首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 273 毫秒
1.
The results of a statistical investigation of the occurrence of umbral flashes for 40 sunspot groups are reported for the period 1966–1983. The following characteristics were chosen for the analysis: (a) position on the solar disk; (b) group area; (c) sunspot area; (d) maximum magnetic field strength of a sunspot; (e) modified Zürich class; (f) sunspot age; (g) magnetic structure; and (h) flare activity of a group. The dependence of umbral flashes on magnetic structure of a sunspot is the most essential feature. The absence of umbral flashes in the umbrae of main sunspots perhaps may be used as one of the predictors of flare activity.  相似文献   

2.
T. A. Schad 《Solar physics》2014,289(5):1477-1498
We study 7530 sunspot umbrae and pores measured by the Hinode Spectropolarimeter (SP) between November 2006 and November 2012. We primarily seek confirmation of the long term secular decrease in the mean magnetic field strength of sunspot umbrae found by Penn and Livingston (IAU Symp. 273, 126, 2011) between 1998 and 2011. The excellent SP photometric properties and full vector magnetic field determinations from full-Stokes Milne–Eddington inversions are used to address the interrelated properties of the magnetic field strength and brightness temperature for all umbral cores. We find non-linear relationships between magnetic field strength and umbral temperature (and continuum contrast), as well as between umbral radius and magnetic field strength. Using disambiguated vector data, we find that the azimuths measured in the umbral cores reflect an organization weakly influenced by Joy’s law. The large selection of umbrae displays a log-normal size spectrum similar to earlier solar cycles. Influenced by the amplitude of the solar cycle and the non-linear relationship between umbral size and core magnetic field strength, the distribution of core magnetic field strengths, fit most effectively with a skew-normal distribution, shows a weak solar cycle dependence. Yet, the mean magnetic field strength does not show a significant long term trend.  相似文献   

3.
D. H. Hathaway 《Solar physics》2013,286(2):347-356
Daily records of sunspot group areas compiled by the Royal Observatory, Greenwich, from May of 1874 through 1976 indicate a curious history for the penumbral areas of the smaller sunspot groups. On average, the ratio of penumbral area to umbral area in a sunspot group increases from 5 to 6 as the total sunspot group area increases from 100 to 2000 μHem (a μHem is 10?6 the area of a solar hemisphere). This relationship does not vary substantially with sunspot group latitude or with the phase of the sunspot cycle. However, for the sunspot groups with total areas <?100 μHem, this ratio changes dramatically and systematically through this historical record. The ratio for these smallest sunspots is near 5.5 from 1874 to 1900. After a rapid rise to more than 7 in 1905, it drops smoothly to less than 3 by 1930 and then rises smoothly back to more than 7 in 1961. It then returns to near 5.5 from 1965 to 1976. The smooth variation from 1905 to 1961 shows no indication of any step-like changes that might be attributed to changes in equipment or personnel. The overall level of solar activity was increasing monotonically during this time period when the penumbra-to-umbra area ratio dropped to less than half its peak value and then returned. If this history can be confirmed by other observations (e.g. Mt. Wilson or Kodaikanal), it may impact our understanding of penumbra formation, our dynamo models, and our estimates of historical changes in the solar irradiance.  相似文献   

4.
Shibu K. Mathew 《Solar physics》2008,251(1-2):515-522
We investigate p-mode absorption in a sunspot using SOHO/MDI high-resolution Doppler images. The Doppler power computed from a 3.5-hour data set is used for studying the absorption in a sunspot. The result shows an enhancement in absorption near the umbral?–?penumbral boundary of the sunspot. We attempt to relate the observed absorption with the magnetic-field structure of the sunspot. The transverse component of the potential field is computed by using the observed SOHO/MDI line-of-sight magnetograms. A comparison of the power map and the computed potential field shows enhanced absorption near the umbral?–?penumbral boundary where the computed transverse field strength is higher.  相似文献   

