共查询到20条相似文献,搜索用时 1 毫秒
1.
An open uniform B-spline-based panel method is developed for solution of potential flow problems. In this method, both geometry as well as the field variables are represented by the same open uniform B-spline basis function. The method is initially applied for the radiation problem in unbounded fluid. Computed results for a spheroid of different aspect ratio are found to be in excellent agreement with analytical results. The method is then applied for diffraction problem formulated based on the transient (time-domain) Green's function. Computed results for a hemisphere and Wigley hull are compared with published results and the comparison shows good agreement. 相似文献
2.
A 3D potential-based and desingularized high order panel method 总被引:1,自引:0,他引:1
In this paper, a novel high order panel method based on doublet distribution and Gaussian quadrature was adopted to deal with the potential flow problem. In the geometry representation we employed both the exact surface and NURBS surface form to construct the surface panel. These data were calculated directly from the mathematical shape definition. Furthermore, no fixed order of doublet density distribution was assumed on each panel. Not only the number of panels could be chosen, but also the Gaussian order of each panel. The numerical results for sphere, ellipsoid and Wigley hull demonstrated here indicated that the present method was adapted to the potential flow problem. Moreover, the NURBS surface geometry representation was capable of further potential flow optimal calculation. 相似文献
3.
A panel-free method (PFM), based on the desingularized Green’s formulae proposed by Landweber and Macagno, has been developed to solve the radiation problem of a floating body in the time domain. The velocity potential due to a non-impulsive velocity is obtained by solving the boundary integral equation in terms of source strength distribution. The singularity in the Rankine source term of the time-dependent Green function is removed. The geometry of a body surface is mathematically represented by NURBS surfaces. The integral equation can be globally discretized over the body surface by Gaussian quadratures. No assumption is needed for certain degree of approximation of distributed source strength on the body surface. The accuracy of PFM was demonstrated by its application to a classical problem of uniform flow past a sphere. The response function of a hemisphere at zero speed was then computed by PFM. The computed response function, added-mass and damping coefficients are compared with other published results. 相似文献
4.
A higher order panel method based on B-spline representation for both the geometry and the solution is developed for the analysis of steady flow around marine propellers. The self-influence functions due to the normal dipole and the source are desingularized through the quadratic transformation, and then shown to be evaluated using conventional numerical quadrature. By selecting a proper order for numerical quadrature, the accuracy of the present method can be increased to the machine limit. The far- and near-field influences are shown to be evaluated based on the same far-field approximation, but the near-field solution requires subdividing the panels into smaller subpanels continuously, which can be effectively implemented due to the B-spline representation of the geometry. A null pressure jump Kutta condition at the trailing edge is found to be effective in stabilizing the solution process and in predicting the correct solution. Numerical experiments indicate that the present method is robust and predicts the pressure distribution on the blade surface, including very close to the tip and trailing edge regions, with far fewer panels than existing low-order panel methods. 相似文献
5.
Sakir Bal 《Ocean Engineering》1998,26(4):343-361
A potential based panel method for the hydrodynamic analysis of 2-D hydrofoils moving beneath the free surface with constant speed without considering cavitation is described. By applying Green's theorem and the Green function method, an integral equation for the perturbation velocity potential is obtained under the potential flow theory. Dirichlet type boundary condition is used instead of Neumann type boundary condition. The 2-D hydrofoil is approximated by line panels which have constant source strength and constant doublet strength distributions. The free surface condition is linearized and the method of images is used for satisfying this free surface condition. All the terms in fundamental solution (Green function) of perturbation potential are integrated over a line panel. Pressure distribution, lift, residual drag and free surface deformations are calculated for NACA4412, symmetric Joukowski and van de Vooren profile types of hydrofoil. The results of this method show good agreement with both experimental and numerical methods in the literature for the NACA4412 and symmetric Joukowski profile types. The lift and residual drag values of the van de Vooren profile are also presented. The effect of free surface is examined by a parametric variation of Froude number and depth of submergence. 相似文献
6.
板格形导管架桩基码头是适用于深水域软土地基的新型港口与海岸工程结构。该结构由预制的板格形导管架及桩基构成,承载特性和破坏模式复杂。假定码头结构发生倾覆失稳时,转动点位于前桩轴线上,且距导管架底面距离为L。除结构的自身重量外,综合考虑板格形导管架与周围土体间的摩擦力、桩侧摩阻力、桩侧水平土抗力等,对结构进行极限状态受力分析,建立基于假想支撑点的稳定性分析模型,并通过强度折减法进行计算,求取安全系数。以天津滨海沿岸水文地质条件为背景,利用ABAQUS有限元分析软件,建立板格形导管架桩基码头三维弹塑性有限元模型进行稳定性分析,并与简化方法进行比较。结果表明,通过简化计算方法得到的安全系数与有限元结果较为吻合。 相似文献
7.
