共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluid inclusions occur in a composite xenolith from the Lunar Crater Volcanic Field, Nevada, U.S.A. The xenolith is an amphibole-bearing wehrlite that is cut by an andesine-amphibole vein. The compositions of individual fluid inclusions in both portions of the xenolith have been determined using microthermometry and micro Laser-Raman spectroscopy. Fluids in the host wehrlite are nearly pure CO 2 (>99 mol%) whereas those in the vein contain from 8.5 to 12.0 mol % CO in CO 2. Chemical modelling shows that the composition of the vein fluids at T
room is representative of the composition at the high P, T conditions of trapping. Graphite has not been observed by optical microscopy in any of the fluid inclusions. Graphite is probably absent (although stable at T<800° C) most probably because of the kinetically unfavorable CO decomposition reaction and rapid quenching. By combining the measured fluid compositions with fluid P-V-T data and the chemical equilibrium CO 2CO +1/2 O 2, we have calculated the oxygen fugacity of the fluid inclusions at 1200° C: log
8.6 (vein) and –6 (host). If the
of the fluid in the vein represents that in equilibrium with the magma that crystallized to produce the vein, then the
of the basalt magma is near QFM at 1200° C and 10.3 kbar. This is similar to values reported for extrusive basaltic lavas. If the much lower intrinsic oxygen fugacity-values for divines and spinels from alkali basalt nodules are representative of upper mantle conditions, then oxidation of basaltic magmas must occur in the upper mantle prior to ascent to the surface. Implications for the origin of CO 2-rich fluids and carbon isotope geochemistry are also discussed. 相似文献
2.
For mantle peridotite xenoliths from the Tariat Depression in central Mongolia an origin as partial melt residues has been inferred from the systematic change of bulk chemical compositions with mineral chemistries and modal compositions. The suite is dominated by primitive to slightly depleted lherzolites ranging from 15.7 to 7.9 wt.% of modal clinopyroxene, whereas harzburgites are rare. An increase of clinopyroxene to more than 20% in three samples is unrelated to liquid/crystal equilibria and is concluded to be the result of metamorphic differentiation. Leaving this enrichment of clinopyroxene aside, seven out of the twelve xenoliths studied come close to pyrolite in terms of mode and bulk chemistry. The primitive nature of these xenoliths is further emphazised by the low ratios of Cr/(Cr + Al + Fe) in their spinels, ranging from 0.075 to 0.087. In the majority of the samples studied orthopyroxene is chemically zoned with Al and Cr decreasing from core to rim. Temperatures of about 1050°C and about 950°C are derived for cores and rims, respectively. No zoning is observed for Ca in orthopyroxene and temperatures obtained from the solubility of CaO in orthopyroxene are close to 950°C, which shows that with respect to Ca the orthopyroxenes had already reequilibrated to the lower temperature. This and the zoning of Al and Cr may be related to cooling after some initial thermal perturbation or to cooling in a diapir. 相似文献
3.
地幔橄榄岩是罗布莎蛇绿岩的主要组成成分之一,通过显微构造特征可对其变形特征进行分析,确定流变学参数,探讨地幔橄榄岩的变形历史。以蛇纹石化程度较低的二辉橄榄岩和方辉橄榄岩为研究对象,橄榄石位错特征研究显示,本区橄榄石主要发育了低温常见的直线型自由位错,局部可见位错弓弯、位错环、位错壁等高温位错,反映罗布莎地幔橄榄岩变形以低温塑性流变为主,局部经历了高温塑性流变,主导变形机制为位错蠕变。橄榄石自由位错统计结果表明,二辉橄榄岩中的橄榄石自由位错密度为4.422×107/cm2,方辉橄榄岩中的橄榄石为9.137×107/cm2,变形过程中所受差异应力分别为65MPa和93MPa。橄榄石和斜方辉石显微组构测量采用了电子背散射衍射技术(EBSD),分析结果表明,橄榄石均发育A型组构,为浅部地幔常见的组构类型,该结果与金刚石、柯石英等超高压矿物所指示的形成深度不一致。 相似文献
4.
