首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
相干斑是SAR图像固有信息,也是SAR图像处理研究的重要方面之一.将非下采样Contourlet变换和统计信号处理中的独立分量分析相结合进行斑点抑制.对SAR图像进行非下采样金字塔和非下采样方向性滤波器组分解,在分解得到的非下采样Contourlet变换域利用扩展Infomax算法分离SAR图像斑点噪声.实验结果表明,...  相似文献   

2.
根据非下采样Contourlet变换的特点,提出一种基于非下采样Contourlet变换和IHS变换相结合的遥感影像融合方法.该方法首先对金色影像和多光谱影像经IHS变换后的I分量分别进行非下采样Contourlet 变换;然后采取不同的融合策略分别对高低频系数进行融合:低频系数采用区域能量加权的方法进行融合,高频系数则利用八邻域梯度优先的原则进行融合;最后通过非下采样Contourlet逆变换和IHS逆变换得到融合影像.实验结果表明,该方法在提高融合影像空间分辨率的同时,能更好地保持影像的光谱质量.  相似文献   

3.
The purpose of remote sensing image fusion is to inject the detail image extracted from the panchromatic (PAN) image into the low spatial resolution multispectral (MS) image. A novel remote sensing image fusion method based on fast nonsubsampled contourlet transform (FNSCT) and Nonlinear intensity-hue-saturation (IHS) is presented in this paper. Firstly, the Nonlinear IHS transform is performed on the multispectral image, and then the I-component representing the spatial resolution and the panchromatic image is transformed by NSCT to obtain the low frequency and high frequency. Finally, the coefficients are selected using the improved sum-modified-Laplacian (SML) method and the improved Log-Gabor filter in the low frequency and the high frequency, respectively. Experimental results show that the proposed method is the most advanced fusion method in subjective and objective evaluation, can provide more spatial information, and retain more spectral information compared with several other methods.  相似文献   

4.
The Pansharpening process aims to merge the high spatial resolution of the panchromatic (Pan) image with the spectral information of the multispectral (MS) images. The fused images should represent an enhanced spatial resolution and should preserve the spectral information simultaneously. In the two last decades, many pansharpening algorithms have been implemented in the literature such as IHS, PCA, HPF, etc. Therefore, in comparison with the various conventional methods, our contribution is the conception of a new fusion scheme by combining two different approaches: the Principal Component Analysis (PCA) and the NonSubsampled Contourlet Transform (NSCT). The hypothesis in this combination represent the use of PCA, in first, like statistical approach to obtain from the MS bands the main information, followed by the NSCT as a robust multiresolution and multidirectional approach, to give an optimal representation of the characteristics in the image compared to the classical methods (wavelets), in order to overcome the drawback caused by PCA with the spectral distortion. The focus of this study is to show a new way to combine differently from usual those two approaches, to find a compromise between enhancing the spatial resolution and preserving the spectral information at the same time. The quality of the resulted images has been evaluated by the visual interpretation and the statistical assessment to prove its efficiency compared to other conventional methods.  相似文献   

5.
本文提出了一种基于最大后验和非局域约束的非下采样轮廓波变换域SAR图像去噪方法。根据SAR图像数据的特征,引入了非对数加性模型,并在该模型下对SAR图像NSCT域中的噪声分布统计建模,应用最大后验(MAP)准则和Non-Local(NL)约束相结合的方法解求SAR图像真实信号的NSCT系数。实验结果表明,本方法具有良好的去噪能力并在性能上优于当前主流方法。  相似文献   

6.
针对传统的热红外与可见光图像融合方法对比度低,容易出现边缘细节、目标等信息丢失或减弱的现象,提出一种顾及区域特征差异的热红外与可见光图像多尺度融合方法。首先采用自适应PCNN(脉冲耦合神经网络)模型和二维Renyi熵相结合的图像分割方法,分别对红外和可见光图像进行区域分割;然后利用非下采样Contourlet变换对原图像进行多尺度多方向分解,根据区域的特征差异设计不同的融合规则,融合热红外与可见光图像。实验结果表明,该方法不仅能有效地融合热红外图像的目标特征,还能更多地保留可见光图像丰富的背景信息,融合图像对比度高,在视觉效果和客观评价上优于传统融合方法。  相似文献   