A radiation and diffraction boundary value problem is investigated. It arises from the interaction of linear water waves with a freely floating rectangular structure in a semi-infinite fluid domain of finite water depth with the leeward boundary being a vertical wall. Analytical expressions for the radiated potentials and the diffracted potential are obtained by use of the method of separation of variables and the eigenfunction expansion method. The added masses and damping coefficients for the structure heaving, swaying and rolling in calm water are obtained by use of the corresponding radiated potentials and the wave excitation forces are calculated by use of the diffracted potential. To verify the correctness of the method, a boundary element method is used. A comparison of the analytical results with those obtained by the boundary element method is made and good agreement is achieved, which shows that the analytical expressions for the radiated and diffracted potentials are correct. By use of the present analytical solution, the added mass, damping coefficients, wave excitation force, together with the hydrodynamic effects of the draft, width of the structure and the clearance between the structure and the sidewall are also investigated. 相似文献
8.
对于海上浮式风机而言,由于受到剪切风、塔影效应、浮式基础运动等因素的共同影响,其气动载荷会更加复杂,因此如何准确快速地对海上风力机的气动性能进行预估显得尤为重要。基于速度势的非定常面元法理论,研究海上浮式风机气动载荷特性,编制了相关的计算程序。以NREL 5 MW风机为例,建立了叶片和尾流的三维数值模型,计算得到了不同风速下风机的输出功率以及叶片表面的压力分布,对比数据结果分析了该方法的可靠性。针对非定常流动,模拟了剪切风和塔影效应的作用,并重点分析了浮式基础运动对风机气动载荷的影响。研究表明,浮式基础的纵荡和纵摇会增加输出功率的波动幅值,艏摇运动会导致单个叶片上的气动载荷产生较大的波动,为浮式风机叶片控制提供了参考。 相似文献
9.
Time-dependent cross-flow was studied around cylinders with circular and noncircular cross-sections. The numerical approach for the analysis was a low-order panel method based on constant source and dipole values along each panel. The method was previously used successfully for several applications, such as calculation of the added mass and damping coefficients. In simulating the viscous time-dependent flow around the cylinder, the time-dependent wake feature of the code was used. For the circular and D-cylinders, the results agreed well with the experiments. Suggestions for improving the results for T-cylinders with angle of attack are included. 相似文献
10.
Interaction theories are used in numerous branches of physics to efficiently evaluate wave scattering by multiple obstacles. An example of these interaction theories is the direct matrix method introduced by Kagemoto and Yue [1], which enables fast computation of three-dimensional water-wave multiple-scattering problems. The building block of interaction theories is a mathematical operator that encapsulates the mapping between incident and scattered waves. This operator is generally referred to as T-matrix and satisfies both reciprocity and energy identities. In some branches of physics, such as acoustics and electromagnetism, these identities are well established; in hydrodynamics, however, they have only been derived for a T-matrix that maps two-dimensional incident and scattered water waves. In three dimensions, water waves can be represented as a series expansion of cylindrical eigenfunctions. In this paper, we use this representation of water waves to derive the reciprocity and energy identities satisfied by the T-matrix of the direct matrix method, known as Diffraction Transfer Matrix (dtm). The identities derived herein represent an extension of existing general relations between two diffraction solutions. We show that this extension can be applied to verify the accuracy of the dtm entries, thereby increasing the reliability of existing schemes for computing the dtm. We present results for the dtm of two geometrically different isolated obstacles, as well as for the dtm of an asymmetric array. Finally, we demonstrate that the results presented herein can be extended to floating bodies found in a wide range of ocean engineering problems. 相似文献
11.
A fast multipole boundary element method for three-dimensional potential flow problems 总被引:2,自引:0,他引:2
A fast multipole methodology (FMM) is developed as a numerical approach to reduce the computational cost and memory requirements in solving large-scale problems. It is applied to the boundary element method (BEM) for three-dimensional potential flow problems. The algorithm based on mixed multipole expansion and numeric, al integration is implemented in combination with an iterative solver. Numerical examinations, on Dirichlet and Neumann problems, are carried out to demonstrate the capability and accuracy of the present method. It has been shown that the method has evident advantages in saving memory and computing time when used to solve huge-scale problems which may be prohibitive for the traditional BEM implementation. 相似文献
12.