5.
Results are presented from a study of various sunspot contrast parameters in broadband red (672.3 nm) Cartesian full-disk digital images taken at the San Fernando Observatory (SFO) over eight years, 1997 – 2004, of the twenty-third sunspot cycle. A subset of over 2700 red sunspots was analyzed and values of average and maximum sunspot contrast as well as maximum umbral contrast were compared to various sunspot parameters. Average and maximum sunspot contrasts were found to be significantly correlated with sunspot area (r s=− 0.623 and r s=− 0.714, respectively). Maximum umbral contrast was found to be significantly correlated with umbral area (r s=− 0.535). These results are in agreement with the works of numerous other authors. No significant dependence was detected between average contrast, maximum contrast, or maximum umbral contrast during the rising phase of the solar cycle (r s=0.024, r s=0.033, and r s=0.064, respectively). During the decay phase, no significant correlation was found between average contrast or maximum contrast and time (r s=− 0.057 and r s=0.009, respectively), with a weak dependence seen between maximum umbral contrast and cycle (r s=0.102).  相似文献   

6.
We have obtained new consistent versions of the 400-yr time series of the Wolf sunspot number W, the sunspot group number G, and the total sunspot area S (or the total sunspot magnetic flux Φ). We show that the 11-yr cycle did not cease during the Maunder minimum of solar activity. The characteristics of the extrema of individual 11-yr cycles in 1600–2005 have been determined in terms of the total sunspot area index. We provide arguments for using alternating (“magnetic”) time series of indices in investigating the solar cyclicity.  相似文献   

7.
The degree of association between geoeffective (SID producing) flares (hereafter called SID flares) and sunspot morphology is examined. It is found that: (1) the frequency of SID flares associated with sunspot groups is linear function of sunspot area and rate of change in area; (2) the SID flare intensity is dependent on the sunspot area and on the magnetic morphology (field geometry); (3) the probability of a sunspot group being magnetically complex (henceforth called complex ratio) is a linear function of spot area, the larger this area the more likely a group is in the βγ or δ magnetic class; (4) the complex ratio exhibits the greatest degree of association to SID flare frequency. We conclude from these results that a higher frequency of D-region ionizing flares (emitting a soft X-ray flux >2 × 10?3 erg cm?2 s?1) is likely to accompany the disk transit of large area, complex spot groups. This combination of morphological factors reflects a shearing of the associated force-free magnetic field, with accumulation of free magnetic energy to power SID flares. Mutual polarity intrusion would be one observational signature of the pre-flare energy storing process.  相似文献   

8.
We investigate the magnetic fields and total areas of mid- and low-latitude sunspots based on observations at the Greenwich and Kislovodsk (sunspot areas) and Mount Wilson, Crimean, Pulkovo, Ural, IMIS, Ussuriysk, IZMIRAN, and Shemakha (magnetic fields) observatories. We show that the coefficients in the linear form of the dependence of the logarithm of the total sunspot area S on its maximum magnetic field H change with time. Two distinct populations of sunspots are identified using the twodimensional H–log S occurrence histogram: small and large, separated by the boundaries log S = 1.6 (S = 40 MSH) and H = 2050 G. Analysis of the sunspot magnetic flux also reveals the existence of two lognormally distributed populations with the mean boundary between them Φ = 1021 Mx. At the same time, the positions of the flux occurrence maxima for the populations change on a secular time scale: by factors of 4.5 and 1.15 for small and large sunspots, respectively. We have confirmed that the sunspots form two physically distinct populations and show that the properties of these populations change noticeably with time. This finding is consistent with the hypothesis about the existence of two magnetic field generation zones on the Sun within the framework of a spatially distributed dynamo.  相似文献   

9.
The Solar and Heliospheric Observatory/Michelson Doppler Imager – Debrecen Data (SDD) sunspot catalogue provides an opportunity to study the details and development of sunspot groups on a large statistical sample. In particular, the SDD data allow the differential study of the leading and following parts with a temporal resolution of 1.5 hours. In this study, we analyse the equilibrium distance of sunspot groups as well as the evolution of this distance over the lifetime of the groups and the shifts in longitude associated with these groups. We also study the asymmetry between the compactness of the leading and following parts, as well as the time profiles for the development of the area of sunspot groups. A logarithmic relationship has been found between the total area and the distance of leading–following parts of active regions (ARs) at the time of their maximum area. In the developing phase, the leading part moves forward; this is more noticeable in larger ARs. The leading part has a higher growth rate than the trailing part in most cases in the developing phase. The growth rates of the sunspot groups depend linearly on their maximum total umbral area. There is an asymmetry in compactness: the number of spots tends to be smaller, while their mean area is larger in the leading part at the maximum phase.  相似文献   

