首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A systematic study of the dependence on disc parameters and input physics, such as opacity and the treatment of convection, of strange-mode instabilities in thin accretion discs, which have been discovered recently, is presented. The instabilities are found to exist for a wide range of parameters, are partly very robust, and their growth rates can reach the dynamical range. Even discs on galactic scales around massive black holes are affected by them. Two groups of instabilities can be distinguished, the first of which is related to the radiation-pressure-dominated part of the disc, and the second to helium/hydrogen ionization. By application of the NAR approximation, both of them can be shown to be of mechanical origin, and the classical κ -mechanism can be excluded as the instability mechanism. A heuristic model for strange-mode instabilities proposed in the context of stellar strange-mode instabilities in luminous stars seems to be applicable to the group associated with dominant radiation pressure.  相似文献   

2.
In order to understand star formation it is important to understand the dynamics of atomic and molecular clouds in the interstellar medium (ISM). Non-linear hydrodynamic flows are a key component to the ISM. One route by which non-linear flows arise is the onset and evolution of interfacial instabilities. Interfacial instabilities act to modify the interface between gas components at different densities and temperatures. Such an interface may be subject to a host of instabilities, including the Rayleigh–Taylor, Kelvin–Helmholtz, and Richtmyer–Meshkov instabilities. Recently, a new density interface instability was identified. This self-gravity interfacial instability (SGI) causes any displacement of the interface to grow on roughly a free-fall time-scale, even when the perturbation wavelength is much less than the Jeans length. In previous work, we used numerical simulations to confirm the expectations of linear theory and examine the non-linear evolution of the SGI. We now continue our study by generalizing our initial conditions to allow the acceleration due to self-gravity to be non-zero across the interface. We also consider the behaviour of the SGI for perturbation wavelengths near the Jeans wavelength. We conclude that the action of self-gravity across a density interface may play a significant role in the ISM either by fuelling the growth of new instabilities or modifying the evolution of existing instabilities.  相似文献   

3.
4.
The study of resistive ballooning instabilities in line-tied coronal magnetic fields is extended by including viscosity in the stability analysis. The equations that govern the resistive ballooning instabilities are derived and the effects of parallel and perpendicular viscosity are included using Braginskii's stress tensor. Numerical solutions to these equations are obtained under the rigid wall boundary conditions for arcades with cylindrically-symmetric magnetic fields. It is found that viscosity has a stabilizing effect on the resistive ballooning instabilities with perpendicular viscosity being more important by far than parallel viscosity. The strong stabilizing effect of perpendicular viscosity can lead to complete stabilization for realistic values of the equilibrium quantities.Research Assistant at the Belgian Fund for Scientific Research.  相似文献   

5.
In this paper we review the possibilities for magnetohydrodynamic processes to handle the angular momentum transport in accretion disks. Traditionally the angular momentum transport has been considered to be the result of turbulent viscosity in the disk, although the Keplerian flow in accretion disks is linearly stable towards hydrodynamic perturbations. It is on the other hand linearly unstable to some magnetohydrodynamic (MHD) instabilities. The most important instabilities are the Parker and Balbus-Hawley instabilities that are related to the magnetic buoyancy and the shear flow, respectively. We discuss these instabilities not only in the traditional MHD framework, but also in the context of slender flux tubes, that reduce the complexity of the problem while keeping most of the stability properties of the complete problem. In the non-linear regime the instabilities produce turbulence. Recent numerical simulations describe the generation of magnetic fields by a dynamo in the resulting turbulent flow. Eventually such a dynamo may generate a global magnetic field in the disk. The relation of the MHD-turbulence to observations of accretion disks is still obscure. It is commonly believed that magnetic fields can be highly efficient in transporting the angular momentum, but emission lines, short-time scale variability and non-thermal radiation, which a stellar astronomer would take as signs of magnetic variability, are more commonly observed during periods of low accretion rates. Received October 12, 1995 / Accepted November 16, 1995  相似文献   