The Horoman peridotite complex, Hokkaido, Japan is divided into Lower and Upper zones on the basis of contrasting geological features. The complex recorded a consecutive decompression history in chemical zoning of pyroxenes and plagioclase in plagioclase lherzolite, which is interpreted to have been derived from garnet lherzolite by subsolidus decompression reactions. In the Lower Zone, and earlier decompression history is clearly preserved in large pyroxene porphyroclasts, which show marked M-shaped Al zoning characterized by low Al concentration at the core (Al=0.12/6 oxygens), gradual increase toward the marginal region, and rapid decrease toward the rim. The Ca content in the core is nearly constant (Ca=0.03/6 oxygens) with slight increase toward the margin followed by abrupt decrease toward the rim. The Al and Ca contents in the core of orthopyroxene in plagioclase lherzolite from the Upper Zone (Al=0.22, Ca=0.055/6 oxygens) are much higher than those for the Lower Zone, and the Al content typically decreases monotonously from the core to the rim with several exceptions that show poorly developed M-shaped zoning profiles. The earliest P-T conditions, inferable from the core compositions of pyroxenes are 900–950°C and 20 kbar for the Lower Zone and 1100–1150°C and 20 kbar for the Upper Zone. The increase of Al from the core to the margin is inferred to have resulted from nearly adiabatic decompression from these conditions into spinel peridotite facies. The complex experienced further decompression from the spinel stability field into the plagioclase stability field, which is inferred from plagioclase zoning in fine-grained aggregates composed mostly of plagioclase, chromite spinel, and olivine with minor pyroxenes. The Na-Ca ratio of each plagioclase grain decreases from the core to the rim, suggesting continuous decompression reaction producing olivine and plagioclase from pyroxenes and spinel. The sharp increase in Ca content toward the rim indicates that fairly rapid cooling associated with decompression is necessary to form and preserve the marked zoning. The sharp decrease in Al and Ca contents toward the rim of orthopyroxene was also formed during this final ascent of the complex. The systematic changes of the mineralogic and petrographic features that are gradational between the Lower and Upper zones suggest that the Horoman complex retains a temperature variation from the upper mantle. The Upper Zone is interpreted to have followed a higher temperature decompression path than the Lower Zone and probably represents a relatively hotter portion of a mantle diapir ascending from a depth greater than 60 km in the upper mantle. 相似文献
5.
众所周知,华北克拉通东部岩石圈地幔的组成和性质在显生宙发生了显著变化,但由于西部出露含有捕虏体的火山岩较少,这在一定程度上限制了人们对该区岩石圈地幔属性与演化特征的认识。本文将华北克拉通西北部晚白垩世-新生代玄武岩中橄榄岩捕虏体的研究成果归纳总结,旨在进一步揭示该区岩石圈地幔的属性与演化特征。研究表明,华北克拉通西北部岩石圈地幔主要由低Mg#的二辉橄榄岩和少量高Mg#的方辉橄榄岩组成。高Mg#橄榄岩代表该区受轻微再富集作用影响的古老岩石圈地幔残余,低Mg#橄榄岩是软流圈来源熔体与高Mg#橄榄岩反应的产物,代表地幔再富集作用对古老岩石圈地幔改造的结果。该区岩石圈地幔经历了多期地幔交代作用的改造,早期交代事件与古亚洲洋俯冲有关,近期与软流圈来源的玄武质熔体有关。这种广泛的地幔再富集作用对华北克拉通古老岩石圈地幔的转变做出了重要贡献。 相似文献
6.
