首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
For the 10–30 nm interval within the extreme UV region of the solar spectrum, there are no commonly accepted views on the spectral composition and absolute magnitudes of the radiation intensity due to the lack of reliable data. This region is connected with characteristics of the ionosphere heat regime, photoelectron spectrum parameters and E–F valley characteristics. For estimating the solar radiation flux by the indirect route within the spectral region from 10 to 30 nm, which is difficult for direct measurements, it is suggested to use data on the electron concentration in the E-region maximum and E–F valley. Taken from empirical models, the data on these parameters were correlated with theoretical calculations of height profiles of electron concentration in the ionosphere. Based on the proportion between electron concentration in the E-layer maximum and E–F valley minimum, the solar radiation flux within the 10–30 nm region was shown to be 2.5 times greater than that obtained in measurements on board the ‘AE–E’ and ‘AE–C’ satellites. The results are used for correcting model spectra of the extreme UV radiation.  相似文献   

2.
Photoelectron flux in the energy range 6–70 eV coming from the sunlight conjugate ionosphere has been measured directly by the rocket borne low energy electron spectrometer in the altitude region of 210–350 km. Pitch angle distribution of the measured flux is nearly isotropic, the flux decreasing slightly with pitch angle. The photoelectron fluxes measured at 350 km at the energies of 15 and 30 eV are 3 × 106 and 1 × 106 (cm2 s str eV)?1 respectively which decrease to 1 × 106 and 1 × 105 at 250 km at the same energies. These values are consistent with the vertical profile of the 630 nm airglow intensity measured simultaneously. The fluxes obtained near apogee show peaks in the range 20–30 eV which also appear in the daytime photoelectron flux, indicating reduced loss of electrons during the passage from the conjugate ionosphere through the plasmasphere at the low geomagnetic latitude where observation was made. Photoelectron fluxes observed below the apogee height are compared to the calculated fluxes to investigate the interaction of electrons with the atmospheric species during the passage in the ionosphere. Calculated fluxes obtained by using continuous slowing-down approximation and neglecting pitch angle scattering are in good agreement with the observations although there still remain disagreements in detailed comparison which may be ascribed to the assumptions inherent in the calculation and/or to the uncertainties of the input data for the calculation.  相似文献   

3.
Vertical fluxes of ionization in the F2 region have been measured by the incoherent scatter technique over Millstone Hill in 1969. The results obtained near midnight for the region above hmaxF2 have been examined to determine whether there is a significant flux of ionization from the magnetosphere to the ionosphere that serves to maintain the F-layer. It is found that H+ ions are a minor constituent over the altitude range in which useful measurements can be made, so that any conclusion must rest upon properly interpreting the observed O+ fluxes. By selecting periods when the layer did not appear to be decaying rapidly it was hoped to find cases where the O+ flux did not vary with altitude in the range 500 h 800 km (i.e. where losses are unimportant), since this would imply that the flux is of magnetospheric origin.

While three cases exhibited this behaviour, the majority exhibited a decrease in the O+ flux with height, indicating that the layer was descending. Attempts to correct for this were made, and the average flux from the magnetosphere was estimated as 3 × 107 el/cm2/sec. This is in fair agreement with other recent estimates, and implies that at this latitude the ionosphere is not maintained solely by the magnetospheric flux. Moreover, large increases in flux that could give rise to nocturnal increases in the total content of the layer do not appear to have been seen.  相似文献   