7.
Nowadays, different image pansharpening methods are available, which combine the strengths of different satellite images that have different spectral and spatial resolutions. These different image fusion methods, however, add spectral and spatial distortions to the resultant images depending on the required context. Therefore, a careful selection of the fusion method is required. Simultaneously, it is also essential that the fusion technique should be efficient to cope with the large data. In this paper, we investigated how different pansharpening algorithms perform, when applied to very high-resolution WorldView-3 and QuickBird satellite images effectively and efficiently. We compared these 27 pansharpening techniques in terms of quantitative analysis, visual inspection and computational complexity, which has not previously been formally tested. In addition, 12 different image quality metrics available in literature are used for quantitative analysis purpose.  相似文献   

8.
利用NSCT和Krawtchouk矩进行图像检索   总被引:1,自引:0,他引:1  
提出了一种基于非下采样Contourlet变换(nonsubsampled contourlet transform,NSCT)和Krawtchouk矩的图像检索算法。首先,通过NSCT对图像进行分解,提取每个分解层次上不同方向子带系数分布的数学特征作为图像的纹理特征;然后,利用Krawtchouk矩描述图像的形状特征;最后,根据加权的相似性度量实现图像检索。实验结果表明,所提取的特征向量具有平移、旋转、尺度不变性,且能获得更高的检索精度。  相似文献   

9.
In this paper pixel-based and object-oriented classifications were investigated for land-cover mapping in an urban area. Since the image fusion methods are playing a useful role in supplying classification different fusion approaches such as Gram-Schmidt Transform (GS), Principal Component Transform (PC), Haar wavelet, and À Trous Wavelet Transform (ATWT) algorithms have been used and the fused image with the best quality has been assessed on its respected classification. A Hyperion image and IRS-PAN image covering a region near Tehran, Iran have been used to demonstrate the enhancement and accuracy assessment of fused image over the initial images. The evaluation results of fused images showed that the Haar wavelet approach has good quality in preserving spectral information as well as spatial information. Classification results were compared to evaluate the effectiveness of the two classification approaches. Result of the pan-sharpened image classifications displayed that the object-oriented procedure presented more accurate outcomes (90.47 %) than those obtained by pixel-based classification method (77.33 %).  相似文献   

10.
This paper is an exploratory study, which aimed to discover the synergies of data fusion and image segmentation in the context of EO-based rapid mapping workflows. Our approach pillared on the geographic object-based image analysis (GEOBIA) focusing on multiscale, internally-displaced persons’ (IDP) camp information extraction from very high spatial resolution (VHSR) images. We applied twelve pansharpening algorithms to two subsets of a GeoEye-1 image scene that was taken over a former war-induced ephemeral settlement in Sri Lanka. A multidimensional assessment was employed to benchmark pansharpening algorithms with respect to their spectral and spatial fidelity. The multiresolution segmentation (MRS) algorithm of the eCognition Developer software served as the key algorithm in the segmentation process. The first study site was used for comparing segmentation results produced from the twelve fused products at a series of scale, shape, and compactness settings of the MRS algorithm. The segmentation quality and optimum parameter settings of the MRS algorithm were estimated by using empirical discrepancy measures. Non-parametric statistical tests were used to compare the quality of image object candidates, which were derived from the twelve pansharpened products. A wall-to-wall classification was performed based on a support vector machine (SVM) classifier to classify image objects candidates of the fused images. The second site simulated a more realistic crisis information extraction scenario where the domain expertise is crucial in segmentation and classification. We compared segmentation and classification results of the original images (non-fused) and twelve fused images to understand the efficacy of data fusion. We have shown that the GEOBIA has the ability to create meaningful image objects during the segmentation process by compensating the fused image’s spectral distortions with the high-frequency information content that has been injected during fusion. Our findings further questioned the necessity of the data fusion step in rapid mapping context. Bypassing time-intensive data fusion helps to actuate EO-based rapid mapping workflows. We, however, emphasize the fact that data fusion is not limited to VHSR image data but expands over many different combinations of multi-date, multi-sensor EO-data. Thus, further research is needed to understand the synergies of data fusion and image segmentation with respect to multi-date, multi-sensor fusion scenarios and extrapolate our findings to other remote sensing application domains beyond EO-based crisis information retrieval.  相似文献   

11.
Image fusion techniques integrate complimentary information from multiple image sensor data such that the new images are more suitable for the purpose of human visual perception and computer based processing tasks for extraction of detail information. As an important part of image fusion algorithms, pixel-level image fusion can combine spectral information of coarse resolution imagery with finer spatial resolution imagery. Ideally, the method used to merge data sets with high-spatial and highspectral resolution should not distort the spectral characteristics of the high-spectral resolution data. This paper describes the Discrete Wavelet Transform (DWT) algorithm for the fusion of two images using different spectral transform methods and nearest neighbor resampling techniques. This research paper investigates the performance of fused image with high spatial resolution Cartosat-1(PAN) with LISS IV and Cartosat-1(PAN) sensor images with the LISS III sensor image of Indian Remote Sensing satellites. The visual and statistical analysis of fused images has shown that the DWT method outperforms in terms of Geometric, Radiometric, and Spectral fidelity.  相似文献   