10.
Digitized Mount Wilson sunspot data from 1917 to 1985 are analyzed to examine the growth and decay rates of sunspot group umbral areas. These rates are distributed roughly symmetrically about a median rate of decay of a few hemisphere day-1. Percentage area change rates average 502% day-1 for growing groups and -45% day-1 for decaying groups. These values are significantly higher than the comparable rates for plage magnetic fields because spot groups have shorter lifetimes than do plages. The distribution of percentage decay rates also differs from that of plage magnetic fields. Small spot groups grow at faster rates on average than they decay, and large spot groups decay on average at faster rates than they grow. Near solar minimum there is a marked decrease in daily percentage spot area growth rates. This decrease is not related to group area, nor is it due to latitude effects. Sunspot groups with rotation rates close to the average (for each latitude) have markedly slower average rates of daily group growth and decay than do those groups with rotation rates faster or slower than the average. Similarly, sunspot groups with latitude drift rates near zero have markedly slower average rates of daily group growth and decay than do groups with significant latitude drifts in either direction. Both of these findings are similar to results for plage magnetic fields. These various correlations are discussed in the light of our views of the connection of the magnetic fields of spot groups to subsurface magnetic flux tubes. It is suggested that a factor in the rates of growth or decay of spot groups and plages may be the inclination angle to the vertical of the magnetic fields of the spots or plages. Larger inclination angles may result in faster growth and decay rates.Operated by the Association of Universities for Research in Astronomy, Inc., under Cooperative Agreement with the National Science Foundation.  相似文献   

11.
G. Lustig  H. Wöhl 《Solar physics》1995,157(1-2):389-392
The complete sample of theGreenwich Photoheliographic Results (GPR) for the years 1874–1976 was used for the investigation of the growth and decay of sunspot groups. The results were compared with similar findings from the Mt. Wilson sunspot data for the years 1917–1985, which were recently published by R. F. Howard. The results of the absolute umbral area changes are about the same for both sets of data. The main difference between the sets of data occurs for the percentage increase of the umbral areas as a function of latitude. The mean values from the Mt. Wilson data are bigger by a factor of 5 to 7 and show a dependence on the latitude, while the increase of the Greenwich data does not depend on the latitude. The decrease of sunspot areas as a function of latitude is only available from the Greenwich data. There occur higher values for the decrease for higher latitudes from 2.5 up to 42.5 deg  相似文献   

12.
The ratio of penumbral to umbral area of sunspots is an important topic for solar and geophysical studies. Hathaway (Solar Phys.286, 347, 2013) found a curious behaviour in this parameter for small sunspot groups (areas smaller than 100 millionths of solar hemisphere, msh) using records from Royal Greenwich Observatory (RGO). Hathaway showed that the penumbra–umbra ratio decreased smoothly from more than 7 in 1905 to lower than 3 by 1930 and then increased to almost 8 in 1961. Thus, Hathaway proposed the existence of a secular variation in the penumbra–umbra area ratio. In order to confirm that secular variation, we employ data of the sunspot catalogue published by the Coimbra Astronomical Observatory (COI) for the period 1929?–?1941. Our results disagree with the penumbra–umbra ratio found by Hathaway for that period. However, the behaviour of this ratio for large (areas greater or equal than 100 msh) and small groups registered in COI during 1929?–?1941 is similar to data available from RGO for the periods 1874?–?1914 and 1950?–?1976. Nevertheless, while the average values and time evolution of the ratio in large groups are similar those for small groups according to the Coimbra data (1929?–?1941) it is not analogous for RGO data for the same period. We also found that the behaviour of the penumbra–umbra area ratio for smaller groups in both observatories is significantly different. The main difference between the area measurements made in Coimbra and RGO is associated with the umbra measurements. We would like to stress that the two observatories used different methods of observation and while in COI both methodology and instruments did not change during the study period, some changes were carried out in RGO that could have affected measurements of umbra and penumbra. These facts illustrate the importance of the careful recovery of past solar data.  相似文献   

13.
Measurements of maximum magnetic flux, minimum intensity, and size are presented for 12 967 sunspot umbrae detected on the National Aeronautics and Space Administration/National Solar Observatory (NASA/NSO) spectromagnetograms between 1993 and 2004 to study umbral structure and strength during the solar cycle. The umbrae are selected using an automated thresholding technique. Measured umbral intensities are first corrected for center-to-limb intensity dependence. Log-normal fits to the observed size distribution confirm that the size-spectrum shape does not vary with time. The intensity – magnetic-flux relationship is found to be steady over the solar cycle. The dependence of umbral size on the magnetic flux and minimum intensity are also independent of the cycle phase and give linear and quadratic relations, respectively. While the large sample size does show a low-amplitude oscillation in the mean minimum intensity and maximum magnetic flux correlated with the solar cycle, this can be explained in terms of variations in the mean umbral size. These size variations, however, are small and do not substantiate a meaningful change in the size spectrum of the umbrae generated by the Sun. Thus, in contrast to previous reports, the observations suggest the equilibrium structure, as manifested by the invariant size-magnetic field relationship, as well as the mean size (i.e., strength) of sunspot umbrae do not significantly depend on the solar-cycle phase.  相似文献   

