首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
The effect of high-speed recurrent solar wind streams from coronal holes on the galactic cosmic rays intensity is investigated. The distribution of galactic cosmic rays for different solar cycles is considered based on the data of the world network of neutron monitors. Within the inhomogeneous model, which includes a homogeneous background and regions of high-speed streams (HSS’s), the transport equation has been solved and the effect of HSS’s on the spatial distribution of galactic cosmic rays is estimated. It is shown that theoretical calculations are agreed with the experimental results obtained for 2000–2014 under different assumptions about the mean free path of cosmic rays in the corresponding period of HSS’s.  相似文献   

2.
A balloon-born multidirectional detector is used to measure the intensity variation of galactic and solar cosmic rays with the azimuthal angle, the zenith angle being maintained at 60°. In polar regions, the intensity towards the north is found to be 20% larger than that towards the south. It is shown that this anisotropy does not originate in interplanetary space and is not produced by a magnetospheric source. It is suggested that the effect is due to propagation effects within the magnetosphere.  相似文献   

3.
To ascertain probable variations of the intensity of galactic cosmic rays (GCR) for the recent billion years, the distribution of exposure ages T of iron meteorites has been analyzed. We considered all ~80 values of ages from the data by Voshage and Feldmann (1979), Voshage et al. (1983), and Voshage (1984), as well as a set of values obtained from the correction for eliminating the meteorites formed in a single collision. To correct the data, the Akaike information criterion was used. For the distributions of the phase values Ph = T/t–int(T/t), the dependence of the criterion χ 2 on the presumable period t in the exposure age variations was analyzed. For t ~ 400–500 Myr and, partly, for t ~ 150 Myr, the significant deviations of this criterion from the corresponding mean values were found. To clear up the influence of the GCR intensity variations on the age distribution, the numerical models were calculated with an account of the set of ages randomly distributed in the interval of 0–1000 Myr with the presumptive mean lifetime of iron meteorites in outer space τ = 700 Myr. It has been ascertained that, for variations with a period of t = 450 Myr, the distribution of exposure ages of the model set is similar to that found for iron meteorites. The obtained data suggest that the GCR intensity variations with a period of approximately 400–500 Myr have probably existed during the recent billion years. These variations may be caused by periodic passages of the Solar System through spiral arms of the Galaxy. It has been shown that the earlier discussed changes in the GCR intensity with a period of ~150 Myr (Shaviv, 2002; 2003; Scherer et al., 2006) are less defined.  相似文献   

4.
The intensive acceleration of energetic charged particles in perpendicular shock waves which has been known to take place in the interplanetary medium has been utilized in this work in order to account for the energization of cosmic rays. It is proposed that cosmic rays can be accelerated up to 1014–1015 eV in successive perpendicular shock waves which appear inside supernova shells in our Galaxy.  相似文献   

5.
We have used data from five neutron monitor stations with primary rigidity (Rm) ranging from 16 GeV to 33 GeV to study the diurnal variations of cosmic rays over the period: 1965–1986 covering one 22-year solar magnetic cycle. The heliosphere interplanetary magnetic field (IMF) and plasma hourly measurements taken near Earth orbit, by a variety of spacecraft, are also used to compare with the results of solar diurnal variation. The local time of maximum of solar diurnal diurnal variations displays a 22-year cycle due to the solar polar magnetic field polarities. In general, the annual mean of solar diurnal amplitudes, magnitude of IMF and plasma parameters are found to show separte solar cycle variations. Moreover, during the declining period of the twenty and twenty-ne solar cycles, large solar diurnal amplitudes are observed which associated with high values of solar wind speed, plasma temperature and interplanetary magnetic field magnitude B3.  相似文献   

6.
7.
8.
A model is proposed to explain the transport of energetic protons in the solar corona. The particles are assumed to undergo an enhanced gradient-B drift along thin current sheets separating discontinuous field structures in the corona. These discontinuities may represent the extension into the corona of photospheric granular and supergranular cell boundaries. We have made a quantitative analysis of this process by assuming that the particle propagation can be described by a diffusion equation. Comparison of predictions of the model with cosmic ray observations at 1 AU provide some support for the model.  相似文献   

9.
In the present work an analysis has been made of the extreme events occurring during July 2005. Specifically, a rather intense Forbush decrease was observed at different neutron monitors all over the world during 16 July 2005. An effort has been made to study the effect of this unusual event on cosmic ray intensity as well as various solar and interplanetary plasma parameters. It is noteworthy that during 11 to 18 July 2005 the solar activity ranged from low to very active. Especially low levels occurred on 11, 15, and 17 July whereas high levels took place on 14 and 16 July 2005. The Sun is observed to be active during 11 to 18 July 2005, the interplanetary magnetic field intensity lies within 15 nT, and solar wind velocity was limited to ∼500 kms-1. The geomagnetic activity during this period remains very quiet, the Kp index did not exceed 5, the disturbance storm time Dst index remains ∼-70 nT and no sudden storm commencement has been detected during this period. It is noted that for the majority of the hours, the north/south component of the interplanetary magnetic field, Bz, remains negative, and the cosmic ray intensity increases and shows good/high correlation with Bz, as the polarity of Bz tends to shift from negative to positive values, the intensity decreases and shows good/high anti-correlation with Bz. The cosmic ray intensity tends to decrease with increase of interplanetary magnetic field strength (B) and shows anti-correlation for the majority of the days. Published in Astrofizika, Vol. 51, No. 2, pp. 255–265 (May 2008).  相似文献   