The ultramafic tectonite of the Miyamori ophiolitic complex is divided into two types, one bearing aluminous spinel (Cr/(Cr+Al)< 0.4) and the other, chromian spinel(Cr/(Cr + Al)<0.4) (denoted ASPP and CSPP respectively). ASPP consists mainly of harzburgite and lherzolite and occurs as isolated kilometric patches in CSPP, which can be subdivided into massive and layered types. Massive CSPP consists mainly of magnesian harzburgite and dunite, whereas layered CSPP commonly is stratified and consists of less magnesian harzburgite, dunite, wehrlite, lherzolite, websterite, and clinopyroxenite. The 2 km thick layered CSPP occurs within the massive CSPP, and their lithologies are transitional. The structural and lithologic features of CSPP and the chemical variations of its olivine and spinel suggest that the layered CSPP crystallized from segregated partial melt, leaving the massive CSPP as a strongly depleted residue. Hornblende is invariably present in both the ASPP and CSPP, whereas phlogopite ispresent only in CSPP. The hornblende in CSPP is distinctly richer in K 2O (0.4–1.0 wt%) than that in ASPP(<0.1 wt%), but residual peridotite of CSPP is more depleted in major elements than that of ASPP. The low TiO 2/K 2O ratio of hornblende and the presence of TiO 2 poor phlogopite suggest that partial melting, melt segregation, and crystallization to form CSPP took place in the upper mantle beneath an island arc. By contrast, ASPP could be the source material of CSPP which formed as slightly depleted residue beneath a back-arc basin. 相似文献
7.
Chromitite xenoliths from the Takashima alkali basalt in the Southwest Japan arc are classified into two types: Type 1 chromitite in thin layers in dunite or wehrlite xenoliths; and Type 2 chromitite in discrete xenoliths which has an orbicular texture, previously documented only from podiform chromitites in ophiolites. Type 1 may be equivalent to layered chromitites in ophiolitic cumulates and Type 2 to podiform chromitites in the transition zone of ophiolites. This example of podiform chromitite from the Southwest Japan arc suggest that these podiform chromitites may exist in the upper mantle beneath an arc, where their formation is favored. 相似文献
8.
Zircon-bearing veins in a harzburgite xenolith from kimberlite have imposed Ca-metasomatism on the harzburgite wall rock, in addition to adding K, Fe, Ti and OH. The zircon, previously dated to have an age similar to that of the xenolith-hosting kimberlite, shows higher Y, Nb, Ba, REE, Th and U contents than other mantle-derived zircons. Peripheral alteration of the zircon to baddeleyite and zirconolite, and alteration of vein ilmenite to perovskite suggest reaction with an evolving carbonatitic kimberlite melt. The high Cr 2O 3 content (0.77 wt%) of the zirconolite extends the compositional range of terrestrial zirconolite. 相似文献
9.
Summary Xenoliths of harzburgite, lherzolite, dunite and wehrlite (= Group I rocks) in lamprophyre dikes from Shingu are accompanied by large amounts of ultramafic-mafic xeno liths with Al- and Ti-rich clinopyroxene and/or kaersuite (websterite, clinopyroxenite, kaersutite rock, gabbro and anorthosite) (= Group II rocks). The latter rocks often crosscut the Group I rocks as veinlets, indicating that Group II rocks are younger. Although harzburgites and lherzolite from Shingu have ordinary modal compositions, the constituent minerals have extraordinary chemical characteristics; low Mg and Cr and high Ti, Al and Fe 3+. Fo values of olivine range from 91 to 77. Cr/(Cr + Al) atomic ratios of spinel are lower than 0.5 even in harzburgites. Fe 3+/(Cr+Al+Fe 3+) atomic ratios of spinel are sometimes over 0.1. TiO 2 contents of clinopyroxene often exceed 0.5 wt%. These characteristics are revealed when Group I rocks are veined or selvaged by Group 11 rocks; chemical compositions of minerals in peridotites systematically change forwards the latter. This strongly suggests that injections of melts with alkali basaltic affinity which had precipitated Group 11 rocks resulted in diffusion metasomatism on the Group I rocks.It is likely that the metasomatized peridotites are widespread underneath the areas where alkali basalt magmatism had fluorished, such as southwestern Japan. Some of Fe-rich lherzolite and harzburgite xenoliths reported in the literature are possibly metasomatites.
