首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Surface tension (σ) profoundly influences the ability of gas bubbles to nucleate in silicate melts. To determine how temperature impacts σ, experiments were carried out in which high-silica rhyolite melts with 5 wt% dissolved water were decompressed at temperatures that ranged from 775 to 1,085°C. Decompressions were also carried out using dacite melts with 4.3 wt% dissolved water at 1,150°C. Water bubbles nucleated in rhyolite only when decompressions exceeded 95 MPa at all temperatures. Bubbles nucleated in number densities that increased as decompression increased and at hotter temperatures at a given amount of decompression. After correcting decompression amounts for temperature differences, values for σ were estimated from nucleation rates and found to vary between 0.081 and 0.093 N m−1. Surface tension decreases as temperature increases from 775 to 875°C, but then increases as temperature increases to 1,085°C. Those values overlap previous results, but only when melt viscosity is less than 104 Pa s. For low-viscosity rhyolite, there is a strong correlation of σ with temperature, in which σ increases by 6.9 × 10−5 N m−1 C−1. That variation is robust for 5–9 wt% dissolved water, as long as melt viscosity is ≤104 Pa s. More viscous rhyolite deviates from that correlation probably because nucleation is retarded in stiffer melts. Bubbles nucleated in dacite when decompressions exceeded 87 MPa, and occured in one or more events as decompression increased. Surface tension is estimated to be 0.083 (±0.001) N m−1 and when adjusted for temperature agrees well with previous results for colder and wetter dacite melts. At a given water content, dacite melts have lower surface tensions than rhyolite melts, when corrected to a fixed temperature.  相似文献   

2.
Amphibole-bearing mafic inclusions (low to medium-K high-alumina basalt to basaltic andesite) comprise 4.1 vol% of calc-alkaline rhyolite and rhyodacite lavas on Akrotiri Peninsula, Santorini, Greece. Physical features indicate a magmatic origin for the inclusions, involving mingling with the host silicic magma and quenching. Water contents of the mafic magmas are estimated to have been above 4% at water pressures of 1.8 kbars or more at temperatures of approximately 950–1,000 °C. Three evolutionary stages are inferred in their petrogenesis. In the first stage infiltration of slab fluids promotes partial melting in the mantle to generate primitive wet basaltic magmas enriched in LREE, LILE, Th and U in comparison to N-type MORB. In the second stage storage and crystal differentiation of primitive magmas occurred in the lithospheric mantle or deep crust, involving olivine, spinel and clinopyroxene followed by amphibole and plagioclase. In the third stage differentiated mafic magma intrudes into porphyritic silicic magma at shallower crustal levels (estimated at 7–10 km). Mingling and quenching of the mafic magmas within the silicic host causes chemical or physical interactions between the inclusions and the host prior to and during eruption. The silicic lavas have geochemical affinities with the mafic inclusions, but are relatively depleted in MREE, HREE and Y and enriched in Rb relative to Ba and K. These observations are consistent with involvement of amphibole in magma genesis due either to crystal differentiation from wet basalt or to partial melting of mafic rocks with residual amphibole. Crystallization of wet basalt in the deep crust is preferred on the basis of physical considerations.Electronic Supplementary Material Supplementary material is available for this article if you access the article at . A link in the frame on the left on that page takes you directly to the supplementary material.Editorial responsibility: I. Parsons  相似文献   

3.
Archean volcanic rocks in the Confederation Lake area, northwestern Ontario, Canada, are in three mafic to felsic cycles collectively 8,500 to 11,240 m thick. Each cycle begins with pillowed basalt and andesite flows and is capped with andesitic to rhyolitic pyroclastic rocks and minor flows. Seventy five samples from this succession were analyzed for major and trace elements including the rare earth elements. In two cycles, tholeiitic basalts are overlain by calcalkaline andesite to rhyolite. In the third, cycle, the tholeiitic basalts are overlain by tholeiitic rhyolites. Fe enrichment in basalts is accompanied by depletion of Ca, Al, Cr, Ni, and Sr, and enrichment in Ti, P, the rare earth elements, Nb, Zr, and Y. This is interpreted as open system fractionation of olivine, plagioclase, and clinopyroxene. Si enrichment in dacites and rhyolites is attributed to fractional crystallization of plagioclase, K-feldspar, and biotite. Tholeiitic basalt liquids are believed to be mantle-derived. Intercalated andesites with fractionated rare earth patterns appear to be products of mixing of tholeiitic basalt and rhyolite liquids and, andesites with flat rare earth patterns are probably produced by melting of previously depleted mantle. Felsic magmas are partial melts of tholeiitic basalt or products of liquid immiscibility in a tholeiitic system perhaps involving extreme fractionation in a high level magma chamber, and assimilation of sialic crust. It is concluded that Archean cyclical volcanism in this area involves the interplay of several magmatic liquids in processes of fractional crystallization, magma mixing, liquid immiscibility, and the probable existence of compositionally zoned magma chambers in the late stages of each cycle. The compositionally zoned chambers existed over the time period represented by the upper felsic portion of each cycle.  相似文献   

