首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《大气与海洋》2013,51(2):243-256
Abstract

Trends and variations in daily temperature and precipitation indices in southern Québec are examined for the period 1960–2005. The indices are based on daily temperature and daily precipitation which have been recently adjusted at 53 climatological stations. The adjustments were made for site relocation, changes in observing programs, known instrument changes and measurement program deficiencies. The results show that the surface air temperature has increased in southern Québec over 1960–2005. Significant warming is evident in the western, southern and central parts of the province but the increasing trends become smaller toward the east. The warming is greater during the winter although many significant increasing trends are found in the summer. The analysis of the temperature extremes strongly indicates the occurrence of more nights with extreme high temperatures in all seasons. The temperature indices also suggest an increase in the number of thaw/frost days during the winter (days with maximum temperature above 0°C and minimum temperature below 0°C), a decrease in the length of the frost season, an increase in the length of the growing season, a decrease in heating degree days and an increase in cooling degree days. The precipitation indices show an increase in the annual total rainfall although many stations indicate decreasing trends during the summer. The number of days with rain has increased over the region whereas the number of days with snow and the total snow amounts have decreased over the past 46 years.  相似文献   

2.
基于黄河源区8个站点的年平均气温序列,利用集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)方法,揭示了以玛多站为代表的黄河源区1953~2017年气温演变的多时间尺度特征,探讨不同时间尺度上的周期振荡对气温变化总体特征的影响程度,分析了黄河源区不同时间尺度的气温变化与海温指数,尤其是与北大西洋多年代际振荡(Atlantic Multidecadal Oscillation,AMO)间的关系。结果表明:(1)1953年以来黄河源区玛多站年平均气温以0.31 ℃/10 a的变化率表现为明显的增暖趋势,20世纪80年代后期开始转暖,尤其是进入20世纪90年代后期变暖更加明显。(2)1953~2017年,黄河源区年平均气温呈现3 a、6 a、11 a、25 a、64 a及65 a以上时间尺度的准周期变化,其中以准3 a和65 a以上时间尺度的振荡最显著,准3 a的年际振荡在21世纪以前振幅较大,而进入21世纪后年际振荡振幅减弱,65 a以上时间尺度的年代际振荡振幅明显加大。(3)1998年气候显著变暖以前,以准3 a周期为代表的年际振荡在气温演变过程中占据主导地位,1998年气候显著变暖以后,65 a以上时间尺度周期振荡的贡献率增加近5倍,与准3 a周期振荡的贡献相当。(4)气温与Nino3.4指数和PDO(Pacific Decadal Oscillation)指数的同期相关均不显著,但当气温领先PDO指数22 a时正相关最大且显著,不同于PDO指数,气温原始序列及其3个年代际尺度分量滞后AMO指数3~7 a或二者同期时相关性最高,这就意味着AMO对黄河源区气温具有显著影响。(5)AMO的正暖位相对应着包括中国的整个东亚地区偏暖,黄河源区只是受影响区域的一部分,20世纪60年代至90年代初期AMO的负冷位相期、20世纪90年代中后期至今AMO的正暖位相与黄河源区气温距平序列的负距平、正距平相对应,气温在65 a以上时间尺度的变化与AMO指数相关性更高,可见,AMO是影响黄河源区气温变化的一个重要的气候振荡,这种影响主要表现在年代际时间尺度上。  相似文献   

3.
Assessment of climate extremes in the Eastern Mediterranean   总被引:4,自引:0,他引:4  
Summary Several seasonal and annual climate extreme indices have been calculated and their trends (over 1958 to 2000) analysed to identify possible changes in temperature- and precipitation-related climate extremes over the eastern Mediterranean region. The most significant temperature trends were revealed for summer, where both minimum and maximum temperature extremes show statistically significant warming trends. Increasing trends were also identified for an index of heatwave duration. Negative trends were found for the frequency of cold nights in winter and especially in summer. Precipitation indices highlighted more regional contrasts. The western part of the study region, which comprises the central Mediterranean and is represented by Italian stations, shows significant positive trends towards intense rainfall events and greater amounts of precipitation. In contrast, the eastern half showed negative trends in all precipitation indices indicating drier conditions in recent times. Significant positive trends were revealed for the index of maximum number of consecutive dry days, especially for stations in southern regions, particularly on the islands.Current affiliation: National Observatory of Athens, Athens, Greece.  相似文献   