14.
We used an automatic image-processing method to detect solar-activity features observed in white light at the Kislovodsk Solar Station. This technique was applied to automatically or semi-automatically detect sunspots and active regions. The results of this automated recognition were verified with statistical data available from other observatories and revealed a high detection accuracy. We also provide parameters of sunspot areas, of the umbra, and of faculae as observed in Solar Cycle 23 as well as the magnetic flux of these active elements, calculated at the Kislovodsk Solar Station, together with white-light images and magnetograms from the Michaelson Doppler Imager onboard the Solar and Heliospheric Observatory (SOHO/MDI). The ratio of umbral and total sunspot areas during Solar Cycle 23 is ≈?0.19. The area of sunspots of the leading polarity was approximately 2.5 times the area of sunspots of the trailing polarity.  相似文献   

15.
Measurements from the Mount Wilson Observatory (MWO) were used to study the long-term variations of sunspot field strengths from 1920 to 1958. Following a modified approach similar to that presented in Pevtsov et al. (Astrophys. J. Lett. 742, L36, 2011), we selected the sunspot with the strongest measured field strength for each observing week and computed monthly averages of these weekly maximum field strengths. The data show the solar cycle variation of the peak field strengths with an amplitude of about 500?–?700 gauss (G), but no statistically significant long-term trends. Next, we used the sunspot observations from the Royal Greenwich Observatory (RGO) to establish a relationship between the sunspot areas and the sunspot field strengths for cycles 15?–?19. This relationship was used to create a proxy of the peak magnetic field strength based on sunspot areas from the RGO and the USAF/NOAA network for the period from 1874 to early 2012. Over this interval, the magnetic field proxy shows a clear solar cycle variation with an amplitude of 500?–?700 G and a weaker long-term trend. From 1874 to around 1920, the mean value of magnetic field proxy increases by about 300?–?350 G, and, following a broad maximum in 1920?–?1960, it decreases by about 300 G. Using the proxy for the magnetic field strength as the reference, we scaled the MWO field measurements to the measurements of the magnetic fields in Pevtsov et al. (2011) to construct a combined data set of maximum sunspot field strengths extending from 1920 to early 2012. This combined data set shows strong solar cycle variations and no significant long-term trend (the linear fit to the data yields a slope of ??0.2±0.8 G?year?1). On the other hand, the peak sunspot field strengths observed at the minimum of the solar cycle show a gradual decline over the last three minima (corresponding to cycles 21?–?23) with a mean downward trend of ≈?15 G?year?1.  相似文献   

16.
It is demonstrated that the long term variation in cosmic ray intensity I(t) can be described by an integral equation,
I(t)=I?0f(τ)S(t?τ) dτ
, which is derived from a generalization of Simpson's coasting solar wind model. A source function S(t?τ) is given by some appropriate solar activity index at a time t?τ(τ ? 0) and the characteristic functionf(τ)(?0 forτ ? 0) expresses the time dependence of the efficiency of the intensity depression due to solar disturbances represented by S(t ?τ) when the disturbances generated at the solar surface propagate through the modulating region with the solar wind. It is demonstrated further that the equation can be derived from the general diffusion-convection theory on some assumptions, and as a result, the source and characteristic functions can be related to diffusion coefficient and its transition in space. Assuming the sunspot number R (or two activity indices including R) as the source function, the characteristic function f(τ) [or f(τ)'s] is obtained with data of the cosmic ray intensity extended over several decades. Based on the theory, one can obtain from f(τ) the following physical quantities in space, such as the transition and life time of solar disturbances, the boundary of the modulating region, and the radial and time dependences of the diffusion coefficient, radial density gradient and modulated intensity of cosmic rays. Results deduced from the present analysis are consistent with those obtained directly or indirectly by space observations.  相似文献   

