首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We determined the partition coefficients of 19 elements between metallic liquid and silicate liquid at 20 GPa and 2500°C, and between metallic liquid and silicate perovskite at 27 GPa and 2200°C. Remarkable differences were observed in the partitioning behaviors of Si, P, W, Re, and Pb among the silicate liquid, perovskite, and magnesiowüstite coexisting with metallic liquid, reflecting incompatibility of the elements in the silicate or oxide phase. We could not observe any significant difference in the partitioning behaviors of V, Cr, Mn, Co, Ni, and Cu among the phases coexisting with metallic liquid.

Comparison of the present partitioning data with those obtained previously at lower pressure and temperature suggests that the exchange partition coefficients, Kmet/sil, of Co, Ni, Mo, and W decrease, whereas those of V, Cr, and Mn increase and tend to approach unity with increasing pressure and temperature. We also made preliminary experiments to clarify the effect of sulfur on the partitioning behaviors. Sulfur lowers the exchange partition coefficients, Kmet/sil, of Mo and W between metallic liquid and silicate liquid significantly at 20 GPa and 2300°C.

The mantle abundances of Co, Ni, Cu, Mo, and W calculated for the metal-silicate equilibrium model are lower than those of the real mantle, whereas P, K, and Mn are overabundant in the calculated mantle. The discrepancies in the abundances of Co and Ni could be explained by the chemical equilibrium at higher pressure and temperature. Large discrepancies in Mo and W between the calculated and real mantles could be accounted for by the effect of sulfur combined with the effects of pressure and temperature on the chemical equilibrium. The mantle abundances of P, K, and Cu could be accounted for by volatile loss in the nebula, perhaps before accretion of the Earth, combined with the chemical equilibrium at higher pressure and temperature. Thus the observed mantle abundances of P, K, Co, Ni, Cu, Mo, and W may be consistent with a model of sulfur-bearing metal-silicate equilibrium in lower-mantle conditions.  相似文献   


2.
We describe an orthopyroxene–cordierite mafic gneiss from the Nomamisaki metamorphic rocks in the Noma Peninsula, southern Kyushu, Japan. The mineral assemblage of the gneiss is orthopyroxene, cordierite, biotite, plagioclase, and ilmenite. Thermometry based on the Fe–Mg exchange reaction between orthopyroxene and biotite yields a peak metamorphic temperature of 680°C. The stability of cordierite relative to garnet, quartz, and sillimanite defines the upper limit of the peak metamorphic pressure as 4.4 kbar. These features indicate that the Nomamisaki metamorphic rocks underwent low‐pressure high‐temperature type metamorphism. Although a chronological problem still remains, the Nomamisaki metamorphic rocks can be regarded as a western continuation of the Higo Belt. The Usuki–Yatsushiro Tectonic Line, which delineates the southern border of the Higo Belt, is therefore located on the east of the Nomamisaki metamorphic rocks in southern Kyushu.  相似文献   

3.
Abstract Dolomite marble from the Kumdy–Kol area of the Kokchetav Massif contains abundant microdiamond, mainly in garnet and a few in diopside. The mineral assemblage at peak metamorphic condition consists of dolomite + diopside + garnet (+ aragonite) ± diamond. Inclusions of very low MgCO3 calcite and almost pure calcite occur in diopside and are interpreted as aragonite and/or aragonite + dolomite. Single-phase Mg–calcite in diopside with a very high MgCO3 component (up to 21.7 mol%) was also found in diamond-free dolomitic marble, and is interpreted as a retrograde product from aragonite + dolomite to Mg–calcite. The dolomite stability constrains the maximum pressure (P) at < 7 GPa using previous experimental data, whereas the occurrence of diamond yields the minimum peak pressure–temperature (P–T) condition at 4.2 GPa and 980 °C at X co 2 = 0.1. The highest MgCO3 in Mg–calcite constrains the minimum P–T condition higher than 2.5 GPa and 800 °C for the exhumation stage. As these marbles were subjected to nearly identical P–T metamorphic conditions, the appearance of diamond in some carbonate rocks was explained by high X co 2. A low X co 2 condition refers to high oxidized conditions and diamond (and/or graphite) becomes unstable. Difference in X co 2 for marble from the same area suggests local heterogeneity of fluid compositions during ultrahigh-pressure metamorphism.  相似文献   