4.
In this study, the trends and periodicity in climate extremes are examined in Hunan Province over the period 1960–2013 on the basis of 27 extreme climate indices calculated from daily temperature and precipitation records at 89 meteorological stations. The results show that in the whole province, temperature extremes exhibit a warming trend with more than 50% stations being statistically significant for 7 out of 16 temperature indices, and the nighttime temperature increases faster than the daytime temperature at the annual scale. The changes in most extreme temperature indices show strongly coherent spatial patterns. Moreover, the change rates of almost all temperature indices in north Hunan are greater than those of other regions. However, the statistically significant changes in indices of extreme precipitation are observed at fewer stations than in extreme temperature indices, forming less spatially coherent patterns. Positive trends in indices of extreme precipitation show that the amount and intensity of extreme precipitation events are generally increasing in both annual and seasonal scales, whereas the significant downward trend in consecutive wet days indicates that the precipitation becomes more even over the study period. Analysis of changes in probability distributions of extreme indices for 1960–1986 and 1987–2013 also demonstrates a remarkable shift toward warmer condition and increasing tendency in the amount and intensity of extreme precipitation during the past decades. The variations in extreme climate indices exhibit inconstant frequencies in the wavelet power spectrum. Among the 16 temperature indices, 2 of them show significant 1-year periodic oscillation and 7 of them exhibit significant 4-year cycle during some certain periods. However, significant periodic oscillations can be found in all of the precipitation indices. Wet-day precipitation and three absolute precipitation indices show significant 1-year cycle and other seven provide significant power at the 4-year period, which are mainly found during 1970–1980 and after 1992.  相似文献   

5.
ABSTRACT

Trends in indices based on daily temperature and precipitation are examined for two periods: 1948–2016 for all stations in Canada and 1900–2016 for stations in the south of Canada. These indices, a number of which reflect extreme events, are considered to be impact relevant. The results show changes consistent with warming, with larger trends associated with cold temperatures. The number of summer days (when daily maximum temperature >25°C) has increased at most locations south of 65°N, and the number of hot days (daily maximum temperature >30°C) and hot nights (daily minimum temperature >22°C) have increased at a few stations in the most southerly regions. Very warm temperatures in both summer and winter (represented by the 95th percentile of their daily maximum and minimum temperatures, respectively) have increased across the country, with stronger trends in winter. Warming is more pronounced for cold temperatures. The frost-free season has become longer with fewer frost days, consecutive frost days, and ice days. Very cold temperatures in both winter and summer (represented by the 5th percentile of their daily maximum and minimum temperatures, respectively) have increased substantially across the country, again with stronger trends in the winter. Changes in other temperature indices are consistent with warming. The growing season is now longer, and the number of growing degree-days has increased. The number of heating degree-days has decreased across the country, while the number of cooling degree-days has increased at many stations south of 55°N. The frequency of annual and spring freeze–thaw days shows an increase in the interior provinces and a decrease in the remainder of the country. Changes in precipitation indices are less spatially coherent. An increase in the number of days with rainfall and heavy rainfall is found at several locations in the south. A decrease in the number of days with snowfall and heavy snowfall is observed in the western provinces, while an increase is found in the north. There is no evidence of significant changes in the annual highest 1-day rainfall and 1-day snowfall. The maximum number of consecutive dry days has decreased, mainly in the south.  相似文献   