4.
The island of Salina comprises one of the most distinct calc-alkaline series of the Aeolian arc (Italy), in which calc-alkaline, high-K calc-alkaline, shoshonitic and leucite-shoshonitic magma series are developed. Detailed petrological, geochemical and isotopic (Sr, Nd, Pb, O) data are reported for a stratigraphically well-established sequence of lavas and pyroclastic rocks from the Middle Pleistocene volcanic cycle (430–127 ka) of Salina, which is characterized by an early period of basaltic volcanism (Corvo; Capo; Rivi; Fossa delle Felci, group 1) and a sequence of basaltic andesites, and andesites and dacites in the final stages of activity (Fossa delle Felci, groups 2–8). Major and trace element compositional trends, rare earth element (REE) abundances and mineralogy reveal the importance of crystal fractionation of plagioclase + clinopyroxene + olivine/ orthopyroxene ± titanomagnetite ± amphibole ± apatite in generating the more evolved magma types from parental basaltic magmas, and plagioclase accumulation in producing the high Al2O3 contents of some of the more evolved basalts. Sr isotope ratios range from 0.70410 to 0.70463 throughout the suite and show a well-defined negative correlation with 143Nd/144Nd (0.51275–0.51279). Pb isotope compositions are distinctly radiogenic with relatively large variations in 206Pb/204Pb (19.30–19.66), fairly constant 207Pb/204Pb (15.68–15.76) and minor variations in 208Pb/204Pb ratios (39.15–39.51). Whole-rock δ18O values range from +6.4 to +8.5‰ and correlate positively with Sr isotope ratios. Overall, the isotopic variations are correlated with the degree of differentiation of the rocks, indicating that only small degrees of crustal assimilation are overprinting the dominant evolution by crystal–liquid fractionation (AFC-type processes). The radiogenic and oxygen isotope composition of the Salina basalts suggests derivation from primary magmas from a depleted mantle source contaminated by slab-derived fluids and subducted sediments with an isotopic signature of typical upper continental crust. These magmas then evolved further to andesitic and dacitic compositions through the prevailing process of low-pressure fractional crystallization in a shallow magma reservoir, accompanied by minor assimilation of crustal lithologies similar to those of the Calabrian lower crust. Received: 29 November 1999 / Accepted: 16 April 2000  相似文献   

5.
We present two-feldspar thermometry and diffusion chronometry from sanidine, orthopyroxene and quartz from multiple samples of the Bishop Tuff, California, to constrain the temperature stratification within the pre-eruptive magma body and the timescales of magma mixing prior to its evacuation. Two-feldspar thermometry yields estimates that agree well with previous Fe–Ti oxide thermometry and gives a ~80 °C temperature difference between the earlier- and later-erupted regions of the magma chamber. Using the thermometry results, we model diffusion of Ti in quartz, and Ba and Sr in sanidine as well as Fe–Mg interdiffusion in orthopyroxene to yield timescales for the formation of overgrowth rims on these crystal phases. Diffusion profiles of Ti in quartz and Fe–Mg in orthopyroxene both yield timescales of <150 years for the formation of overgrowth rims. In contrast, both Ba and Sr diffusion in sanidine yield nominal timescales 1–2 orders of magnitude longer than these two methods. The main cause for this discrepancy is inferred to be an incorrect assumption for the initial profile shape for Ba and Sr diffusion modelling (i.e. growth zoning exists). Utilising the divergent diffusion behaviour of Ba and Sr, we place constraints on the initial width of the interface and can refine our initial conditions considerably, bringing Ba and Sr data into alignment, and yielding timescales closer to 500 years, the majority of which are then within uncertainty of timescales modelled from Ti diffusion in quartz. Care must be thus taken when using Ba in sanidine geospeedometry in evolved magmatic systems where no other phases or elements are available for comparative diffusion profiling. Our diffusion modelling reveals piecemeal rejuvenation of the lower parts of the Bishop Tuff magma chamber at least 500 years prior to eruption. Timescales from our mineral profiling imply either that diffusion coefficients currently used are uncertain by 1–2 orders of magnitude, or that the minerals concerned did not experience a common history, despite being extracted from the same single pumice clasts. Introduction of the magma initiating crystallisation of the contrasting rims on sanidine, quartz, orthopyroxene and zircon was prolonged, and may be a marker of other processes that initiated the Bishop Tuff eruption rather than the trigger itself.  相似文献   