6.
An analytical derivation is given of possible electron instabilities in the solar wind, related to the observed forms of the electron distribution functions. The instabilities refer to the frequency regime intermediate between ion and electron cyclotron frequencies. Instability criteria are discussed in terms of the various parameters which have been measured by different solar wind experiments.  相似文献   

7.
The MHD instabilities of a temperature-anisotropic coronal plasma are considered. We show that aperiodic mirror instabilities of slow MHD waves can develop under solar coronal conditions for weak magnetic fields (B < 1 G) and periodic ion-acoustic instabilities can develop for strong magnetic fields (B > 10 G). We have found the instability growth rates and estimated the temporal and spatial scales of development and decay of the periodic instability. We show that the instabilities under consideration can play a prominent role in the energy balance of the corona and may be considered as a large-scale energy source of the wave coronal heating mechanism.  相似文献   

8.
孙何雨 《天文学报》2023,64(3):29-117
电子是太阳风粒子中最为重要的组分之一,它可以通过多种机制对太阳风产生影响.太阳风中的电子通常具有温度各向异性和束流两种非热平衡分布特征,这些偏离热平衡分布的特征可以通过波粒相互作用激发电子不稳定性和等离子体波动,激发的等离子体波动又可以通过波粒相互作用调制太阳风粒子的分布,从而加热太阳风中的背景粒子.因此电子动力学不稳定性在太阳风的演化过程中扮演了极为重要的角色.详细介绍了太阳风中常见的电子动力学不稳定性,并基于等离子体动力论,详细介绍太阳风传播过程中所出现的各种不稳定性,尤其是在近日球层和太阳大气区域所出现的电子声热流不稳定性以及低混杂热流不稳定性,并分析其波粒相互作用机制,以便更加深入地研究太阳风传播过程中的电子分布函数演化.  相似文献   

9.
The statistical properties of the spatial distribution of metals in the intergalactic medium are analyzed during the initial stages of its enrichment, when mixing is determined by the Kelvin-Helmholtz and Rayleigh-Taylor instabilities. The saturation of instabilities due to the damping of relative motions of gaseous flows leads to an incomplete mixing, hence on the small scale there appear regions with high (i.e., close to the initial) metallicity. A comparison with observational data shows that in the “post-reionization” Universe (z < 5) the irregularity of the metal distribution exhibits the features, characteristic of mixing with saturation of hydrodynamic instabilities.  相似文献   

10.
We present a survey of different kinds of instabilities in the context of radiative colliding flows which greatly contribute to structure formation. In particular, this includes analytical results for different kinds of thin shell instabilities (DI, NDI, NTSI). New numerical results for the non-linear evolution of such instabilities in two dimensions, and their coupling with the thermal cooling instability are presented. The astrophysical implications are briefly outlined, in particular the formation of knots and filaments. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Self-generated wave fluctuations are particularly interesting in the solar wind and magnetospheric plasmas, where Coulomb collisions are rare and cannot explain the observed states of quasi-equilibrium. Linear theory predicts that firehose and ordinary-mode instabilities can develop under the same conditions, which makes it challenging to separate the role of these instabilities in conditioning the space-plasma properties. The hierarchy of these two instabilities is reconsidered here for nonstreaming plasmas with an electron-temperature anisotropy T >T , where ∥ and ⊥ denote directions with respect to the local mean magnetic field. In addition to the previously reported comparative analysis, here the entire 3D wave-vector spectrum of the competing instabilities is investigated, with a focus on the oblique firehose instability and the relatively poorly known ordinary-mode instability. Results show a dominance of the oblique firehose instability with a threshold lower than the parallel firehose instability and lower than the ordinary-mode instability. For stronger anisotropies, the ordinary mode can grow faster, with maximum growth rates exceeding those of the oblique firehose instability. In contrast to previous studies that claimed a possible activity of the ordinary-mode in the low β [<?1] regimes, here it is rigorously shown that only the high β [>?1] regimes are susceptible to these instabilities.  相似文献   

