen and C2+ alkanes. The δ13C1 (−38.6‰ to −36.2‰) and δ13C2 values (−30.9‰ to −34.7‰) of these gases are characteristic of marine sourced gases with relatively high maturity levels. The distributions of biomarkers in the associated condensates suggest close affinities with the Cambrian–Lower Ordovician source rocks which, in the Yingjisu Sag, are currently over-mature (with 3–4%Ro). Burial and thermal maturity modeling results indicate that paleo-temperatures of the Cambrian–Lower Ordovician source rocks had increased from 90 to 210 °C during the late Caledonian orogeny (458–438 Ma), due to rapid subsidence and sediment loading. By the end of Ordovician, hydrocarbon potential in these source rocks had been largely exhausted. The homogenization temperatures of hydrocarbon fluid inclusions identified from the Jurassic reservoirs of the YN2 gas field suggest a hydrocarbon emplacement time as recent as about 10 Ma, when the maturity levels of Middle–Lower Jurassic source rocks in the study area were too low (<0.7%Ro) to form a large quantity of oil and gas. The presence of abundant diamondoid hydrocarbons in the associated condensates and the relatively heavy isotopic values of the oils indicate that the gases were derived from thermal cracking of early-formed oils. Estimation from the stable carbon isotope ratios of gaseous alkanes suggests that the gases may have been formed at temperatures well above 190 °C. Thus, the oil and gas accumulation history in the study area can be reconstructed as follows: (1) during the late Caledonian orogeny, the Cambrian–Lower Ordovician marine source rocks had gone through the peak oil, wet gas and dry gas generation stages, with the generated oil and gas migrating upwards along faults and fractures to form early oil and gas accumulations in the Middle–Upper Ordovician and Silurian sandstone reservoirs; (2) since the late Yanshanian orogeny, the early oil accumulations have been buried deeper and oil has undergone thermal cracking to form gas; (3) during the late Himalayan orogeny, the seals for the deep reservoirs were breached; and the gas and condensates migrated upward and eventually accumulating in the relatively shallow Jurassic reservoirs.  相似文献   

10.
Basalts interbedded with oil source rocks are discovered frequently in rift basins of eastern China, where CO2 is found in reservoirs around or within basalts, for example in the Binnan reservoir of the Dongying Depression. In the reservoirs, CO2 with heavy carbon isotopic composition (δ13C>-10‰ PDB) is in most cases accounts for 40% of the total gas reserve, and is believed to have resulted from degassing of basaltic magma from the mantle. In their investigations of the Binnan reservoir, the authors suggested that the CO2 would result from interactions between the source rocks and basalts. As the source rocks around basalts are rich in carbonate minerals, volcanic minerals, transition metals and organic matter, during their burial history some of the transition metals were catalyzed on the thermal degradation of organic matter into hydrocarbons and on the decomposition of carbonate minerals into CO2, which was reproduced in thermal simulations of the source rocks with the transition metals (Ni and Co). This kind of CO2 accounts for 55%-85% of the total gas reserve generated in the process of thermal simulation, and its δ13C values range from -11‰- -7.2‰ PDB, which are very similar to those of CO2 found in the Binnan reservoir. The co-generation of CO2 and hydrocarbon gases makes it possible their accumulation together in one trap. In other words, if the CO2 resulted directly from degassing of basaltic magma or was derived from the mantle, it could not be accumulated with hydrocarbon gases because it came into the basin much earlier than hydrocarbon generation and much earlier than trap formation. Therefore, the source rocks around basalts generated hydrocarbons and CO2 simultaneously through catalysis of Co and Ni transition metals, which is useful for the explanation of co-accumulation of hydrocarbon gases and CO2 in rift basins in eastern China.  相似文献   