6.
The 14.1 Ma composite welded ignimbrite P1 (45 km3 DRE) on Gran Canaria is compositionally zoned from a felsic lower part to a basaltic top. It is composed of four component magmas mixed in vertically varying proportions: (1) Na-rhyolite (10 km3) zoned from crystal-poor to highly phyric; (2) a continuously zoned, evolved trachyte to sodic trachyandesite magma group (6 km3); (3) a minor fraction of Na-poor trachyandesite (<1 km3); and (4) nearly aphyric basalt (26 km3) zoned from 4.3 to 5.2 wt% MgO. We distinguish three sites and phases of mixing: (a) Mutual mineral inclusions show that mixing between trachytic and rhyolitic magmas occurred during early stages of their intratelluric crystallization, providing evidence for long-term residence in a common reservoir prior to eruption. This first phase of mixing was retarded by increasing viscosity of the rhyolite magma upon massive anorthoclase precipitation and accumulation. (b) All component magmas probably erupted through a ring-fissure from a common upper-crustal reservoir into which the basalt intruded during eruption. The second phase of mixing occurred during simultaneous withdrawal of magmas from the chamber and ascent through the conduit. The overall withdrawal and mixing pattern evolved in response to pre-eruptive chamber zonation and density and viscosity relationships among the magmas. Minor sectorial variations around the caldera reflect both varying configurations at the conduit entrance and unsteady discharge. (c) During each eruptive pulse, fragmentation and particulate transport in the vent and as pyroclastic flows caused additional mixing by reducing the length scale of heterogeneities. Based on considerations of magma density changes during crystallization, magma temperature constraints, and the pattern of withdrawal during eruption, we propose that eruption tapped the P1 magma chamber during a transient state of concentric zonation, which had resulted from destruction of a formerly layered zonation in order to maintain gravitational equilibrium. Our model of magma chamber zonation at the time of eruption envisages a basal high-density Na-poor trachyandesite layer that was overlain by a central mass of highly phyric rhyolite magma mantled by a sheath of vertically zoned trachyte-trachyandesite magma along the chamber walls. A conventional model of vertically stacked horizontal layers cannot account for the deduced density relationships nor for the withdrawal pattern.  相似文献   

7.
Abstract. A series of mudstones corresponding to N.8 to N.17 of Blow from the Uyashinai Mudstone Member, the Onnagawa Formation and the Funakawa Formation in the Taiheizan area of the central Green Tuff region, northeast Japan, was examined by chemical analysis. According to conventional chemical systematics, the mudstones are analyzed in terms of detrital, biogenic-A (siliceous), biogenic-B (calcareous) and hydrogenous components. The relative contribution of the biogenic-A (siliceous) component increases in upward succession in the Uyashinai and Onnagawa mudstones, whereas the contribution of the biogenic-B (calcareous) component is restricted to the lower Uyashinai mudstones. The contribution of hydrogenous components Zn, Pb, Cu and Ba tends to increase during the Nishikurosawa stage, and decreases near the Nishikurosawa/Onnagawa boundary (Pb and Ba) or in the Onnagawa stage (Zn and Cu). The observed enrichment of heavy metals in the Uyashinai mudstones is attributed to the onset of vigorous upwelling of deep water with higher nutrient and metal content associated with a contemporaneous change in global deep-water circulation.  相似文献   