10.
The capabilities and limitations of pulsars as sources of cosmic rays are reviewed in the light of experimental observations. Pulsars can supply the cosmic ray power if they have rotational velocities in excess of 700 rad s?1 at birth. Though this is theoretically possible, there is no experimental proof for the same. Pulsars can accelerate particles to the highest energies of 1020 eV, but in general, the spectra on simple considerations, turn out to be flatter than the observed cosmic ray spectrum. At the highest energies, absorption processes due to fragmentation and photodisintegration dominate for heavy nuclei. The existence of a steady flux of cosmic rays of energy greater than 1017 eV demands acceleration of particles to last over fifty years, the time interval between supernovae outbursts, whereas the expected period of activity is less than a few years. Finally, the problem of anisotropy with relevance to pulsars as sources and the possibility of observing pulsar accelerated particles from galactic clusters is considered.  相似文献   

11.
Julius Feit 《Solar physics》1973,28(1):211-231
It has been recently suggested by several investigators that the accelerated charged particles provide the energy of the optical flare by the ionization loss process. We have examined this mechanism assuming different forms of the spectrum of the accelerated protons at lower chromosphere. The flux and the energy spectrum of protons of energy 0.1–100 MeV have been calculated at successive heights, from 103 to 40 × 103 km from the solar surface taking into account the ionization loss, pitch angle distribution and density distribution of the neutral and ionized hydrogen in the chromosphere and lower corona. Hence the energy spectrum of the protons escaping from the Sun and the amount of energy dissipated in the solar chromosphere are computed. Comparing the calculated results with the observational data on the solar event of September 28, 1961 it is found that the ionization loss of the accelerated protons and heavier nuclei in the solar atmosphere may supply a significant part of the energy of the optical flare assuming that the fraction, f, of magnetic tubes of force extending out of the solar atmosphere is about 1 %. The accelerated proton spectrum in the form of power law in kinetic energy seems to be the most appropriate form. In the event of September 28, 1961 best estimates are made on this basis of the total number and the energy spectrum of protons at injection, the flux and energy spectrum of escaping protons and the energy dissipated in the solar atmosphere by the accelerated ions. It is found that the possible range of variation of the height of injection level hardly affects the total energy dissipated. The high variability of the intensity of protons released by the Sun is interpreted in terms of the variations of the parameter, f, determined by the configurations of the magnetic field lines.Preliminary results were presented at the International Symposium on Solar-Terrestrial Physics, Leningrad, May, 1970.Presently at NASA/Goddard Space Flight Center, Greenbelt, Maryland, U.S.A., on leave from T.I.F.R., Bombay.  相似文献   

12.
On the basis of recent new information on regular and chaotic magnetic fields in coronae of spiral galaxies, we discuss propagation of ultra-high energy cosmic rays of energies exceeding 1017 eV in the galactic corona. It is shown that the expected regular magnetic field is able to confine to the corona protons of energies up to 3×1019 eV. Chaotic magnetic fields of the corona play an important role in dynamics of cosmic-ray protons of energy up to 7×1018 eV.  相似文献   

13.
The long-term modulation of cosmic ray intensity (CRI) by different solar activity (SA) parameters and an inverse correlation between individual SA parameter and CRI is well known. Earlier, it has been suggested that the concept of multi-parametric modulation of CRI may play an important role in the study of long-term modulation of CRI. In the present study, we have tried to investigate the combined effect of a set of two SA parameters in the long-term modulation of CRI. For this purpose, we have used a new statistical technique called “Running multiple correlation method”, based on the “Running cross correlation method”. The running multiple correlation functions among different sets of two SA parameters (e.g., sunspot numbers and solar flux, sunspot numbers and coronal index, sunspot numbers and grouped solar flares, etc.) and CRI have been correlated separately. It is found that the strength of multiple correlation (among two SA parameters and CRI) and cross correlation (between individual SA parameter and CRI) is almost similar throughout the period of investigation (1955–2005). It is also found that the multiple correlations among various SA parameters and CRI is stronger during ascending and descending phases of the solar cycles and it becomes weaker during maxima and minima of the solar cycles, which is in accordance with the linear relationship between SA parameters and CRI. The values of multiple correlation functions among different sets of SA parameters and CRI fall well within the 95% confidence interval. In the view of odd-even hypothesis of solar cycles, the strange behaviour of present cycle 23 (odd cycle), as this is characterized by many peculiarities with double peaks and many quiet periods (Gnevyshev gaps) interrupted the solar activity (for example April 2001, October–November 2003 and January 2005), leads us to speculate that the solar cycle 24 (even cycle) might be of exceptional nature.  相似文献   