11.
Natural gas exploration in Nanpu sag, Bohai Bay Basin, has achieved breakthroughs in recent years, and a number of natural gas and condensate wells with high yield have been found in several structures in the beach area. Daily gas production of single wells is up to 170,000 m3, and high-yield wells are mainly distributed in?the Nanpu No. 1 structural belt.?Studies have shown that these natural gases are mainly hydrocarbon gases, with methane content about 80% to 90% and ethane 6%-9%, so they are mainly wet gas; and non-hydrocarbons are at a low level.?Carbon isotopes of methane range from -42‰ to -36‰, and ethane from -28‰ to -26‰. Calculated maturity based on the relationship between δ13C and Ro of natural gas, the gases are equivalent to those generated from organic matter when Ro is 1.0%-1.7% (mainly 1.25%-1.32%). The natural gas is oil-type gas generated from the source rocks at mature to high mature stage, associated with condensate, so carbon isotopes of the gases are heavier. Natural gas in the Nanpu No.1 structural belt is mainly associated gas with condensate. The analysis of the origin and source of natural gas and condensate, combined with the monomer hydrocarbon carbon isotopes and biomarker, indicated that the main source rocks in the Nanpu No.1 structural belt were Es3 (the lower member of the Shahejie Formation), followed by Es1 (the upper member of the Shahejie Formation).?The high-mature hydrocarbons from source rocks in the deep sag mainly migrated through deep inherited faults into shallow traps and accumulated to form oil and gas pools. Therefore, there is a great potential for exploring gas in deep layers.  相似文献   

12.
The Kela-2 gas field, found in the Kuqa Depression of the Tarim Basin, northwestern China, is a large-sized dry gas field (C1 /C1-5 =0.992 0.999) and characterized by ultra-high pressure (pressure factor up to 2.0 2.2). The pyrolysis experiment was carried out under isothermal gold-tube closed system, with samples collected from the Jurassic coal, Jurassic mudstone and Triassic mudstone in the Kuqa Depression. The result of gas yield showed that the Middle and Lower Jurassic source rocks have higher gas generation potential than the Triassic source rocks. The kinetic modeling of gas generation and methane carbon isotope fractionation suggested that the Kela-2 gases belong to the products of high-over mature stages and were mainly derived from the Middle and Lower Jurassic coal-bearing strata. The Triassic source rocks made a minor contribution to the Kela-2 gases. The Kela-2 gases chiefly generated from coal-bearing source rocks with R o values from 1.3% to 2.5%, and thus primarily accumulated after 5 Ma.  相似文献   

13.
Previous studies on the coal-bed methane potential of the Zonguldak basin have indicated that the gases are thermogenic and sourced by the coal-bearing Carboniferous units. In this earlier work, the origin of coal-bed gas was only defined according to the molecular composition of gases and to organic geochemical properties of the respective source rocks, since data on isotopic composition of gases were not available. Furthermore, in the western Black Sea region there also exist other source rocks, which may have contributed to the coal-bed gas accumulations. The aim of this study is to determine the origin of coal-bed gas and to try a gas-source rock correlation. For this purpose, the molecular and isotopic compositions of 13 headspace gases from coals and adjacent sediments of two wells in the Amasra region have been analyzed. Total organic carbon (TOC) measurements and Rock-Eval pyrolysis were performed in order to characterize the respective source rocks. Coals and sediments are bearing humic type organic matter, which have hydrogen indices (HI) of up to 300 mgHC/gTOC, indicating a certain content of liptinitic material. The stable carbon isotope ratios (δ13C) of the kerogen vary from −23.1 to −27.7‰. Air-free calculated gases contain hydrocarbons up to C5, carbon dioxide (<1%) and a considerable amount of nitrogen (up to 38%). The gaseous hydrocarbons are dominated by methane (>98%). The stable carbon isotope ratios of methane, ethane and propane are defined as δ13C1: −51.1 to −48.3‰, δ13C2: −37.9 to −25.3‰, δ13C3: −26.0 to −19.2 ‰, respectively. The δD1 values of methane range from −190 to −178‰. According to its isotopic composition, methane is a mixture, partly generated bacterially, partly thermogenic. Molecular and isotopic composition of the gases and organic geochemical properties of possible source rocks indicate that the thermogenic gas generation took place in coals and organic rich shales of the Westphalian-A Kozlu formation. The bacterial input can be related to a primary bacterial methane generation during Carboniferous and/or to a recent secondary bacterial methane generation. However, some peculiarities of respective isotope values of headspace gases can also be related to the desorption process, which took place by sampling.  相似文献   