4.
The total photoelectron and secondary electron fluxes are calculated at different times and altitudes along the trajectory of Mars Global Surveyor passing through the nightside and dayside martian ionosphere. These results are compared with the electron reflectometer experiment on board Mars Global Surveyor. The calculated electron spectra are in good agreement with this measurement. However, the combined fluxes of proton and hydrogen atom as calculated by E. Kallio and P. Janhunen (2001, J. Geophys. Res.106, 5617-5634) were found to be 1-2 orders of magnitude smaller than the measured spectra. We have also calculated ionization rates and ion and electron densities due to solar EUV, X-ray, and electron-proton-hydrogen atom impacting with atmospheric gases of Mars at solar zenith angles of 75°, 105°, and 127°. In the vicinity of the dayside ionization peak, it is found that the ion production rate caused by the precipitation of proton-hydrogen atom is larger than the X-ray impact ionization rate while at all altitudes, the photoionization rate is always greater than either of the two. Moreover, X-rays contribute greatly to the photoelectron impact ionization rate as compared to the photoion production rate. The calculated electron densities are compared with radio occultation measurements made by Mars Global Surveyor, Viking 1, and Mars 5 spacecraft at these solar zenith angles. The dayside ionosphere produced by proton-hydrogen atom is smaller by an order of magnitude than that produced by solar EUV radiation. X-rays play a significant role in the dayside ionosphere of Mars at the altitude range 100-120 km. Solar wind electrons and protons provide a substantial source for the nightside ionosphere. These calculations are carried out for a solar minimum period using solar wind electron flux, photon flux, neutral densities, and temperatures under nearly the same areophysical conditions as the measurements.  相似文献   

5.
We present calculations of the photoelectron flux in the ionosphere which have been obtained by solving the Boltzmann equation. The method is flexible enough to allow for a wide range of energy and angular dependences for both external and internal electron sources. This work represents the first attempt to incorporate anisotropic electron-neutral cross sections for elastic collisions in a multi-stream photoelectron flux calculation. Detailed comparisons of calculated and measured photoelectron fluxes show excellent agreement.  相似文献   

6.
Radar observations of the 1996 Geminid and 1997 Quadrantid showers are reported using the CLOVAR stratosphere–troposphere (ST) radar. A method for determining the limiting sensitivity of a radar system using observed number–amplitude data from a single shower is presented, and the result compared with more conventional measurements. This technique is capable of providing very precise measurement of the mass index for a shower in cases where large numbers of echoes are available. The mass index profiles for both showers are presented and found to be U-shaped with a minimum near the time of peak flux. Peak flux values are found to be 0.19±0.02 meteoroid km−2 h−1 at 261.¡82±0.¡2 for the Geminids and 0.14±0.01 meteoroid km−2 h−1 at 283.¡08±0.¡08 for the Quadrantids to a limiting radio magnitude of 7.7. The locations of maximum are found to coincide with the visually determined position. No significant difference in the location of maximum is detected for either stream over a range of 2 radio magnitudes or in comparison with the visual results. The Geminid radar flux curve is found to be very broad near maximum with a plateau in activity lasting nearly 2 d, while the visual curve shows a FWHM of 24±4 h and modest asymmetry with a slow build-up to maximum. The Quadrantids are found to have a sharp maximum following a Gaussian profile to first order with a full width to the 1/e flux positions of 12 h.  相似文献   

7.
The influence of solar EUV and solar wind conditions on ion escape at Mars is investigated using ion data from the Aspera-3 instrument on Mars Express, combined with solar wind proxy data obtained from the Mars Global Surveyor (MGS) spacecraft. A solar EUV flux proxy based on data from the Earth position, scaled and shifted in time for Mars, is used to study relatively long time scale changes related to solar EUV variability. Data from May 2004 until November 2005 has been used. A clear dependence on the strength of the subsolar magnetic field as inferred from MGS measurements is seen in the ion data. The region of significant heavy ion flows is compressed and the heavy ion flux density is higher for high subsolar magnetic field strength. Because of the difference in outflow area, the difference in estimated total outflow is somewhat less than the difference in average flux density. We confirm previous findings that escaping planetary ions are mainly seen in the hemisphere into which the solar wind electric field is pointed. The effect is more pronounced for the high subsolar magnetic field case.The average ion motion has a consistent bias towards the direction of the solar wind electric field, but the main motion is in the antisunward direction. The antisunward flow velocity increases with tailward distance, reaching above at 2 to 3 martian radii downtail from Mars for O+ ions. Different ion species reach approximately the same bulk flow energy. We did not find any clear correlation between the solar EUV flux and the ion escape distribution or rate, probably because the variation of the solar EUV flux over our study interval was too small. The results indicate that the solar wind and its magnetic field directly interacts with the ionosphere of Mars, removing more ions for high subsolar magnetic field strength. The interaction region and the tail heavy ion flow region are not perfectly shielded from the solar wind electric field, which accelerates particles over relatively large tail distances.  相似文献   