8.
Melt inclusions in quartz phenocrysts from a single clast of pumice near the base of the plinian pumice fall of the Bishop Tuff were studied to test ideas concerning separation of melt and crystals in silicic magmas. Ten analyzed inclusions from the pumice clast are of high silica rhyolite composition with very low contents of the highly compatible elements Ba, Sr, and Eu, consistent with extensive fractionation. The concentrations of U, La, Ce, Mg, and Ca of these ten melt inclusions vary considerably as determined by ion microprobe. Petrologic considerations indicate that uranium is an incompatible element with a maximum bulk partition coefficient D of about 0.2 and that the evolution of the uranium content of the melt was controlled by crystallization of the magma. A minimum of 33 wt% perfect fractional crystallization is required to explain the observed range in uranium. However, only 17 wt% crystals occurred in the pumice clast. The greater calculated fraction of crystals requires significant separation of crystals and melt before the eruption of the plinian pumice fall in spite of the fact that crystal mixing (settling, etc.) did not occur in the Bishop magma.  相似文献   

9.
Summary ?Part of the Mesoproterozoic (1.6 Ga) Gawler Range Volcanics in South Australia is composed of mingled feldspar- quartz- phyric dacite, rhyodacite and rhyolite lavas. Field relationships suggest that dacite erupted first, locally grading into rhyodacite, followed by mingled dacite and rhyolite or rhyodacite and rhyolite, and finally in some areas rhyolite, and imply that the three lithofacies co-existed in a compositionally stratified magma chamber. Data on the bulk rock, groundmass and melt inclusion compositions suggest that post-eruption alteration has had very little effect on the original rock compositions. Melt inclusions in quartz from rhyolite and rhyodacite-dacite, respectively, belong to two compositional populations. Inclusions in the rhyolitic quartz have less evolved compositions with lower SiO2 (72–76.4 wt %) and higher Al2O3 (13.2–15.6 wt%) and Na2O (2.5–4.2 wt%) abundances. In contrast, melt inclusions in quartz from the rhyodacite-dacite are more “evolved” (i.e., 75.5–78.3 wt% SiO2, 11.2–12.7 wt% Al2O3 and 1.7–2.2 wt% Na2O). The two melt populations define a single compositional trend towards groundmass compositions, which are essentially similar in all three lithofaci es (77.8–80.5 wt% SiO2, 9.9–11.1  wt% Al2O3 and 2.2–2.4 wt% Na2O). This trend is consistent with the derivation of the groundmass melt from a single precursor melt of rhyolitic composition by means of crystallisation of dominant plagioclase, K-feldspar and minor quartz. Plagioclase-enriched dacite-rhyodacite magma comprises a mixture of the residual melt and plagioclase phenocryst s that accumulated in the upper part of the magma chamber and erupted first. Similar residual melt containing quartz and K-feldspar phenocrysts was present deeper in the magma chamber and erupted later to form quartz-, K-feldspar-phyric rhyolite.
Zusammenfassung ?Die Bildung von Si-reichem Dacit aus rhyolitischer Schmelze: Evidenz aus Schmelzeinschlüssen in Laven der 1.6 Ga Gawler Range Volcanics, Südaustralien Ein Teil der mesoproterozoischen (1.6 Ga) Gawler Range Volcanics in Südaustralien setzt sich aus “mingled” Feldspat- Quarz-phyrischen dacitischen, rhyodacitischen und rhyolithischen Laven zusammen. Gel?ndebefunde legen nahe, da? die Dacite, die lokal in Rhyodacite übergehen, zuerst eruptierten, gefolgt vom “mingled” Dacit und Rhyolith oder Rhyodacit und Rhyolith. Schlie?lich bildeten sich in einigen Gebieten Rhyolithe. Diese Beobachtungen lassen die Schlu?folgerung zu, da? die drei Lithofazies in einer geschichteten Magmenkammer koexistierten. Die Daten der Gesamtgesteins-, Grundmasse- und Schmelzeinschlu?- Zusammensetzungen zeigen, da? Alterationsvorg?nge nach der Eruption einen sehr minimalen Effekt auf die ursprüngliche Gesteinszusammensetzung hatten. Die Schmelzeinschl üsse in den Rhyolithen und Rhyodaciten geh?ren zwei unterschiedlich en Populationen an. Die Schmelzeinschlüsse in Quarz der Rhyolithe sind weniger deutlich “entwickelt” mit niedrigeren SiO2 (72–76.4 Gew.%) und h?heren Al2O3 (13.2–15.6 Gew.%) und Na2O-(2.5–4. 2 Gew.%) Gehalten. Im Unterschied dazu sind die Einschlüss e in Quarz aus Rhyodacit-Dacit st?rker “entwickelt” (i.e., 75.5–78.3 Gew.% SiO2, 11.2–12.7 G ew.% Al2O3 und 1.7–2.2 Gew.% Na2O). Die beiden Populationen von Schmelzeinschlüssen definieren einen einzigen Entwicklungstrend hin zur Zusammensetzung der Grundmasse, die in allen drei Lithofazies ?hnlich ist (77.8–80.5 Gew.% SiO2, 9.9–11.1 Gew.% Al2O3 und 2.2–2.4 Gew.% Na2O). Dieser Trend ist mit der Herkunft der Grundmasse-bildenden Schmelze aus einer einzigen Ausgangsschmelze rhyolithischer Zusammensetzung infolge der Kristallisation von haupts?chlich Plagioklas, Alkalifeldspat und untergeordnet Quarz konsistent. Dacit-Rhyodacitmagmen, die an Plagioklas angereichert sind, stellen eine Mischung der Residualschmelze mit Plagioklas- Ph?nokristallen, die sich in den oberen Teilen der Magmenkammer akkumuli ert haben, dar; sie eruptierten zuerst. ?hnliche residuale Schmelzen mit Quarz und Akalifeldspat-Ph?nokristallen waren auf die tieferen Teilen der Magmenkammer beschr?nkt; sie eruptierten sp?ter und bildeten die Quarz- und Akalifeldspat-phyrischen Rhyolithe.