12.
We investigate the stability of D-type ionization fronts (IF). We find the dispersion relation for surface modes of weak-D IF illuminated by a plane-parallel radiation field, including both the inclination of the IF to the ionizing radiation field and the effects of recombination in the ionized gas. It is well known that IF are unstable in the absence of recombination in the ionized gas, but that recombination tends to stabilize them. For finite inclination, however, IF are unstable at essentially all wavelengths in the limit of very cold upstream gas.
We present numerical hydrodynamic simulations of the development of the instabilities. These confirm the presence of long-wavelength instabilities of IF when the sound speed in the neutral gas is a finite fraction of that in the ionized gas and the ionization cross section is finite. They also show the development of the instabilities to non-linear amplitude.  相似文献   

13.
Measurements from the Galileo probe suggest that the zonal winds are deep rooted. Jupiter's high rotation rate makes it likely that the whole outer molecular H/He layer is involved in these long-lived jet flows. Assuming that the primary flows are geostrophic, and that the banded surface structure stretches right through the molecular H/He layer, we examine the conditions for such flows to be stable. As a first step, the linear stability of some prescribed banded zonal flows in a rotating spherical shell is explored. Incompressibility is assumed for simplicity, and the boundary condition is stress-free. We compare solutions for two aspect ratios, appropriate for the molecular H/He layers of Jupiter and Saturn, and two Ekman numbers (E=10−2 and E=10−4). Convective and shear flow instabilities compete in our system. The convective instabilities are of the well-known columnar structure. Shear flow instabilities for the larger Ekman number are similar to the Taylor-Couette instability in rotating annuli. At the lower Ekman number, shear flow instabilities adopt a geostrophic character, assuming the form of rotating columns, similar to the convective instabilities. While the convective instability always sets in outside the tangent cylinder, shear instability can become unstable inside the tangent cylinder. If even a weak zonal flow is present inside the tangent cylinder, the flow is unstable to shear instability. This offers an explanation why the jovian zonal jet structure is much weaker at the higher latitudes that correspond to locations inside the tangent cylinder.  相似文献   

14.
We study the nature of non-axisymmetric dynamical instabilities in differentially rotating stars with both linear eigenmode analysis and hydrodynamic simulations in Newtonian gravity. We especially investigate the following three types of instability; the one-armed spiral instability, the low   T /| W |  bar instability, and the high   T /| W |  bar instability, where T is the rotational kinetic energy and W is the gravitational potential energy. The nature of the dynamical instabilities is clarified by using a canonical angular momentum as a diagnostic. We find that the one-armed spiral and the low   T /| W |  bar instabilities occur around the corotation radius, and they grow through the inflow of canonical angular momentum around the corotation radius. The result is a clear contrast to that of a classical dynamical bar instability in high   T /| W |  . We also discuss the feature of gravitational waves generated from these three types of instability.  相似文献   

15.
I review various observations which suggest that the winds of hot stars are inhomogeneous because of instabilities in the wind flow. On large scales, local wind overdensities are indirectly detected in the form of excess in the infra-red (IR) and radio free-free continuum. The X-ray detection of a hot (T ∼ 106) wind component suggests that the wind is pervaded with strong shocks. The small-scale density structure of the wind can be studied from observations of Line-Profile Variations (LPVs) in optical and UV spectral lines, which are formed close to the stellar surface. LPVs in lines of the P Cygni type consist of blue-edge variations in saturated profiles, and Discrete Absorption Components (DACs) and Periodic Absorption Modulations (PAMs) in unsaturated profiles. These LPVs are shown to be recurrent, and thought to result from instabilities propagating through the wind and generated at the stellar surface. LPVs in recombination lines appear as stochastic subpeaks, which suggest that wind instabilities have a clump-like, rather than shell-like, structure. The kinematics of LPVs in both line types is consistent with wind propagating shocks generated from radiative instabilities. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Dry convective instabilities in Mars’s middle atmosphere are detected and mapped using temperature retrievals from Mars Climate Sounder observations spanning 1.5 martian years. The instabilities are moderately frequent in the winter extratropics. The frequency and strength of middle atmospheric convective instability in the northern extratropics is significantly higher in MY 28 than in MY 29. This may have coupled with changes to the northern hemisphere mid-latitude and tropical middle atmospheric temperatures and contributed to the development of the 2007 global dust storm. We interpret these instabilities to be the result of gravity waves saturating within regions of low stability created by the thermal tides. Gravity wave saturation in the winter extratropics has been proposed to provide the momentum lacking in general circulation models to produce the strong dynamically-maintained temperature maximum at 1-2 Pa over the winter pole, so these observations could be a partial control on modeling experiments.  相似文献   