6.
Summary The present study is an analysis of the observed extreme temperature and precipitation trends over Yangtze from 1960 to 2002 on the basis of the daily data from 108 meteorological stations. The intention is to identify whether or not the frequency or intensity of extreme events has increased with climate warming over Yangtze River basin in the last 40 years. Both the Mann-Kendall (MK) trend test and simple linear regression were utilized to detect monotonic trends in annual and seasonal extremes. Trend tests reveal that the annual and seasonal mean maximum and minimum temperature trend is characterized by a positive trend and that the strongest trend is found in the winter mean minimum in the Yangtze. However, the observed significant trend on the upper Yangtze reaches is less than that found on the middle and lower Yangtze reaches and for the mean maximum is much less than that of the mean minimum. From the basin-wide point of view, significant increasing trends are observed in 1-day extreme temperature in summer and winter minimum, but there is no significant trend for 1-day maximum temperature. Moreover, the number of cold days ≤0 °C and ≤10 °C shows significant decrease, while the number of hot days (daily value ≥35 °C) shows only a minor decrease. The upward trends found in the winter minimum temperature in both the mean and the extreme value provide evidence of the warming-up of winter and of the weakening of temperature extremes in the Yangtze in last few decades. The monsoon climate implies that precipitation amount peaks in summer as does the occurrence of heavy rainfall events. While the trend test has revealed a significant trend in summer rainfall, no statistically significant change was observed in heavy rain intensity. The 1-day, 3-day and 7-day extremes show only a minor increase from a basin-wide point of view. However, a significant positive trend was found for the number of rainstorm days (daily rainfall ≥50 mm). The increase of rainstorm frequency, rather than intensity, on the middle and lower reaches contributes most to the positive trend in summer precipitation in the Yangtze.  相似文献   

7.
长江源流量对长江源流域气候年代际变化的响应   总被引:3,自引:3,他引:0  
利用长江源流域气象站降水、气温资料和源区直门达水文站流量,建立了历年各月、季降水距平百分率和气温距平序列,分析了长江源流量与长江源流域降水、气温的年代际变化.结果表明,长江源流域气候演变存在非常明显的年代际变化.年降水量呈平缓下降趋势,60、80年代年降水量正常或偏多,70、90年代偏少,主要受夏季降水的影响;年气温明显呈上升趋势,60年代最冷,70年代开始回升,80年代暖在冬,90年代暖在秋,目前年、夏、秋、冬季已达到1961年以来的最暖期;年流量与年降水的年代际变化、突变年份对应,60、80年代偏多,70、90年代偏少,目前除春季流量外,夏、秋、冬季已转入上升趋势,1965、1979、1997年二者均发生了突变.  相似文献   

8.
Regional trends in recent precipitation indices in China   总被引:20,自引:0,他引:20  
Summary Regional characteristics of recent precipitation indices in China were analyzed from a daily rainfall dataset based on 494 stations during 1961 to 2000. Some indices such as precipitation percentiles, precipitation intensity, and precipitation persistence were used and their inter-decadal differences were shown in this study. Over the last 40 years, precipitation indices in China showed increasing and decreasing trends separated into three main regions. A decreasing trend of annual precipitation and summer precipitation was observed from the southern part of northeast China to the mid-low Yellow River valley and the upper Yangtze River valley. This region also showed a decreasing trend in precipitation intensity and a decreasing trend in the frequency of persistent wet days. On the other hand, increasing trends in precipitation intensity were found in the Xinjiang region (northwest China), the northern part of northeast China, and southeast China, mainly to the south of the mid-low Yangtze River. The indices of persistent wet days and strong rainfall have contributed to the increasing frequency of floods in southeast China and the Xinjiang region in the last two decades. Persistent dry days and weakening rainfall have resulted in the increasing frequency of drought along the Yellow River valley including North China. Regional precipitation characteristics and trends in precipitation indices indicate the climate state variations in the last four decades. A warm-wet climate state was found in northwest China and in the northern part of northeast China. A warm-dry climate state extends from the southern part of northeast China to the Yellow River valley, while a cool-wet summer was found in southeast China, particularly in the mid-low Yangtze River valley over the last two decades.  相似文献   

9.
利用中国691个无缺测站点的经均一化处理及质量控制的逐日最高、最低气温资料,基于冷昼日数、冷夜日数、霜冻日数、冰冻日数、月最低气温极大值以及月最低气温极小值等6个由世界气象组织定义的极端气温指数,分析了1961~2014年中国冬季的极端低温变化特征。结果表明:冷昼日数、冷夜日数、霜冻日数以及冰冻日数在全国大部分地区均呈现下降的趋势,下降趋势较为明显的区域集中在东北南部、华北、西北东部、华东、华中、西南及高原地区,全国整体上下降幅度分别为-0.9 d/10 a、-1.7 d/10 a、-1.5 d/10a和-1.4 d/10 a。最低气温极大值和最低气温极小值在全国范围内则主要呈现上升的趋势,全国整体上分别为0.4℃/10 a和0.6℃/10 a;极端低温天数在20世纪60年代至70年代中后期呈现波动状,随后自20世纪70年代末80年代初至21世纪初呈明显下降趋势,从2006年左右以后其下降趋势较之前有所减缓,是对全球变暖减缓背景下的气候响应;与其他时间段相比,20世纪60年代至70年代为冬季极端低温事件较为频发的时间段,这可能与该时段陆地冷高压频繁活动有关。  相似文献   