Received April 1, 1999;/revised version accepted July 27, 1999  相似文献   

10.
The determination of total water content (H2OT: 0.1-10 wt%) and water speciation (H2Omolecular/OH) in volcanic products by confocal microRaman spectrometry are discussed for alkaline (phonolite) and calcalkaline (dacite and rhyolite) silicic glasses. Shape and spectral distribution of the total water band (H2OT) at ∼3550 cm−1 show systematic evolution with glass H2OT, water speciation and NBO/T. In the studied set of silicic samples, calibrations based on internal normalization of the H2OT band to a band related to vibration of aluminosilicate network (TOT) at ∼490 cm−1 vary with glass peraluminosity. An external calibration procedure using well-characterized glass standards is less composition-dependent and provides excellent linear correlation between total dissolved water content and height or area of the H2OT Raman band. Accuracy of deconvolution procedure of the H2OT band to quantify water speciation in water-rich and depolymerized glasses depends on the strength of OH hydrogen bonding. System confocal performance, scattering from embedding medium and glass microcrystallinity have a crucial influence on accuracy of Raman analyses of water content in glass-bearing rocks and melt inclusions in crystals.  相似文献   

11.
Mt. Baker is a dominantly andesitic stratovolcano in the northern Cascade arc. In this study, we show that the andesites are not all derived from similar sources, and that open-system processes were dominant during their petrogenesis. To this end, we discuss petrographic observations, mineral chemistry, and whole rock major and trace element chemistry for three of Mt. Baker’s late Pleistocene to Holocene lava flow units. These include the basalt and basaltic andesite of Sulphur Creek (SC) (51.4–55.8 wt% SiO2, Mg# 57–58), the Mg-rich andesite of Glacier Creek (GC) (58.3–58.7 wt% SiO2, Mg# 63–64), and the andesite and dacite of Boulder Glacier (BG) (60.2–64.2 wt% SiO2, Mg# 50–57). Phenocryst populations in all units display varying degrees of reaction and disequilibrium textures along with complicated zoning patterns indicative of open-system processes. All lavas are medium-K and calc-alkaline, but each unit displays distinctive trace element and REE characteristics that do not correlate with the average SiO2 content of the unit. The mafic lavas of SC have relatively elevated REE abundances with the lowest (La/Yb)N (~4.5). The intermediate GC andesites (Mg- and Ni-rich) have the lowest REE abundances and the highest (La/Yb)N (~6.7) with strongly depleted HREE. The more felsic BG lavas have intermediate REE abundances and (La/Yb)N (~6.4). The high-Mg character of the GC andesites can be explained by addition of 4% of a xenocrystic olivine component. However, their depleted REE patterns are similar to other high-Mg andesites reported from Mt. Baker and require a distinct mantle source. The two dominantly andesitic units (GC and BG) are different enough from each other that