14.
Characteristics have been studied of light hydrocarbons (C1–C7) from crude oils and source rocks ranging from Devonian to Triassic in age in the Jurong Basin where carbonate rocks are dominating. The results show that light hydrocarbon compositions (C1–C7) can be used to classify organic matter types and maturities as well as to make oil-source rock correlations. It is also an effective method in organic geochemical studies of oils, gases and source rocks in terrains of old carbonate rocks.  相似文献   

15.

On the basis of GC–MS analysis, a suite of nine coal-measure source rocks (Ro 0.51%–0.63%) from the southern margin of Junggar basin was found to contain many biomarkers for bacterially-generated hydrocarbons: hopane, sesquiterpene, C23+ monomethyl alkanes (even carbon predominance), and C24+ alkyl cyclohexane. Rock–eval and microscope analysis indicate that vitrinite (especially desmocollinite and homocollinite) plays a significant role in the generation of hydrocarbons in coal-measure source rocks. Vitrinite performs this role by absorbing ultramicroscopic organic matter, generally in the form of resins or bacterial plastids. C23+ monomethyl alkanes (even carbon predominance) and C24+ alkyl cyclohexane series compounds are derived from bacterial metabolites of higher plants. The ultramicro organic matter adsorbed by vitrinite source rocks in the study area is probably ultramicro bacterial plastids. Because the organic matter of higher plants with low hydrogen content has been transformed into organic matter rich in hydrogen by bacteria, the hydrocarbon generation capacity of source rocks is greatly improved. In other words, in coal-measure source rocks, bacteria play an important role in hydrocarbon generation.

  相似文献   

16.
This study aims to assess the hydrocarbon potential of Ganga basin utilizing the near surface geochemical prospecting techniques. It is based on the concept that the light gaseous hydrocarbons from the oil and gas reservoirs reach the surface through micro seepage, gets adsorbed to soil matrix and leave their signatures in soils and sediments, which can be quantified. The study showed an increased occurrence of methane (C1), ethane (C2) and propane (C3) in the soil samples. The concentrations of light gaseous hydrocarbons determined by Gas Chromatograph ranged (in ppb) as follows, C1: 0–519, C2: 0–7 and C3: 0–2. The carbon isotopic (VPDB) values of methane varied between ?52.2 to ?27.1‰, indicating thermogenic origin of the desorbed hydrocarbons. High concentrations of hydrocarbon were found to be characteristic of the Muzaffarpur region and the Gandak depression in the basin, signifying the migration of light hydrocarbon gases from subsurface to the surface and the area’s potential for hydrocarbon resources.  相似文献   

17.
孟凡超  刘嘉麒 《地质科学》2010,45(3):807-821
松辽盆地晚中生代主要发育了两期大规模的火山活动,形成了火石岭组和营城组火山岩地层。火山活动高峰期分别为150 Ma和110 Ma,其中以营城组火山活动规模较大,持续时间较长,对油气的生成与成藏影响最大。晚中生代火山活动贯穿了火石岭组和沙河子组气源岩的主生烃期,加速了有机质的成熟和演化。火山喷发早于火山岩气藏的主成藏期,为气藏的形成提供了优质的储层和运移通道,有利于气藏的保存。营城组火山岩储层裂缝中充填大量的方解石、石英或岩浆浆屑等后期热液流体,其中粗面岩裂缝中岩浆浆屑的K-Ar全岩年龄为72.98 Ma,该期热液活动对火山岩储层的后期改造、天然气的运移及CO_2气藏的形成等具有重要作用。  相似文献   