10.
植被变化对中国区域气候影响的数值模拟研究   总被引:39,自引:5,他引:39  
用高分辨率区域气候模式(RegCM-NCC)模拟了中国区域植被发生改变后引起的局地或区域气候变化。结果表明:大范围区域植被变化对区域降水、温度的影响非常显著,内蒙古地区土地荒漠化可导致中国北方大部分地区降水减少,尤其加剧了华北、西北地区的干旱,西北地区绿化有利于黄河流域降水增加,而长江流域和江南地区降水却有不同程度的减少,因此可在一定程度上减少这里的洪涝灾害;气温的变化比降水更显著,植被退化使当地气温明显升高,使中、低层大气变得干燥,近地层风速加大,而植树造林却使当地及周围地区冬偏暖、夏偏凉,大气变得湿润,近地层风速减小,有利于在一定程度上减少沙尘暴的发生。另外,植被变化对东亚冬、夏季风强度也有一定程度的影响,从而影响到中国东部地区降水的分布和冬季低温、冷害事件发生的强度。  相似文献   

11.
This study analyzed the interdecadal changes in the diurnal variability of summer(June-August) precipitation over eastern China during the period 1966-2005 using hourly station rain gauge data.The results revealed that rainfall diurnal variations experienced significant interdecadal changes.Over the area to the south of the Yangtze River,as well as the area between the Yangtze and Yellow Rivers,the percentages of morning rainfall(0000-1200 LST) to total rainfall in terms of amount,frequency and intensity,all exhibited increasing interdecadal trends.On the contrary,over North China,decreasing trends were found.As a result,diurnal rainfall peaks also presented pronounced interdecadal variations.Over the area between the Yangtze and Yellow Rivers,there were 16 out of 46 stations with afternoon(1200-0000 LST) frequency peaks in the first 20 years of the 40-year period of study,while only eight remained in the latter 20 years.In North China,seven stations experienced the opposite changes,which accounted for about 21% of the total number of stations.The possible causes for the interdecadal changes in diurnal features were discussed.As the rainfall in the active monsoon period presents morning diurnal peaks,with afternoon peaks in the break period,the decrease(increase) of rainfall in the active monsoon period over North China(the area south of the Yangtze River and the area between the Yangtze and Yellow Rivers) may contribute to interdecadal changes in diurnal rainfall variability.  相似文献   

12.
长江源区近44年气候变化的若干统计分析   总被引:10,自引:1,他引:10  
利用长江源区5个气象站44年的气温、降水量资料以及其中2个探空站500hPa露点资料,分析了该地区气候变化趋势、突变等情况。结果表明:近44年来长江源区气温普遍升高,冬季升温幅度较大,夏季增温趋势明显,进入21世纪后,长江源区春季平均气温在降低,夏、秋季平均气温增高较趋缓,而冬季增温加剧的趋势十分明显;年、夏季降水量变化呈微弱减少趋势,而冬、春和秋季降水量呈现出增加趋势,其中春季增幅较大,冬季增湿趋势明显;长江源区年平均气温在20世纪60年代末70年代初就显现出波动回升的趋势,在1986年前后发生了由冷到暖的突变,冬、春季降水量均在20世纪70年代和80年代出现了由少向多的突变。长江源区气候在波动性变暖变干过程中,自1986年起出现了气候转向暖湿的信号,其主要原因在于全球变暖并由此引起的海洋蒸发和陆地蒸散加强,地气水分循环加快,空中水汽输送加强。  相似文献   