8.
9.
We have computed two phase models of the interstellar medium, with cosmic rays and X-rays assumed to be the main ionizing agents, heating due to photoelectron ejection from the interstellar grains. We show that it is possible to have a hot and tenuous intercloud medium in pressure equilibrium with the interstellar clouds for a wide range of physical conditions, possibly existing in the interstellar space. The atomic and ionic line observations towards Sco are shown to be consistent with the origin of these lines in the intercloud medium for a range of values of the ionizing flux. It is suggested that the intercloud medium may be predominantly neutral, with ionization rates consistent with the limits imposed by molecular observations. The mean fractional ionization of the intercloud medium is 1%.On leave from Tata Institute of Fundamental Research, Bombay, India.  相似文献   

10.
We have constructed a one-dimensional model of the nightside ionosphere of Venus in which it is assumed that the ionization is maintained by day-to-night transport of atomic ions. Downward fluxes of O+, C+ and N+ in the ratios measured on the dayside at high altitudes are imposed at the upper boundary of the model (about 235 km). We discuss the resulting sources and sinks of the molecular ions NO+,CO+,N2+,CO2+ and O2+. As the O+ flux is increased, the peak density of O+ increases proportionally and the altitude of the peak decreases. The O2+ peak density is approximately proportional to the square root of the O+ flux and the peak rises as the O+ flux increases. NO+ densities near the peak are relatively unaffected by changes in the O+ flux. If the ionosphere is maintained mostly by transport, the ratio of the peak densities of O+ and O2+ indicates the downward flux ofO+, independent of the absolute magnitudes of the densities. The densities of mass-28 ions are, however, still considered to be the most sensitive indicator of the importance of electron precipitation. We examine here the inbound and outbound portions of six early nightside orbits with low periapsis and use data from the Pioneer Venus orbiter ion mass spectrometer, the retarding potential analyzer and the electron temperature probe to determine the relative importance of ion transport and electron precipitation. For most of the orbits, precipitation is inferred to be of low to moderate importance. Only for orbit 65, which was the first nightside orbit published by Taylor et al. [J. geophys. Res. 85, 7765 (1980)] and for the inbound portion of orbit 73 does the ionization structure appear to be greatly affected by electron precipitation.  相似文献   

11.
A new structure element of the Arctic ionosphere has been detected from the data of topside sounding of the ionosphere: quasi-vertical walls of high-density plasma. The importance of studying this phenomenon for geophysics and the practice of radio wave propagation in high latitudes is noted. The Arktika-M hydrometeorological space complex with an onboard ionosonde is proposed for its study. The possibility of observing and analyzing all life-cycle phases of this ionospheric inhomogeneity is shown.  相似文献   

12.
The ionosphere of Jupiter's satellite Io, discovered by the Pioneer 10 radio-occultation experiment, cannot easily be understood in terms of a model of a gravitationally bound, Earth-like ionosphere. Io's gravitational field is so weak that a gravitationally bound ionosphere would probably be blown away by the ram force of the Jovian magnetospheric wind — i.e., the plasma corotating in the Jovian magnetosphere. We propose here a model in which the material for Io's atmosphere and ionosphere is drawn from the ionosphere of Jupiter through a Birkeland current system that is driven by the potential induced across Io by the Jovian corotation electric field. We argue that the ionization near Io is caused by a comet-like interaction between the corotating plasma and Io's atmosphere. The initial interaction employs the critical velocity phenomenon proposed many years ago by Alfvén. Further ionization is produced by the impact of Jovian trapped energetic electrons, and the ionization thus created is swept out ahead of Io in its orbit. Thus, we suggest that what has been reported as a day-night ionospheric asymmetry is in fact an upstream-downstream asymmetry caused by the Jovian magnetospheric wind.Paper dedicated to Professor Hannes Alfvén on the occasion of his 70th birthday, 30th May, 1978.  相似文献   