they could not have been derived from the same parent basalt. Nor could either of them have been derived from the SC basalt by crystal fractionation processes. Crystal fractionation also cannot explain the compositional diversity within each unit. Compositional diversity within the SC unit (basalt to basaltic andesite) can, however, be successfully modeled by mixing of basalt with compositions similar to the dacites in the BG unit. Given that the BG dacites erupted at ~80–90 ka, and a similar composition was mixed with the SC lavas at 9.8 ka, the process that produced this felsic end-member must have been repeatedly active for at least 70 ka.  相似文献   

12.
Microphenocrystic pyrrhotites were observed in the glassy groundmass of two dacite rocks from Satsuma-Iwojima, southwest Kyushu, Japan. It suggests that the dacite magma was saturated with respect to pyrrhotite at the time of eruption, and thus the sulfur contents in the groundmass can be taken as the solubility of sulfur in the dacite magma. The solubility of sulfur in the dacite rocks thus calculated is 65 to 72 ppm sulfur at the estimated conditions of T=900±50°C, and atm.  相似文献   

13.
A dacite sample from a nuée ardente deposit at Pitons du Carbet, Martinique, contained cummingtonite, orthopyroxene, quartz, magnetite, and ilmenite as phenocrysts, and thus was suitable for evaluation of the conditions of crystallization of nuée ardente materials according to the method of Ewart et al. (1971). The estimations were obtained with the aid of a Fortran IV program, which permitted the operation of all the arrangements between the available microprobe analyses. The results indicated that the phenocrystic association crystallized at moderate temperatures (ca. 750° C), under high oxygen fugacities (> NNO) and total pressures (2.3–4.5 Kb, with a maximal density of points at about 3.5 Kb), and water pressures approximating total pressures. The groundmass Fe-Ti oxides equilibrated at lower temperatures and under relatively increasing oxygen fugacities, the variation of which is tentatively ascribed to the aerial emplacement of the nuée ardente materials. The phenocryst data imply that in the case studied the high fluid pressures characterizing the nuée ardente eruptions were not acquired at a shallow level because of the deep intratelluric stage of crystallization of these differentiated calcalkalic magmas.  相似文献   

14.
玄武岩斑晶中熔体包裹体成分特征可以推断玄武岩源区物质组成,反映岩浆形成演化过程。利用LA—ICPMS对四合屯义县组玄武岩橄榄石、单斜辉石斑晶中单个熔体包裹体的元素组成进行了分析测试。研究结果表明,橄榄石、单斜辉石斑晶中的熔体包裹体在主、微量元素含量上表现出了比全岩更大的变化范围,但微量元素分配特征总体和全岩一致。单斜辉石斑晶中包裹体的CaO含量、CaO/Al2O3比值和Cr2O3含量随着单斜辉石Mg#值的降低而降低,反映了单斜辉石结晶分离的影响,Al2O3与Sr之间的显著相关关系则记录了斜长石结晶分离作用的影响,MgO—Ni和MgO—CaO/Al2O3的变化则反映了橄榄石的分离结晶作用。包裹体元素组成变化总体受橄榄石、单斜辉石和斜长石的结晶分离作用控制。结合前人研究成果,认为四合屯玄武岩在微量元素和同位素组成上的壳源组分特征可能部分地继承自原岩(即橄榄岩+榴辉岩部分熔融体反应形成的(橄榄)辉石岩),而不是岩浆上升过程中受地壳岩石混染的结果。高Mg#值单斜辉石斑晶中少量高Mg馆、高Si含量,低CaO、TiO2、Al2O3和微量元素含量的熔体包裹体反映玄武岩浆上升过程中受到了S1质岩石的混染,这与义县组玄武岩下伏地层为长城系大红裕组石英岩、石英砂岩的地质特征一致。因此,高Fo橄榄石斑晶中的熔体包裹体比采用向全岩中简单添加橄榄石方式计算出的原始熔体可能更能真实反映原始熔体组成。  相似文献   