12.
Pansharpening方法通过融合多光谱影像的光谱信息和全色影像的空间细节信息来得到高分辨多光谱影像。然而传统的Pansharpening方法易导致产生光谱扭曲和空间信息丢失现象。受到影像稀疏表示超分重建理论启发,本文提出了一种新的基于稀疏表示和字典学习的Pansharpening方法。该方法以影像的高频特征作为训练样本,通过字典学习的方法来获取高低分辨率影像字典,使用正交匹配追踪算法求解出影像的稀疏表示系数,最终通过高分辨影像字典与稀疏系数相乘得到融合影像。实验结果表明:本文提出的方法能很好地保持遥感影像的光谱信息和空间细节信息。  相似文献   

13.
吴一全  王志来 《遥感学报》2017,21(4):549-557
为有效融合多光谱图像的光谱信息和全色图像的空间细节信息,提出了一种基于混沌蜂群优化和改进脉冲耦合神经网络(PCNN)的非下采样Shearlet变换(NSST)域图像融合方法。首先对多光谱图像进行Intensity-HueSaturation(IHS)变换,全色图像的直方图按照多光谱图像亮度分量的直方图进行匹配;然后分别对多光谱图像的亮度分量和新全色图像进行NSST变换,对低频分量使用改进加权融合算法进行融合,以互信息作为适应度函数,利用混沌蜂群算法找到最优加权系数。对高频分量采用改进脉冲耦合神经网络(PCNN)方法进行融合,再经NSST逆变换和IHS逆变换得到融合图像。本文方法在主观视觉效果和信息熵、光谱扭曲度等客观定量评价指标上优于基于IHS变换、基于非下采样Contourlet变换(NSCT)和非负矩阵分解(NMF)、基于NSCT和PCNN等5种融合方法。本文方法在提升图像空间分辨率的同时,有效地保留了光谱信息。  相似文献   

14.
In this paper, we propose a supervised classification in multispectral satellite images based on a novel detail enhancing texture feature extraction algorithm. The multispectral training and test images are first given for pre-processing, which is decomposed into low-pass approximation and high-pass multi-directional subbands by wavelet based contourlet transform. High pass subbands are easily interfered by noise. Based upon the Normal Shrink technique, thresholding is applied in high frequency images to eliminate the noise. The intra and inter scale fusion rule is used to combine the approximation and detail subbands to form the enhanced image. The co-occurrence features are calculated by forming the gray level co-occurrence matrix on training and test images. Mahalanobis distance classifier is applied on the training and test data sets for effective classification. The experiment result shows that the overall accuracy is improved to 2.2% for (Test-1) 2% for (Test-2) and 3.2 5% for (Test-3) and kappa coefficient is improved to 0.02 for (Test-1) image 0.03 for (Test-2) image and 0.03 (Test-3) image.  相似文献   

15.
In this paper, a pan-sharpening method, using non-subsampled contourlet transform (NSCT) and the theory of compressive sensing (CS), is proposed. The NSCT is used for sparse image representation to perform a multiscale and directional decomposition of source images in order to express their detail and express the sparsity of their high frequency. The CS is used to merge the multispectral (MS) and panchromatic (pan) images from partial random measurements. Two different fusion rules are then applied. The final pan-sharpened image is obtained by inverse NSCT. Experimental results show the efficiency of the proposed method, compared with pan sharpening based on standard NSCT, in terms of visual quality and objective assessment. Moreover, the proposed technique is very effective when the storage and transmission bandwidth are limited.  相似文献   

16.
Remote sensing offers a wide variety of image data with different characteristics in terms of spatial and spectral resolutions. For optical sensor systems, imaging systems have a trade-off between high spatial and high spectral resolution, and no single system offers both. Hence, in the remote sensing application, an image with ‘greater quality’ often means higher spatial and higher spectral resolution. It is, therefore, necessary and very useful to merge images with higher spectral information and higher spatial information. Pansharpening combines spatial information from the high-resolution panchromatic image and color information from multispectral bands to create a high-resolution color image. Here we propose Discrete Cosine Transform (DCT) based pansharpening algorithm using Adaptive Linear model which preserves spectral information from Multispectral image and retains spatial resolution of Panchromatic image.  相似文献   