17.
The magnetospheres around neutron stars should be very particular because of their strong magnetic field and rapid rotation. A study of the pulsar magnetospheres is of crucial importance since it is the key issue to understand how energy outflow to the exterior is produced. In this paper, we discuss magnetohydrodynamic processes in the pulsar magnetosphere. We consider in detail the properties of magnetohydrodynamic waves that can exist in the magnetosphere and their instabilities. These instabilities lead to formation of magnetic structures and can be responsible for short-term variability of the pulsar emission.  相似文献   

18.
An elementary review about stellar and galactic dynamics is presented. Despite involving extremely classical Newtonian physics, stellar dynamics presents some fundamental difficulties rarely discussed in the literature, such as why the phase space distribution is assumed to be a smooth function of coordinates. Many systems are found to be unstable over intermediate time-scales, as more instabilities have been discovered over the years, so the old aim of describing equilibrium stable systems shifts presently toward understanding evolutive systems. From the linearized variational Boltzmann equation a distinction can be made between instabilities triggered by the chaotic part of phase space, and instabilities caused by steep gradients in the velocity part of the distribution function. The new challenges to include evolutive systems can presently only be studied efficiently with computer techniques. Future studies are likely to involve orders of magnitude more advanced computers in which parallelism will play a major role. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
We present the main findings of two recent studies using high-resolution MHD simulations of supersonic magnetized shear flow layers. First, a strong large-scale coalescence effect partially countered by small-scale reconnection events is shown to dominate the dynamics in a two-dimensional layer subject to Kelvin-Helmholtz (KH) instabilities. Second, an interaction mechanism between two different types of instabilities (KH and current-driven modes) is shown to occur in a cylindrical jet configuration embedded in an helical magnetic field. Finally, we discuss the implications of these results for astrophysical jets survival.  相似文献   

20.

The sequence of evolution of the protoplanetary gas-and-dust disk around the parent star includes, according to modern concepts, its compression in the central plane and decay into separate dust condensations (clusters) due to the occurrence of various types of instabilities. The interaction of dust clusters of a fractal structure during their collisions is considered as a key mechanism for the formation and growth of primary solids, which serve as the basis for the subsequent formation of planetesimals and embryos of planets. Among the mechanisms contributing to the formation of planetesimals, an important place belongs, along with gravitational instability, hydrodynamic instabilities, in particular, the socalled streaming instability of the two-phase gas-dust layer due to its ability to concentrate dispersed particles in dense clots. In contrast to a number of existing models of streaming instability, in which dust particles are considered structurally compact and monodisperse, this paper proposes a more realistic model of polydisperse particles of fractal nature, forming dust clusters as a result of coagulation. The instability of the dust layer in the central plane of the protoplanetary disk under linear axisymmetric perturbations of its parameters is considered. A preliminary conclusion can be drawn that the proposed model of dust fractal aggregates of different scales increases the efficiency of linear growth of hydrodynamic instabilities, including the streaming instabilities associated with the difference between the velocities of the dust and gas phases.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号