13.
In association with the large solar flare of April 15, 2001, the Chacaltaya neutron monitor observed a 3.6σ enhancement of the counting rate between 13:51 and 14:15 UT. Since the enhancement was observed beginning 11 min before the GLE, solar neutrons must be involved in this enhancement. The integral energy spectrum of solar neutrons can be expressed by a simple power law in energy with the index γ=-3.0±1.0. On the other hand, an integral energy spectrum of solar protons has been obtained in the energy range between 650 MeV and 12 GeV. The spectrum can also be expressed by a power law with the power index γ=-2.75±0.15. The flux of solar protons observed at Chacaltaya (at 12 GeV) was already one order less than the flux of the galactic cosmic rays. It may be the first simultaneous observation of the energy spectra of both high-energy protons and neutrons. Comparing the Yohkoh soft X-ray telescope images with the observed particle time profiles, an interesting picture of the particle acceleration mechanism has been deduced.  相似文献   

14.
Norton  A.A.  Ulrich  R.K. 《Solar physics》2000,192(1-2):403-413
A comprehensive observing effort was undertaken to simultaneously obtain full Stokes profiles as well as longitudinal magnetogram maps of a positive plage region on 8 December, 1998 with the Michelson Doppler Imager, the Advanced Stokes Polarimeter and Mt. Wilson Observatory magnetograph. We compare 1.2 spatially-averaged signals of velocities as well as filter magnetograph longitudinal flux signals with Stokes determined fluctuations in filling factor, field inclination, magnetic flux and field strength. The velocity signals are in excellent agreement. Michelson Doppler Imager magnetic flux correlates best with fluctuations in the Advanced Stokes Polarimeter filling factor, not inclination angle or field strength. A correlated flux and filling factor change in the absence of a field strength fluctuation can be understood in terms of internally unperturbed flux tubes being buffeted by external pressure fluctuations. The 12.5 square aperture spatially averaged Mt. Wilson magnetograph signals are compared with Michelson Doppler Imager signals from the corresponding observing area. Velocity signals are in superb agreement. Magnetic signals exhibit similar oscillatory behavior. Lack of Advanced Stokes Polarimeter data for this time excludes interpretation of magnetic fluctuations as due to filling factor or field inclination angle. Mt. Wilson Observatory simultaneous sampling of the nickel and sodium spectral line profiles with several wing pairs allowed inter-comparison of signals from different heights of formation. Slight phase shifts and large propagation speeds for the velocity signals are indicative of modified standing waves. Phase speeds associated with magnetic signals are characteristic of photospheric Alfvén speeds for plage fields. The phase speed increase with height agrees with the altitude dependence of the Alfvén speed. The observed fluctuations and phases are interpreted as a superposition of signatures from the horizontal component of the driving mechanism sweeping the field lines in/out of the resolution area and the magnetic response of the flux tube to this buffeting.  相似文献   

15.
Meteoric ions in the atmosphere of Mars   总被引:1,自引:0,他引:1  
  相似文献   

16.
Photoelectrons of ionospheric origin have been observed for the first time at high altitudes (up to 7RE geocentric distance) using the suprathermal plasma analysers (SPA) on the GEOS satellites. At such high altitudes the photoelectron flux is confined within a few degrees of the magnetic field direction. We show how this flux may be identified and extracted from the background which is a combination of locally produced photoelectrons and ambient plasma. GEOS-2 results are presented to illustrate the “turn-on” of the photoelectron flux at dawn in the ionosphere. Data from GEOS-1 are used to study the behaviour of the photoelectron flux with equatorial geocentric distance from 3 to 7RE. The results compare favourably with theoretical models and with ionospheric observations at mid latitudes.  相似文献   