17.
In this paper, a novel approach based on multiobjective particle swarm optimization (MOPSO) is presented for panchromatic (Pan) sharpening of a multispectral (MS) image. This new method could transfer spatial details of the pan image into a high-resolution version of the MS image, while color information from the low-resolution MS image is well preserved. The pan and MS images are locally different because of different resolutions, and therefore we cannot directly combine them in the spatial domain. For this reason, we generate two initial results, which are more appropriate for a weighted combination. First, the pan and the MS images are histogram matched. Then we use the shiftable contourlet transform (SCT) to decompose the histogram-matched pan and MS images. The SCT is a new shiftable and modified version of the contourlet transform. In this step, an algorithm based on the SCT is used to generate two initial results of the high-resolution MS images. Our objective is to produce two modified high-resolution MS images, in which one has high spatial similarity to the pan image and the other one has high radiometric quality in each band. Therefore, we have used two different fusion rules to integrate the high-frequency contourlet coefficients of the pan and MS images to generate two initial results of high-resolution MS image or the pan-sharpened (PS) image. Finally, we can find the optimal PS image by applying the MOPSO algorithm and using the two initial PS results. Specifically, the PS image is obtained via a weighted combination of the two initial results, in which the weights are locally estimated via a multiobjective particle swarm optimization algorithm to generate a PS image with high spatial and radiometric qualities. Based on experimental results obtained, the produced pan-sharpened image also has good spectral quality. The efficiency of the proposed method is tested by performing pan-sharpening of high-resolution (Quickbird and Wordview2) and medium-resolution (Landsat-7 ETM +) datasets. Extensive comparisons with the state-of-the-art pan-sharpening algorithms indicate that our new method provides improved subjective and objective results.  相似文献   

18.
影像局部直方图匹配滤波技术用于遥感影像数据融合   总被引:25,自引:2,他引:23  
李军  周月琴  李德仁 《测绘学报》1999,28(3):226-232
本文提出了一种基于局部直方图匹配波技术的影像融合新方法。该方法分析了局部影像统计特性,应用均值或均值-方差匹配正态函数,对要融合的两幅影像局部直方图进行匹配。文中给出了3种不同的融合算法(高通滤波法,局部均值匹配法和局部均值与方差匹配法)用于SPOT全色影像和TM多光谱影像融合的结果,并进行了比较,质量评价结果证明了提出的方法在提高了原TM多光谱影像空间分辨率的同时,较好地保留了多光谱影像频道的光  相似文献   

19.
针对现有分割算法对高噪声侧扫声呐图像分割准确率低的问题,提出了一种综合利用NSCT(non-subsampled contourlet transform)分解图像、局部标准差和均值组合增强图像和多重分形判断图像奇异性的侧扫声呐图像分割方法。首先,借助NSCT分解图像,获得滤除高频噪声且保留轮廓信息的低频图像和一系列高频方向子带图像。然后,基于侧扫声呐图像中目标及其阴影伴随出现的特点,计算低频图像的局部标准差与均值的组合特征,获得分别突显目标及其阴影的特征图,使用多重分形分割方法分割特征图,获得低频图像分割结果;利用图像差分和非极大值抑制方法分割高频方向子带图像,获得高频分割结果;融合高低频分割结果获得目标及其阴影的精细边缘。最后通过试验验证了本文方法的有效性。  相似文献   

20.
The intensity-hue-saturation method is used frequently in image fusion due to its efficiency and high spatial quality. The main shortage is its spectral distortion stemmed from replacement of intensity band with higher resolution image. In this study, a new method is introduced to improve the spectral quality of the Intensity-Hue-Saturation (IHS) algorithm. The goal of this study is to produce the fused image that has a better spectral and spatial quality with respect to the original images in term of visual comparison and the classification result. In this regard, an improved statistical approach is developed to combine an intensity band from IHS algorithm and an input high resolution image such as SAR or Panchromatic image. Then the intensity image is replaced by the combined image band. Final fused images are attained using the inverse IHS algorithm. The proposed fusion algorithm is tested on two data sets of: a) panchromatic and multi spectral bands of IKONOS image with the same acquisition date, and b) multi spectral and HH bands of IKONOS and TerraSAR-X images respectively with different acquisition dates. Moreover, the obtained results are compared with other fusion methods like IHS, Gungor, Brovey and synthetic variable ratio. The results show less spectral discrepancy of the proposed method comparing to other methods. Finally, the outcome of proposed method is classified and classification overall accuracy is improved by 5.6 and 2 percentage for data set ‘a’ and ‘b’ respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号