13.
Based on the method of rotated principal component (RPC) analysis and wavelet transforms, the win-ter precipitation from 36 stations over China for the period 1881-1993 is examined. The results show thatthe three leading space-time modes correspond, in sequence, to winter rainfall anomalies over the reaches ofthe Yangtze River, the bend of the Yellow River, and the northeastern region of China. The three modes ex-hibit interannual oscillations with quasi-biennial and 8-year periods as well as interdecadal oscillationswith 16- and 32-year periods. The interannual oscillation (< 10 years) occurs in phase over the differentareas, and its maximum amplitude migrates northward considerably with prominent interdecadal variations.However, the interdecadal oscillations (10-32 years) are out of phase over the different regions, and theamplitude variations have the characteristics of stationary waves.The rainfall anomalies appear to be closely re lated to the anti-phase changes of mean sea-level pres-sure (SLP) over the Asian mainland and the North Pacific. When the SLP rises over the North Pacific anddecreases over the Asian mainland, the precipitation over East China increases noticeably. The linkage be-tween the rainfall over China and the SLP anomalies apparently results from the strength of the East Asianwinter monsoon and its associated temperature and moisture advection.  相似文献   

14.
基于数据长程相关性,利用相对变化趋势,构建气温相对变化趋势的概率密度函数及超越概率,研究并计算了1951~2017年中国气温相对变化趋势基于一定置信水平下属于自然变率范畴的置信限,判别相对变化趋势是否由非自然因素引起(增温是否显著),探讨不同地区非自然因素引起的温度变化的阈值、相应的转折时间段及演变趋势。结果表明:(1)中国160站温度资料中有10%的站点趋势显著性被传统线性回归方法高估了,这些站点主要位于西北、西南和东部沿海地区。(2)从全国温度趋势的空间分布来看,除新疆中西部地区呈现降温趋势之外,其他地区均为增温趋势,其中东北、内蒙及晋北地区非自然趋势大,增温显著。(3)从不同年代际增温显著区域的空间演变来看,华北、东北地区率先增温显著,之后逐渐向南向西扩展,1966~2001年时段中国大部分区域表现为非自然增温显著;1971~2006年时段,东北地区以及内蒙东北部增温显著区域开始逐渐减少,同时中国西南地区增温显著区域开始逐渐增多;1976~2011年增温显著区域最大;1981~2016年,增温显著站点主要集中在黄河、长江流域及两大流域之间和中国南方地区。综上,中国非自然因素引起的增温显著区域在时间和空间上均存在显著的年代际转折。本研究为中国气温变化的归因及其预测研究,为加强气候变化研究成果向短期气候预测的转化及联系提供新视角、新途径。  相似文献   

15.
利用全国175个测站1960—1999年间的日平均气温资料,分别选取1960—1989年(气候态A)、1970—1999年(气候态B)作为气候背景,采用蒙特卡洛显著性检验法检验了这两个气候态背景下我国冬夏两季季节平均气温的差异显著性。并在此基础上利用气候百分位法分别分析了在这两个气候态背景下2000—2010年间我国冬夏两季的极端气温特征。分析结果表明,相对于夏季,冬季气候态A、B背景下季节平均气温的差异更为显著。冬夏两季,我国大部分地区极端低温事件的发生频率相对较低,而极端高温事件的发生频率相对较高。由于气候态B包含了全球变暖特征最为显著的20a,故在气候态B背景下,冬夏两季极端低(高)温事件的发生频率要高(低)于气候态A,这与全球变暖的趋势相吻合。  相似文献   

16.
《大气与海洋》2013,51(3):153-162
Abstract

Winter rainfall is a non‐negligible issue for urban drainage in Canada as it can generate significant flooding, especially when it occurs at the same time as high air temperature and in the presence of an appreciable snow cover. According to climate change scenarios, it is expected that the occurrence of these events will increase in a future climate. The purpose of this paper is to perform a trend analysis on six indices related to winter rainfall (January–February) at 60 weather stations located in southern Québec and New Brunswick (Canada) in order to detect possible trends in the frequency or intensity of winter rainfall events during the twentieth century. Datasets were provided by Environment Canada and come from the Canadian Daily Rehabilitated Precipitation Database. The bootstrap‐based Mann‐Kendall test is used to detect possible non‐stationarities in the dataset, while Sen's slope estimator is used to quantify the magnitude of the slope. Results show that 19 stations out of 60 present a significant trend (18 of them being positive) at a 5% level for winter (January–February) total rainfall. In most cases where a trend was detected for winter rainfall there was also an increase in the number of days with rainfall (42% of the stations). These results suggest that globally, for the region under study, rainfall during January and February was more likely to occur, often resulting in a significant increase in the total rainfall during these months. Increasing trends in maximum daily rainfall during January and February were also observed for 9 stations (15% of the stations). The spatial distribution of stations where significant trends were detected is consistent with the hypothesis that trends in winter rainfall are more likely to be observed for stations located in the southern part of the region under study.  相似文献   