17.
From the gyroresonance brightness temperature spectrum of a sunspot, one can determine the magnetic field strength by using the property that microwave brightness is limited above a frequency given by an integer-multiple of the gyrofrequency. In this paper, we use this idea to find the radial distribution of magnetic field at the coronal base of a sunspot in the active region, NOAA 4741. The gyroresonance brightness temperature spectra of this sunspot are obtained from multi-frequency interferometric observations made at the Owens Valley Radio Observatory at 24 frequencies in the range of 4.0–12.4 GHz with spatial resolution 2.2″–6.8″. The main results of present study are summarized as follows: first, by comparison of the coronal magnetic flux deduced from our microwave observation with the photospheric magnetic flux measured by KPNO magnetograms, we show that theo-mode emission must arise predominantly from the second harmonic of the gyrofrequency, while thex-mode arises from the third harmonic. Second, the radial distribution of magnetic fieldsB(r) at the coronal base of this spot (say, 2000–4000 km above the photosphere) can be adequately fitted by $$B(r) = 1420(1 \pm 0.080)\exp \left[ { - \left( {\frac{r}{{11.05''(1 \pm 0.014)}}} \right)^2 } \right]G,$$ wherer is the radial distance from the spot center at coronal base. Third, it is found that coronal magnetic fields originate mostly from the photospheric umbral region. Fourth, although the derived vertical variation of magnetic fields can be approximated roughly by a dipole model with dipole moment 1.6 × 1030 erg G?1 buried at 11000 km below the photosphere, the radial field distribution at coronal heights is found to be more confined than predicted by the dipole model.  相似文献   

18.
Stokes profile inversion is very important to get the information on the vector magnetic field. Because the magnetic fields cannot be directly observed, adopting Stokes spectrum analysis to obtain vector magnetic field has become the major technique recently. Therefore, by Stokes profile inversion, we obtained vector magnetic fields of two layers based on the numerical solution (DELO solution, ReEs et al., 1989) to the polarized radiative transfer equation. We analyze the relationships of sunspot magnetic field strength with sunspot area, umbral area and penumbra-umbra radius ratio. By statistical research, it is found that the field strengths of the upper layer and the lower one decrease with the increasing penumbra-umbra radius ratio, and that the logarithmic expression is able to fit well the relationship between the maximum field strength of the upper layer and the sunspot area. Furthermore, we verify the result obtained by Ringnes and Jensen (1961) about the relationship between the maximum magnetic field strength and the umbral area, and the result obtained by Antalová (1991) of the relationship between the field strength and the penumbra-umbra radius ratio.  相似文献   

19.
A time sequence of high-resolution sunspot photographs, exposed almost simultaneously in two continuum wavelengths (4680 Å and 6400 Å), was used to study some properties of umbral fine structures (umbral dots). The lifetime of the umbral dots is found to be 1500 sec. Photometry of some bright dots leads to an observed intensity excess of 0.129 I phot and 0.134 I phot in the blue and red respectively. The observed mean diameter of the dots is found to be 420 km. These values still include the action of image blurring. From the color index the true intensity and diameter of the dots are estimated. It appears that the umbral dots are in reality of photospheric brightness having true diameters of 150–200 km. The spatial distribution of the dots in sunspot umbrae is discussed. Some peculiarities in recent sunspot magnetic-field observations may be explained by magnetic inhomogeneities associated with umbral dots.Presently guest investigator at the Göttingen Observatory.Previously member of the High Altitude Observatory solar project at Sacramento Peak (Contract Nr. AF (628) - 4078).  相似文献   

20.
We employ annually averaged solar and geomagnetic activity indices for the period 1960??C?2001 to analyze the relationship between different measures of solar activity as well as the relationship between solar activity and various aspects of geomagnetic activity. In particular, to quantify the solar activity we use the sunspot number R s, group sunspot number R g, cumulative sunspot area Cum, solar radio flux F10.7, and interplanetary magnetic field strength IMF. For the geomagnetic activity we employ global indices Ap, Dst and Dcx, as well as the regional geomagnetic index RES, specifically estimated for the European region. In the paper we present the relative evolution of these indices and quantify the correlations between them. Variations have been found in: i) time lag between the solar and geomagnetic indices; ii) relative amplitude of the geomagnetic and solar activity peaks; iii) dual-peak distribution in some of solar and geomagnetic indices. The behavior of geomagnetic indices is correlated the best with IMF variations. Interestingly, among geomagnetic indices, RES shows the highest degree of correlation with solar indices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号