4.
Diagnostic mineral assemblages, mineral compositions and zircon SHRIMP U–Pb ages are reported from an ultrahigh‐temperature (UHT) spinel–orthopyroxene–garnet granulite (UHT rock) from the South Altay orogenic belt of northwestern China. This Altay orogenic belt defines an accretionary belt between the Siberian and Kazakhstan–Junggar Plates that formed during the Paleozoic. The UHT rock examined in this study preserves both peak and retrograde metamorphic assemblages and microstructures including equilibrium spinel + quartz, and intergrowth of orthopyroxene, spinel, sillimanite, and cordierite formed during decompression. Mineral chemistry shows that the spinel coexisting with quartz has low ZnO contents, and the orthopyroxene is of high alumina type with Al2O3 contents up to 9.3 wt%. The peak temperatures of metamorphism were >950°C, consistent with UHT conditions, and the rocks were exhumed along a clockwise P–T path. The zircons in this UHT rock display a zonal structure with a relict core and metamorphic rim. The cores yield bimodal ages of 499 ± 8 Ma (7 spots), and 855 Ma (2 spots), with the rounded clastic zircons having ages with 490–500 Ma. Since the granulite was metamorphosed at temperatures >900°C, exceeding the closure temperature of U–Pb system in zircon, a possible interpretation is that the 499 ± 8 Ma age obtained from the largest population of zircons in the rock marks the timing of formation of the protolith of the rock, with the zircons sourced from a ~500 Ma magmatic provenance, in a continental margin setting. We correlate the UHT metamorphism with the northward subduction of the Paleo‐Asian Ocean and associated accretion‐collision tectonics of the Siberian and Kazakhstan–Junggar Plates followed by rapid exhumation leading to decompression.  相似文献   

5.
The distribution of Ca and Mg among coexisting olivine, clinopyroxene and orthopyroxene has been studied in a piston-cylinder apparatus in the temperature range 1100–1300°C and pressure range 9–41 kbar. Ca in olivine decreases with increasing pressure and decreasing temperature. The pressure effect is the result of Ca going into the higher-coordination M2 site in clinopyroxene as pressure is increased. For the CaMg exchange reaction between olivine and clinopyroxene, ΔV°=0.249J bar?1 mole?1; this is sufficient for pressure estimates accurate to ±3kbar if temperatures of equilibration are independently known. CaMg exchange between olivine and orthopyroxene is not sufficiently pressure dependent to be used as a geobarometer.Application of the olivine-clinopyroxene geobarometer to coarse garnet lherzolites from southern Africa gives P-T results consistent with a continental geotherm. For spinel lherzolites from southwestern United States, the geotherm appears to be displaced to higher temperatures indicating oceanic affinities. Application of the geobarometer to natural systems requires assumptions about activity relationships in clinopyroxene which should be checked by experiment.  相似文献   

6.
Ion microprobe measurements of Pb isotope ratios in monazites have been obtained, in situ, from thin sections using the Cambridge ISOLAB 120. Molecular interferences are sufficiently resolved at an RP of 6500 to allow 207Pb/206Pb dating of monazite with precisions as low as 4–5 Ma (2σ). The results presented here provide important information on the chronological history of the Late Archean metamorphism of the Wind River Range, Wyoming (USA).

Matrix monazites and monazite inclusions in garnets from a metapelite from the northern Wind River Range have been analysed by SIMS. In a previous study peak metamorphic conditions (T = 800°C; P = 8 ± 1 kb*) were estimated using inclusion assemblages in garnets from this same sample. Isolated monazite inclusions in garnet yield 207Pb/206Pb age estimates of 2781 ± 6 to 2809 ± 10 Ma. Those along fractures yield lower ages (2603–2687 Ma) which are similar to TIMS and SIMS ages of matrix monazites. A single large (500 μm) monazite grain locally preserves growth zoning, but has a recrystallised core and a resorbed (recrystallised?) rim. Age estimates for these three regions are 2788 ± 9 Ma, 2663 ± 4 and 2523 ± 6 Ma, respectively. Thus the inclusion assemblages of Sharp and Essene* may record peak metamorphic conditions at ca. 2.8 Ga, and indicate a phase of metamorphism that predates by over 100 Ma the emplacement of the Bridger Batholith, the major lithologic component of the northern Wind River Range.

The analysed monazite grains appear to preserve ca. 300 Ma history, even within a single grain. Monazite inclusions in garnet that are fully armoured may provide estimates for the time of garnet growth, even in high grade terranes where most chronometers are reset. The age pattern preserved by the large monazite grain cannot be simply related to diffusion controlled closure. Instead, a chronology is preserved which can be related to the petrographic setting of indicidual grains through in situ analysis.  相似文献   