15.
Most rhyolite eruption episodes of Tarawera volcano have emitted several physiochemically distinct magma batches (∼1–10 km3). These episodes were separated on a millennial timescale. The magma batches were relatively homogeneous in temperature and composition at pumice scale (>4 cm), but experienced isolated crystallisation histories. At the sub-cm scale, matrix glasses have trace element compositions (Sr, Ba, Rb) that vary by factors up to 2.5, indicating incomplete mixing of separate melts. Some quartz-hosted melt inclusions are depleted in compatible trace elements (Sr, Ti, Ba) compared to enclosing matrix glasses. This could reflect re-melting of felsic crystals deeper in the crystal pile. Individual quartz crystals display a variety of cathodoluminescence brightness and Ti zoning patterns including rapid changes in melt chemistry and/or temperature (∼50–100°C), and point to multi-cycle crystallisation histories. The Tarawera magma system consisted of a crystal-rich mass containing waxing and waning melt pockets that were periodically recharged by silicic melts driven by basaltic intrusion. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Carbonatites of the Jacupiranga alkaline–carbonatite complex in São Paulo State, Brazil, were used to investigate mineral–fluid interaction in a carbonatite magma chamber because apatite showed a marked discontinuity between primary fluid inclusion-rich cores and fluid inclusion-poor rims. Sylvite and burbankite, apatite, pyrite, chalcopyrite and ilmenite are the common phases occurring as trapped solids within primary fluid inclusions and reflect the general assemblage of the carbonatite. The apatite cores had higher Sr and REE concentrations than apatite rims, due to the presence of fluid inclusions into which these elements partitioned. A positive cerium anomaly was observed in both the core and rim of apatite crystals because oxidised Ce4+ partitioned into the magma. The combined evidence from apatite chemistry, fluid inclusion distribution and fluid composition was used to test the hypotheses that the limit of fluid inclusion occurrence within apatite crystals arises from: (1) generation of a separate fluid phase; (2) utilization of all available fluid during the first stage of crystallization; (3) removal of crystals from fluid-rich magma to fluid-poor magma; (4) an increase in the growth rate of apatite; or (5) escape of the fluids from the rim of the apatite after crystallization. The findings are consistent with fractionation and crystal settling of a carbonatite assemblage in a fluid-stratified magma chamber. Secondary fluid inclusions were trapped during a hydrothermal event that precipitated an assemblage of anhedral crystals: strontianite, carbocernaite, barytocalcite, barite and norsethite, pyrophanite, magnesian siderite and baddeleyite, ancylite-(Ce), monazite-(Ce) and allanite. The Sr- and REE-rich nature of the secondary assemblage, and lack of a positive cerium anomaly indicate that hydrothermal fluids have a similar source to the primary magma and are related to a later carbonatite intrusion.  相似文献   