17.
1960-2009年咸宁市气候变化特征分析   总被引:1,自引:0,他引:1       下载免费PDF全文
利用1960-2009年咸宁市3个地面气象站气象资料,统计分析近50 a来该区域气温、降水等主要气候要素的年变化、四季变化及年代际变化的趋势特征。结果表明:近50 a研究区气温有上升趋势,气候倾向率为0.23℃/10a,年平均气温在20世纪90年代末发生突变。春秋季平均气温分别在2002年和1999年发生突变,夏季平均气温在2006年发生突变,冬季平均气温早在1990年发生突变。春季与秋季平均气温的变化比较一致,冬季平均气温对全球变暖响应最敏感,春秋与秋季对气候变暖的响应是比较敏感,而夏季对气候变暖的响应最为迟缓。近50 a年降水量呈波动但无明显增降的趋势,其中春夏两季变化趋势较为一致并有下降的趋势,且春夏降水量的变化主导着年降水量的变化;而冬季降水量有上升的趋势。通过对气温与降水变化趋势的比较,发现冬季对气候变化的响应最显著、其余季节无明显相关性。  相似文献   

18.
广东冬季气温变化的气候诊断分析   总被引:16,自引:4,他引:12  
利用广东省36个地面站的实测资料,分析了广东冬季平均气温、最低气温的气候变化特征,包括温度变化趋势、突变、周期性,并探讨了影响广东冬季增暖的可能因素。得出:广东冬季气温具有增温趋势,特别是最低气温。冬季广东最低气温从60年代下半叶开始上升,80年代以来,增温幅度有所增大,进入暖期。  相似文献   

19.
Using the monthly mean and minimum temperature data of the 36 observation stations in Guang-dong, the climatological features of the temperatures have been analyzed, including characteristics of trends, abrupt changes and periods. And the possible affecting factors on the winter warming in Guangdong have been discussed. The results show that the winter temperatures, particularly the monthly mean minimum temperatures in Guangdong, have a warming trend. The rise of the winter minimum temperatures in Guangdong began in the second half of 1960's and the warming was more evident since the 1980's.  相似文献   

20.
Based on daily precipitation data from 524 meteorological stations in China during the period 1960–2009, the climatology and the temporal changes (trends, interannual, and decadal variations) in the proportion of seasonal precipitation to the total annual precipitation were analyzed on both national and regional scales. Results indicated that (1) for the whole country, the climatology in the seasonal distribution of precipitation showed that the proportion accounted for 55 % in summer (June–August), for around 20 % in both spring (March–May) and autumn (September–November), and around 5 % in winter (December–February). But the spatial features were region-dependent. The primary precipitation regime, “summer–autumn–spring–winter”, was located in central and eastern regions which were north of the Huaihe River, in eastern Tibet, and in western Southwest China. The secondary regime, “summer–spring–autumn–winter”, appeared in the regions south of the Huaihe River, except Jiangnan where spring precipitation dominated, and the southeastern Hainan Island where autumn precipitation prevailed. (2) For the temporal changes on the national scale, first, where the trends were concerned, the proportion of winter precipitation showed a significantly increasing trend, while that of the other three seasons did not show any significant trends. Second, for the interannual variation, the variability in summer was the largest among the four seasons and that in winter was the smallest. Then, on the decadal scale, China experienced a sharp decrease only in the proportion of summer precipitation in 2000. (3) For the temporal changes on the regional scale, all the concerned 11 geographic regions of China underwent increasing trends in the proportion of winter precipitation. For spring, it decreased over the regions south of the Yellow River but increased elsewhere. The trend in the proportion of summer precipitation was generally opposite to that of spring. For autumn, it decreased over the other ten regions except Inner Mongolia with no trend. It is noted that the interannual variability of precipitation seasonality is large over North China, Huanghuai, and Jianghuai; its decadal variability is large over the other regions, especially over those regions south of the Yangtze River.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号