17.
Mackay  D.H.  Priest  E.R.  Lockwood  M. 《Solar physics》2002,207(2):291-308
In this paper the origin and evolution of the Sun's open magnetic flux are considered for single magnetic bipoles as they are transported across the Sun. The effects of magnetic flux transport on the radial field at the surface of the Sun are modeled numerically by developing earlier work by Wang, Sheeley, and Lean (2000). The paper considers how the initial tilt of the bipole axis () and its latitude of emergence affect the variation and magnitude of the surface and open magnetic flux. The amount of open magnetic flux is estimated by constructing potential coronal fields. It is found that the open flux may evolve independently from the surface field for certain ranges of the tilt angle. For a given tilt angle, the lower the latitude of emergence, the higher the magnitude of the surface and open flux at the end of the simulation. In addition, three types of behavior are found for the open flux depending on the initial tilt angle of the bipole axis. When the tilt is such that ge2° the open flux is independent of the surface flux and initially increases before decaying away. In contrast, for tilt angles in the range –16°<<2° the open flux follows the surface flux and continually decays. Finally, for le–16° the open flux first decays and then increases in magnitude towards a second maximum before decaying away. This behavior of the open flux can be explained in terms of two competing effects produced by differential rotation. Firstly, differential rotation may increase or decrease the open flux by rotating the centers of each polarity of the bipole at different rates when the axis has tilt. Secondly, it decreases the open flux by increasing the length of the polarity inversion line where flux cancellation occurs. The results suggest that, in order to reproduce a realistic model of the Sun's open magnetic flux over a solar cycle, it is important to have accurate input data on the latitude of emergence of bipoles along with the variation of their tilt angles as the cycle progresses.  相似文献   

18.
Photochemical Chapman theory predicts that the square of peak electron density, Nm, in the dayside ionosphere of Mars is proportional to the cosine of solar zenith angle. We use Mars Global Surveyor Radio Science profiles of electron density to demonstrate that this relationship is generally satisfied and that positive or negative residuals between observed and predicted values of are caused by periods of relatively high or low solar flux, respectively.Understanding the response of the martian ionosphere to changes in solar flux requires simultaneous observations of the martian ionosphere and of solar flux at Mars, but solar flux measurements are only available at Earth. Since the Sun's output varies both in time and with solar latitude and longitude, solar flux at Mars is not simply related to solar flux at Earth by an inverse-square law. We hypothesize that, when corrected for differing distances from the Sun, solar fluxes at Mars and Earth are identical when shifted in time by the interval necessary for the Sun to rotate through the Earth–Sun–Mars angle.We perform four case studies that quantitatively compare time series of Nm at Mars to time series of solar flux at Earth and find that our hypothesis is satisfied in the three of them that used ionospheric data from the northern hemisphere. We define a solar flux proxy at Mars based upon the E10.7 proxy for solar flux at Earth and use our best case study to derive an equation that relates Nm to this proxy. We discuss how the ionosphere of Mars can be used to infer the presence of solar active regions not facing the Earth.Our fourth case study uses ionospheric observations from the southern hemisphere at latitudes where there are strong crustal magnetic anomalies. These profiles do not have Chapman-like shapes, unlike those of the other three case studies. We split this set of measurements into two subsets, corresponding to whether or not they were made at longitudes with strong crustal magnetic anomalies. Neither subset shows Nm responding to changes in solar flux in the manner that we observe in the three other case studies.We find many similarities in ionospheric responses to short-term and long-term changes in solar flux for Venus, Earth, and Mars. We consider the implications of our results for different parametric equations that have been published describing this response.  相似文献   

19.
F. Kneer  F. Stolpe 《Solar physics》1996,164(1-2):303-310
This contribution deals with the properties of small-scale magnetic elements in plages. Spectro-polarimetric observations, obtained with the highest possible spatial resolution with the German solar telescopes at the Observatorio del Teide on Tenerife, were analysed. We conclude from the spread of line parameters measured in the Stokes I and V profiles of Fe I and Fe II lines that a wide range of magnetic properties is realised in the solar atmosphere. The flow velocities in small-scale magnetic flux tubes, deduced from the zero-crossing of the V profiles at high spatial resolution, show a fluctuation of v Doppler = 580 m s-1. This is substantially smaller than the turbulent broadening velocities of v Doppler = 2 – 3 km s–1 commonly derived by fitting V profiles from flux tube models to low spatial resolution data, e.g. from a Fourier Transform Spectrometer. Attempts to explain the high resolution I and V profiles by models of hydrostatic flux tubes are discussed. It appears impossible to accomplish agreement between the modeled and observed radiation of lines with strong and weak magnetic sensitivity at the same time. We suggest a scenario in which small-scale magnetic elements possess substructure and are dynamic, with gas flows and magnetic field strengths varying in space and time.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号