17.
Glass Mountain, California, consists of >50 km3 of high-silica rhyolite lavas and associated pyroclastic deposits that erupted over a period of >1 my preceding explosive eruption of the Bishop Tuff and formation of the Long Valley caldera at 0.73 Ma. These “minimum-melt” rhyolites yield Fe-Ti-oxide temperatures of 695–718°C and contain sparse phenocrysts of plagioclase+quartz+magnetite+apatite±sanidine, biotite, ilmenite, allanite, and zircon. Incompatible trace elements show similar or larger ranges within the Glass Mountain suite than within the Bishop Tuff, despite a much smaller range of major-element concentrations, largely due to variability among the older lavas (erupted between 2.1 and 1.2 Ma). Ratios of the most incompatible elements have larger ranges in the older lavas than in the younger lavas (1.2–0.79 Ma), and concentrations of incompatible elements span wide ranges at nearly constant Ce/Yb, suggesting that the highest concentrations of these elements are not the result of extensive fractional crystallization alone; rather, they are inherited from parental magmas with a larger proportion of crustal partial melt. Evidence for the nature of this crustal component comes from the presence of scarce, tiny xenocrysts derived from granitic and greenschist-grade metamorphic rocks. The wider range of chemical and isotopic compositions in the older lavas, the larger range in phenocryst modes, the eruption of magmas with different compositions at nearly the same time in different parts of the field, and the smaller volume of individual lavas suggest either that more than one magma body was tapped during eruption of the older lavas or that a single chamber tapped by all lavas was small enough that the composition of its upper reaches easily affected by new additions of crustal melts. We interpret the relative chemical, mineralogical, and isotopic homogeneity of the younger Glass Mountain lavas as reflecting eruptions from a large, integrated magma chamber. The small number of cruptions between 1.4 and 1.2 ma may have allowed time for a large magma body to coalesce, and, as the chamber grew, its upper reaches became less affected by new inputs of crustal melts, so that trace-element trends in magmas erupted after 1.2 Ma are largely controlled by fractional crystallization. The extremely low Sr concentrations of Glass Mountain lavas imply extensive crystallization in chambers at least hundreds of cubic kilometers in volume. The close similarity in Sr, Nd, and Pb isotopic ratios between the younger Glass Mountain lavas and unaltered Bishop Tuff indicates that they tapped the same body of magma, which had become isotopically homogenous by 1.2 Ma but continued to differentiate after that time. From 1.2 to 0.79 Ma, volumetric eruptive rates may have exceeded rates of differentiation, as younger Glass Mountain lavas become slightly less evolved with time. Early-erupted Bishop Tuff is more evolved than the youngest of the Glass Mountain lavas and is characterized by slightly different trace element ratios. This suggests that although magma had been present for 0.5 my, the composiional gradient exhibited by the Bishop Tuff had not been a long-term, steady-state condition in the Long Valley magma chamber, but developed at least in part during the 0.06-my hiatus between extrusion of the last Glass Mountain lava and the climactic eruption.  相似文献   

18.
Chemical diffusivity measurements have been made on anhydrous metaluminous diffusion couples of dacite and rhyolite at 1 atm, 1200°–1400° C, and 10 kbar, 1300°–1600° C, and on anhydrous peraluminous and peralkaline dacite-rhyolite diffusion couples at 10 kbar, 1300°–1600° C. Chemical diffusivities for Si, Al, Fe, Mg, and Ca were measured in all experiments on the metaluminous diffusion couples using Boltzmann-Matano analysis, and Si diffusivities were measured on the other diffusion couples. Two 10 kbar metaluminous experiments were analyzed with the X-ray microprobe and diffusivities of Sr, Y, Zr and Nb were measured. Si diffusivity displays a weak negative correlation with SiO2 content over the range of 65%–75% SiO2. At a given SiO2 content chemical diffusivities of all non-alkali elements are usually within less than an order of magnitude of Si chemical diffusivity and are controlled by partitioning along the diffusion profile so as to maintain local equilibrium at each point along the profile. Alkali chemical diffusivities were not measured but can be estimated from the experiments to be orders of magnitude higher than non-alkali chemical diffusivities. Data were fit to Arrhenius equations for diffusivities measured at 65, 70 and 75% SiO2. At 1 atm the Arrhenius equation for non-alkalies at 70% SiO2 in the metaluminous system is:
  相似文献   

19.
The solubility of H2O–CO2–Cl-containing fluids of various concentrations (0, 3, 10, and 23 wt % of HCl and from 0 to ~8–15 wt % of CO2) in dacite, phonolite, and rhyolite melts at 1000°C and 200 MPa was studied in experiments. It was shown that the Cl concentration in the melt increased substantially from rhyolite to phonolite and dacite (up to 0.25, 0.85, and 1.2 wt %, respectively). The introduction of CO2 into the system resulted in an increase in the Cl content in the melt composition by 20–25%. One may suppose that Cl reactivity in a fluid increases in the presence of CO2 to cause growth of the Cl content in the melt. The introduction of CO2 into the system considerably affects the content of H2O in aluminosilicate melts as well. Thus, the addition of CO2 decreases the H2O content in the melt by ~0.5–1.0 wt %. The decrease in the H2O content in an aluminosilicate melt is probably caused by fluid dilution with CO2 resulting in a decrease in the H2O mole fraction and fugacity in the fluid.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号