18.
The northern Ordos Basin provides a favorable geological environment for the accumulation and development of coal measure gases (CMG). The hydrocarbon generation potential and reservoir systems of the coal measures have been studied based on data from experimental tests and production and exploration wells, respectively. Further, the coupled accumulation characteristics were determined. The results show that the source rocks are characterized by favorable hydrocarbon generation potential, high thermal evolution (Ro%?=?1.3–2.3%), and mainly type III kerogen. Coals, typically aggregated organic matter, with a huge hydrocarbon generation potential (avg. 89.11 mg/g) and total organic content (TOC) (avg. 65.52%), are predominantly involved in gaseous hydrocarbon generation. Shales with good TOC contents (avg. 2.36%) and large cumulative thicknesses have an important role in gaseous hydrocarbon generation. Coal seams, shale layers, and sandstone layers occur as variably interbedded deposits, which form a favorable environment for CMG coupled accumulation. The porosity and permeability are ranked as follows: sandstone?>?coal?>?shale, with significant stress sensitivity and anisotropy. Two continuous gas generation peaks occurred in the Late Jurassic and Late Cretaceous, with an abundant amount of coal-derived and thermogenic gas generation, respectively. Potential gas-bearing sandstone layers can be formed by gas migration via short distances from nearby coal seams and shale layers. Coupled accumulation of CMG occurred in three stages: (1) stacked and interbedded reservoirs formation stage; (2) gas generating and charging stage; and (3) coupled accumulation adjustment stage. Coalbed methane (CBM)–tight sandstone gas (TSG) assemblage is a favorable target for CMG accumulation and development.  相似文献   

19.
Marine shales exhibit unusual behavior at low temperatures under anoxic gas flow. They generate catalytic gas 300° below thermal cracking temperatures, discontinuously in aperiodic episodes, and lose these properties on exposure to trace amounts of oxygen. Here we report a surprising reversal in hydrocarbon generation. Heavy hydrocarbons are formed before light hydrocarbons resulting in wet gas at the onset of generation grading to dryer gas over time. The effect is moderate under gas flow and substantial in closed reactions. In sequential closed reactions at 100°C, gas from a Cretaceous Mowry shale progresses from predominately heavy hydrocarbons (66% C5, 2% C1) to predominantly light hydrocarbons (56% C1, 8% C5), the opposite of that expected from desorption of preexisting hydrocarbons. Differences in catalyst substrate composition explain these dynamics. Gas flow should carry heavier hydrocarbons to catalytic sites, in contrast to static conditions where catalytic sites are limited to in-place hydrocarbons. In-place hydrocarbons and their products should become lighter with conversion thus generating lighter hydrocarbon over time, consistent with our experimental results.  相似文献   

20.
In this paper a thermogravimetry-differential thermal analysis method coupled with chromatography (TG-DTA-GC) has been adopted to simulate the generation of gaseous hydrocarbons from different hydrocarbon source rocks such as coals, mudstones, and carbonate rocks with different maturities. The temperature programming for thermal simulation experiment is 20℃/min from ambient temperature to 700℃. As viewed from the quantities and composition of generated gaseous hydrocarbons at different temperatures, it is shown that low-mature coal has experienced the strongest exothermic reaction and the highest loss of weight in which the first exothermic peak is relatively low. Low-mature coal samples have stronger capability of generating gaseous hydrocarbons than high-mature samples. The amounts and composition of gaseous hydrocarbons generated are closely related not only to the abundance of organic carbon in source rocks, but also to the type of kerogen in the source rocks, and their thermal maturity. In the present highly mature and over-mature rock samples organic carbon, probably, has already been exhausted, so the production of gaseous hydrocarbons in large amounts is impossible. The contents of heavy components in gaseous hydrocarbons from the source rocks containing type- Ⅰ and - Ⅱ kerogens are generally high ; those of light components such as methane and ethane in gaseous hydrocarbons from the source rocks with Ⅲ-type kerogens are high as well. In the course of thermal simulation of carbonate rock samples, large amounts of gaseous hydrocarbons were produced in a high temperature range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号