Petrologie von Peridotit-Xenolithen in Lamprophyren von Shingu, Südwest-Japan: Hinweise auf die Herkunft Fe-reicher Mantel-Peridotite Zusammenfassung In lamprophyrischen Gängen von Shingu kommen Xenolithe von Harzburgit, Lherzolith, Dunit and Wehrlit (= Gesteinsgruppe I) vor. Sie werden von einer Vielzahl von ultramaf-isch-mafischen Xenolithen mit Al- and Ti-reichem Klinopyroxen and/oder Kaersutit (Websterit, Klinopyroxenit, Kaersutit-Gestein, Gabbro and Anorthosit) (=Gesteinsgruppe II) begleitet, die die Xenolithe der Gruppe I häufig gangförmig durchkreuzen, was auf ein jü ngeres Alter der Gesteinsgruppe II hinweist. Obwohl die Harzburgite and Lherzolithe von Shingu übliche modale Mineralbestände aufweisen, sind die Mineralchemismen außergewöhnlich: Niedrige Mg- and Cr- and hohe Ti-, Al- and Fe3+-Gehalte. Die Fo-Gehalte von Olivin reichen von 91 bis 77. Die Cr/(Cr+Al)-Atom-Verhältnisse der Spinelle sind kleiner als 0,5, sogar in den Harzburgiten; die Fe3+/(Cr+Al+Fe3+)-Atom-Verhaltnisse teilweise größer als 0,1. Der TiO2-Gehalt im Klinopyroxen ist meist über 0,5 Gew.%. Diese Charakteristika zeigen sich dort, wo die Gesteinsgruppe II die Gesteinsgruppe I durchschlägt oder kontaktiert. Der Mineralchemismus in den Peridotiten ändert sich dabei systematisch. Es wird vermutet, daß Schmelzinjektionen mit alkali-basaltischer Affinität, von denen die Gesteinsgruppe II herstammt, eine Diffusions-Metasomatose der Gesteinsgruppe I verursacht hat.Es wird angenommen, daß metasomatisierte Peridotite an der Basis von alkali-basaltischem Magmatismus weft verbreitet sind, wie zum Beispiel in Südwest-Japan. Einige in der Literatur aufscheinende Fe-reiche Lherzolith- and Harzburgit-Xenolithe sind möglicherweise metasomatisch entstanden.
With 6 Figures 相似文献
10.
We found fine-grained Fe-rich orthopyroxene-rich xenoliths (mainly orthopyroxenite) containing partially digested dunite fragments of Group I from Takashima, Southwest Japan. Orthopyroxenite veinlets, some of which contain plagioclase at the center, also replace olivine in dunite and wehrlite xenoliths of Group I. This shows high reactivity with respect to olivine of the melt involved in orthopyroxenite formation, indicating its high SiO 2 activity. The secondary orthopyroxene of this type is characterized by low Mg# [= Mg/(Mg + total Fe) atomic ratio] (down to 0.73) and high Al 2O 3 contents (5–6 wt%). It is different in chemistry from other secondary orthopyroxenes found in peridotite xenoliths derived from the mantle wedge. Clinopyroxenes in the Fe-rich orthopyroxenite show a convex-upward REE pattern with a crest around Sm. This pattern is strikingly similar to that of clinopyroxenes of Group II pyroxenite xenoliths and of phenocrystal and xenocrystal clinopyroxenes, indicating involvement of similar alkali basaltic melts. The Fe-rich orthopyroxenite xenoliths from Takashima formed by reaction between evolved alkali basalt melt and mantle olivine; alkali basalt initially slightly undersaturated in silica might have evolved to silica-oversaturated compositions by fractional crystallization at high-pressure conditions. The Fe-rich orthopyroxenites occur as dikes within the uppermost mantle composed of dunite and wehrlite overlying pockets of Group II pyroxenites. The orthopyroxene-rich pyroxenites of this type are possibly common in the uppermost mantle beneath continental rift zones where alkali basalt magmas have been prevalent. 相似文献
11.