14.
The propagation of galactic cosmic rays in heliospheric magnetic fields is studied. An approximate solution to the cosmic ray transport equation has been derived on the basis of a method that takes into account the small value of anisotropy of particle angular distribution. The spatial and energy distributions of the cosmic ray intensity and anisotropy have been investigated, and estimates of cosmic ray energy flux have been carried out.  相似文献   

15.
Remote sensing of atmosphere is conventionally done via a study of extinction/scattering of light from natural (Sun, Moon) or artificial (laser) sources. Cherenkov emission from extensive air showers generated by cosmic rays provides one more natural light source distributed throughout the atmosphere. We show that Cherenkov light carries information on three-dimensional distribution of clouds and aerosols in the atmosphere and on the size distribution and scattering phase function of cloud/aerosol particles. Therefore, it could be used for the atmospheric sounding. The new atmospheric sounding method could be implemented via an adjustment of technique of imaging Cherenkov telescopes. The atmospheric sounding data collected in this way could be used both for atmospheric science and for the improvement of the quality of astronomical gamma-ray observations.  相似文献   

16.
A clarification and discussion of the energy changes experienced by cosmic rays in the interplanetary region is presented. It is shown that the mean time rate of change of momentum of cosmic rays reckoned for a fixed volume in a reference frame fixed in the solar system is 〈p〉 =p V·G/3 (p=momentum,V is the solar wind velocity andG=cosmic-ray density gradient). This result is obtained in three ways:
  1. by a rearrangement and reinterpretation of the cosmic-ray continuity equation;
  2. by using a scattering analysis based on that of Gleeson and Axford (1967);
  3. by using a special scattering model in which cosmic-rays are trapped in ‘magnetic boxes’ moving with the solar wind.
The third method also gives the rate of change of momentum of particles within a moving ‘magnetic box’ as 〈pad = ?p ?·V/3, which is the adiabatic deceleration rate of Parker (1965). We conclude that ‘turnaround’ energy change effects previously considered separately are already included in the equation of transport for cosmic rays.  相似文献   

17.
Many years ago physical and radio-astronomical arguments and data led to the assumption that cosmic rays in the Galaxy (and probably in other galaxies) fill a more or less extended halo, but are not concentrated in the disk. It was not so long ago, however, that the existence of a radio-halo was discovered, in which the effective dimensions increase with a decrease in frequency. The frequency decrease occurs when relativistic electrons diffuse from the disk, losing energy due to bremsstrahlung and Compton scattering.Meanwhile, some ambiguity on the question of the existence of a radio-halo, and other reasons, have led to a rather wide use of disk models, particularly those in which cosmic rays are present in the Galaxy only for a periodT cr,d3×106 yr. The authors have repeatedly stated the inadmissibility of such models and, generally, a homogeneous (leaky box) model for the origin of cosmic rays. The new data concerning the amount of radioactive10Be nuclei in cosmic rays near the Earth in no way contradict the halo models in which the lifetime of cosmic rays isT cr,h108 yr. In connection with the continuing controversy, the present paper is devoted to a detailed consideration of the difference between the homogeneous and diffusion models. Within the latter models some calculations on the chemical composition of cosmic rays have been carried out, which concern not only stable but also radioactive isotopes.  相似文献   

18.
19.
The modulation of cosmic rays (CRs) in the heliosphere is a dynamic and therefore a highly time-dependent process. Numerical models with only a time-dependent neutral sheet prove to be successful when moderate to low solar activity occurs but fail to describe large and discrete steps in modulated CRs when solar activity is high. To explain this feature of heliospheric modulation, the concept of global merged interaction regions (GMIRs) is required. The combination of gradient, curvature and neutral sheet drifts with these GMIRs has so far been the most successful approach in explaining the 11-year and 22-year cycles in the long-term modulation of CRs.  相似文献   

20.
On the origin of highest energy cosmic rays   总被引:1,自引:0,他引:1  
In this paper we show that the conventional diffusive shock acceleration mechanism for cosmic rays associated with relativistic astrophysical shocks in active galactic nuclei (AGNs) has severe difficulties to explain the highest energy cosmic ray events. We show that protons above around 2 x 1020 eV could have marginally been produced by this mechanism in an AGN or a rich galaxy cluster not further away than around 100 Mpc. However, for the highest energy Fly's Eye and Yakutsk events this is inconsistent with the observed arrival directions. Galactic and intergalactic magnetic fields appear unable to alter the direction of such energetic particles by more than a few degrees. We also discuss some other options for these events associated with relativistic particles including pulsar acceleration of high Z nuclei. At the present stage of knowledge the concept of topological defects left over from the early universe as the source for such events appears to be a promising option. Such sources are discussed and possible tests of this hypothesis are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号