Regional Ocean Modeling System (ROMS v 3.0), a three-dimensional numerical ocean model, was previously enhanced for shallow water applications by including wave-induced radiation stress forcing provided through coupling to wave propagation models (SWAN, REF/DIF). This enhancement made it suitable for surf zone applications as demonstrated using examples of obliquely incident waves on a planar beach and rip current formation in longshore bar trough morphology (Haas and Warner, 2009). In this contribution, we present an update to the coupled model which implements a wave roller model and also a modified method of the radiation stress term based on Mellor (2008, 2011a,b,in press) that includes a vertical distribution which better simulates non-conservative (i.e., wave breaking) processes and appears to be more appropriate for sigma coordinates in very shallow waters where wave breaking conditions dominate. The improvements of the modified model are shown through simulations of several cases that include: (a) obliquely incident spectral waves on a planar beach; (b) obliquely incident spectral waves on a natural barred beach (DUCK'94 experiment); (c) alongshore variable offshore wave forcing on a planar beach; (d) alongshore varying bathymetry with constant offshore wave forcing; and (e) nearshore barred morphology with rip-channels. Quantitative and qualitative comparisons to previous analytical, numerical, laboratory studies and field measurements show that the modified model replicates surf zone recirculation patterns (onshore drift at the surface and undertow at the bottom) more accurately than previous formulations based on radiation stress (Haas and Warner, 2009). The results of the model and test cases are further explored for identifying the forces operating in rip current development and the potential implication for sediment transport and rip channel development. Also, model analysis showed that rip current strength is higher when waves approach at angles of 5° to 10° in comparison to normally incident waves. 相似文献
13.
混凝土试验中一类特殊问题的拟合方法研究 总被引:1,自引:0,他引:1
混凝土多轴疲劳试验样本因其含有大量的重复数据和试验数据离散性极大,因此许多传统的方程拟合方法都不适于这类特殊问题。对基于最小二乘法的多元线性或可化为线性的非线性拟合问题,对一切可能方程的求法进行了改进,并对各种方法进行了全面比较研究,最后找到了适用于混凝土疲劳这一类特殊问题拟合的R估计方法。利用相对较好的拟合方程查找异常值,然后据此分析异常值产生的原因,从而指导进一步的试验或者对异常值进行有效处理。 相似文献
14.
A composite numerical model is presented for computing the wave field in a harbor. The mild slope equation is discretized by a finite element method in the domain concerned. Out of the computational domain, the water depth is assumed to be constant. The boundary element method is applied to the outer boundary for dealing with the infinite boundary condition. Because the model satisfies strictly the infinite boundary condition, more accurate results can be obtained. The model is firstly applied to compute the wave diffraction in a narrow rectangular bay and the wave diffraction from a porous cylinder. The numerical results are compared with the analytical solution, experimental data and other numerical results. Good agreements are obtained. Then the model is applied to computing the wave diffraction in a square harbor with varying water depth. The effects of the water depth in the harbor and the incoming wave direction on the wave height distribution are discussed. 相似文献
15.
A composite numerical model is presented for computing the wave field in a harbor. The mild slope equation is discretized by a finite element method in the domain concerned. Out of the computational domain, the water depth is assumed to be constant. The boundary element method is applied to the outer boundary for dealing with the infinite boundary condition. Because the model satisfies strictly the infinite boundary condition, more accurate results can be obtained. The model is firstly applied to compute the wave diffraction in a narrow rectangular bay and the wave diffraction from a porous cylinder. The numerical results are compared with the analytical solution, experimental data and other numerical results. Good agreements are obtained. Then the model is applied to computing the wave diffraction in a square harbor with varying water depth. The effects of the water depth in the harbor and the incoming wave direction on the wave height distribution are discussed. 相似文献
16.
17.
18.
基于大涡模拟和局部滤波同化方法的海洋环流模式 总被引:2,自引:1,他引:2
结合最小二乘法极值原理,提出了一种基于局部谱展开的滤波同化方法,把测量数据和数值计算过程中出现的高频短波滤掉,并将高度计数据同化到了求解过程中.结果既增加了数值稳定性,又提高了数值模拟的准确性.针对在海洋环流问题中水平的流动性质和垂直的不同的特点,我们还将大涡模拟的思想和直接涡黏的思想分别应用于水平方向和垂直方向,给出的方法是一种适用于海洋环流和浅水环流问题的大涡模拟湍流模式.对热带和北太平洋一年四季非定常季风作用下环流的数值模拟表明,提出的方法非常有效,数值结果与实际相当吻合. 相似文献
19.
An integral panel method (IPM) that treats the different components of multi-component propulsors as a whole is presented for efficient propulsor performance analysis. The IPM requires consider only one blade of the propeller in the performance analysis, which significantly reduces the number of computation grid. The control equations of the IPM are derived in detail for podded propulsors, contra-rotating propellers and hybrid contra-rotating shaft pod propulsors, and based on these derivations, a general control equation for multi-component propulsors with propeller is derived. Comparison between numerical results and experimental data show that the IPM provides good accuracy for the performance analysis of multi-component propulsors with propeller. In addition, the error sources of IPM are discussed, and the reasonableness of these errors is evaluated. 相似文献