Oshima-shima volcano is an endmember of a geochemical variation which is characterized by a low FeO content toward the back-arc side across the NE Japan arc. Analyses of the basalts show primitive characteristics. Variation trends of the chemical compositions indicate initial olivine control then olivine+clinopyroxene control from a picritic to a differentiated basalt. The more magnesian basalts have the more magnesian olivine phenocrysts. The most magnesian (MgO 15%) of all rock samples, contains olivine phenocrysts with a composition of Fo 93.7 as a liquidus phase and is considered a product of a mantle-derived magma. The possible range in FeO and MgO content of source mantle for the Oshima-shima magma can be demonstrated. Ichinomegata lherzolite inclusions, also from the back-arc side of NE Japan, is unlikely to be a candidate for the source mantle for high FeO. The upper mantle beneath the back-arc side is considered to be compositionally zoned; a Fe-rich mantle (Ichinomegata lherzolite) at shallower place and a Fe-poor mantle (the source mantle for back-arc side volcanoes). 相似文献
12.
The petrography and mineral composition of a mantle-derived garnet peridotite xenolith from the V. Grib kimberlite pipe (Arkhangelsk Diamond Province, Russia) was studied. Based on petrographic characteristics, the peridotite xenolith reflects a sheared peridotite. The sheared peridotite experienced a complex evolution with formation of three main mineral assemblages: (1) a relict harzburgite assemblage consist of olivine and orthopyroxene porphyroclasts and cores of garnet grains (Gar1) with sinusoidal rare earth elements (REE) chondrite C1 normalized patterns; (2) a neoblastic olivine and orthopyroxene assemblage; (3) the last assemblage associated with the formation of clinopyroxene and garnet marginal zones (Gar2). Major and trace element compositions of olivine, orthopyroxene, clinopyroxene and garnet indicate that both the neoblast and clinopyroxene-Gar2 mineral assemblages were in equilibrium with a high Fe-Ti carbonate-silicate metasomatic agent. The nature of the metasomatic agent was estimated based on high field strength elements (HFSE) composition of olivine neoblasts, the garnet-clinopyroxene equilibrium condition and calculated by REE-composition of Gar2 and clinopyroxene. All these evidences indicate that the agent was a high temperature carbonate-silicate melt that is geochemically linked to the formation of the protokimberlite melt. 相似文献
13.
Carbonates of mantle origin have been found in xenoliths from Quaternary basaltic volcanoes in NW Spitsbergen. The carbonates
range from dolomite to Mg-bearing calcite and have high Mg-numbers [Mg/(Mg+Fe)=(0.92–0.99)]. In some samples they occur interstitially,
e.g. at triple junctions of silicate minerals and appear to be in textural and chemical equilibrium with host lherzolite.
Most commonly, however, the carbonates make up fine-grained aggregates together with (Ca,Mg)-rich olivine and (Al,Cr,Ti)-rich
clinopyroxene that typically replace spinel, amphibole, and orthopyroxene as well as primary clinopyroxene and olivine. Some
lherzolites contain amphibole and apatite that appear to have formed before precipitation of the carbonates. In situ analyses by proton microprobe show very high contents of Sr in the clinopyroxene, carbonates and apatite; the apatite is
also very rich in LREE, U, Th, Cl, Br. Disseminated amphibole in carbonate-bearing rocks is very poor in Nb and Zr, in contrast
to vein amphibole and mica from carbonate-free rocks that are rich in Nb and Zr. Overall, the Spitsbergen xenoliths provide
evidence both for the occurrence of primary carbonate in apparent equilibrium with the spinel lherzolites (regardless of the
nature of events that emplaced them) and for the formation of carbonate-bearing pockets consistent with metasomatism by carbonate
melts. Calcite and amorphous carbonate-rich materials occur in com- posite carbonate-fluid inclusions, veins and partial melting
zones that appear to be related to fluid action in the mantle, heating of the xenoliths during their entrainment in basaltic
magma, and to decompression melting of the carbonates. Magnesite is a product of secondary, post-eruption alteration of the
xenoliths.
Received: 6 October 1995/Accepted: 17 June 1996 相似文献
15.
首次报道日本西南部发现的晚三叠世非海相双壳类江西蛤(Jiangxiella),并讨论这一发现的意义。认为原产于湘、赣、粤地区的江西蛤是地理分布极有限的土著属,它在日本西南部的发现表明当时该区与华南东部的古地理关系极为密切,可能原属同一地块。 相似文献
16.
Clinopyroxene-rich, poorly metasomatised spinel lherzolites are rare worldwide but predominate among xenoliths in five Quaternary
basaltic eruption centres in Tariat, central Mongolia. High-precision analyses of the most fertile Tariat lherzolites are
used to evaluate estimates of primitive mantle compositions; they indicate Mg# PM = 0.890 while lower Mg# in the mantle are likely related to metasomatic enrichments in iron. Within a 10 × 20 km area, and
between ~45 and ≥60 km depth, the sampled xenoliths suggest that the Tariat mantle does not show km-scale chemical heterogeneities
and mainly consists of residues after low-degree melt extraction at 1–3 GPa. However, accessory (<1%) amphibole and phlogopite
are unevenly distributed beneath the eruption centres. Ca abundances in olivine are controlled by temperature whereas Al and
Cr abundances also depend on Cr/Al in coexisting spinel. Comparisons of conventional and high-precision analyses obtained
for 30 xenoliths show that high-quality data, in particular for whole-rocks and olivines, are essential to constrain the origin
of mantle peridotites.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
18.
The Hidaka Collision Zone (HCZ), central Hokkaido, Japan, is a good target for studies of crustal evolution and deformation processes associated with an arc–arc collision. The collision of the Kuril Arc (KA) with the Northeast Japan Arc (NJA), which started in the middle Miocene, is considered to be a controlling factor for the formation of the Hidaka Mountains, the westward obduction of middle/lower crustal rocks of the KA (the Hidaka Metamorphic Belt (HMB)) and the development of the foreland fold-and-thrust belt on the NJA side. The “Hokkaido Transect” project undertaken from 1998 to 2000 was a multidisciplinary effort intended to reveal structural heterogeneity across this collision zone by integrated geophysical/geological research including seismic refraction/reflection surveys and earthquake observations. An E–W trending 227 km-long refraction/wide-angle reflection profile found a complicated structural variation from the KA to the NJA across the HCZ. In the east of the HCZ, the hinterland region is covered with 4–4.5 km thick highly undulated Neogene sedimentary layers, beneath which two eastward dipping reflectors were imaged in a depth range of 10–25 km, probably representing the layer boundaries of the obducting middle/lower crust of the KA. The HMB crops out on the westward extension of these reflectors with relatively high Vp (>6.0 km/s) and Vp/Vs (>1.80) consistent with middle/lower crustal rocks. Beneath these reflectors, more flat and westward dipping reflector sequences are situated at the 25–27 km depth, forming a wedge-like geometry. This distribution pattern indicates that the KA crust has been delaminated into more than two segments under our profile. In the western part of the transect, the structure of the fold-and-thrust belt is characterized by a very thick (5–8 km) sedimentary package with a velocity of 2.5–4.8 km/s. This package exhibits one or two velocity reversals in Paleogene sedimentary layers, probably formed by imbrication associated with the collision process. From the horizontal distribution of these velocity reversals and other geophysical/geological data, the rate of crustal shortening in this area is estimated to be greater than 3–4 mm/year, which corresponds to 40–50% of the total convergence rate between the NJA and the Eurasian Plate. This means that the fold-and-thrust belt west of the HCZ is absorbing a large amount of crustal deformation associated with plate interaction across Hokkaido Island. 相似文献
|