7.
Melting relations of a glassy magnesian olivine tholeiite from the FAMOUS area have been studied within the pressure range 1 atm to 15 kbar. From 1 atm to 10 kbar, olivine is the liquidus phase, followed by plagioclase and Ca-rich clinopyroxene. Above 10 kbar, Ca-rich clinopyroxene appears on the liquidus, followed by orthopyroxene and spinel. Near 10 kbar, olivine, orthopyroxene, clinopyroxene, spinel and plagioclase crystallize within 10°C of the liquidus. This indicates that a liquid of this magnesian olivine tholeiite composition could coexist with mantle peridotite at about 10 kbar. This result is in agreement with the geochemistry of Ni; the Ni concentration of the studied sample corresponds to the theoretical concentration in a primary magma [14,15].These data suggest that at least some magnesian mid-oceanic ridge basalts (MORBs) could be primary melts segregated from the mantle at depths near the transition zone between plagioclase lherzolite and spinel lherzolite (about 10 kbar). Based on this model, the residual mantle after extraction of MORBs should be lherzolite, not harzburgite.High-pressure (7–10 kbar) fractionation models involving olivine, plagioclase and clinopyroxene, which have been proposed by several workers (e.g. [36]) to explain the varieties of MORBs, were re-emphasized based on this melting study. The rare occurrence of clinopyroxene as a phenocryst phase in MORBs is explained by precipitation in a magma chamber at high pressure, or by dissolution of clinopyroxene formed earlier at high pressure.  相似文献   

8.
High-pressure phase transformations for three intermediate compositions (including diopside) in the system enstatite (MgSiO3)-wollastonite (CaSiO3) were investigated in the pressure range 100–300 kbar at about 1000°C in a diamond-anvil press coupled with laser heating. The phase behaviour of the two end components (enstatite and wollastonite) at high pressure has been reported earlier. The results of this study reveal that there is very limited solid solution of diopside (CaMgSi2O6) in the various high-pressure phase assemblages of enstatite. At pressures greater than about 200 kbar, diopside and a composition between diopside and wollastonite were found to transform into non-quenchable phases, as does wollastonite. It is thought probable that diopside and wollastonite form solid solutions with the perovskite structure at high pressure, but that on release of pressure it is not possible to preserve the high-pressure modification.  相似文献   

9.
A polycrystalline specimen of clinopyroxene diopside has been hot-pressed at P = 15 kbar and T = 850°C in a piston-cylinder apparatus. Compressional (νP) and shear (νS) velocities are determined as a function of pressure to 7.5 kbar at room temperature by an ultrasonic pulse transmission technique. The velocities at 7.5 kbar are νP = 8.06 km/sec and νS = 4.77 km/sec. These data are consistent with velocity-density trends for orthopyroxenes due to the compensating effects of the monoclinic structure (positive) and Ca content (negative). With the addition of the new data for diopside, it is possible to calculate directly the velocities of various upper-mantle mineral assemblages.  相似文献   

10.
Petrogenesis of garnet lherzolite, Cima di Gagnone, Lepontine Alps   总被引:10,自引:0,他引:10  
Garnet lherzolite at Cima di Gagnone has chemical and mineralogical properties similar to those of other garnet lherzolites in the lower Pennine Adula/Cima Lunga Nappe (Alpe Arami, Monte Duria). The Cima di Gagnone occurrence encloses mafic boudins that belong to an eclogite-metarodingite suite common in the numerous neighboring ultramafic lenses. The ultramafic rocks at Cima di Gagnone, including the garnet lherzolite, are interpreted as tectonic fragments of an originally larger lherzolite body that underwent at least partial serpentinization prior to regional metamorphism. This lherzolite body cycled through at least three metamorphic facies: greenschist or blue-schist (as antigorite serpentinite) → eclogite (as garnet lherzolite), pre-Alpine or early Alpine → amphibolite facies (as chlorite-enstatite-tremolite peridotite), Lepontine metamorphism. Relics of titanoclinohumite in the garnet peridotite, as also recorded by Möckel near Alpe Arami, are consistent with this metamorphic history, since they indicate a possible connection with Pennine antigorite serpentinites, e.g., Liguria, Piedmont, Zermatt-Saas, Malenco, Pustertal, all of which have widespread titanoclinohumite belonging to the antigorite paragenesis. Estimated pressures in excess of 20 kbar and temperatures of 800°±50°C for the garnet lherzolite assemblage are not inconsistent with conditions inferred for Gagnone and Arami eclogites. These conditions could have been reached during deep subduction zone metamorphism. It is shown by calculation that the effects of Fe and Cr on the location of the garnet lherzolite/spinel lherzolite phase boundary largely counter-balance each other.  相似文献   

11.
Nearly 4,000 Fe, Ni and Co analyses have been carried out on the metal phases of 12 Antarctic chondritic meteorites by means of the electron microprobe. H-group chondrites show relatively simple patterns of variation for these elements but L- and LL-group members show much more scatter in both Ni and Co concentrations. A single member of the CO3 group investigated shows some scatter in the concentrations and also much higher Co concentrations in the high-Ni (awaruite?) phase (1.25–2%) than in the coexisting kamacite (0.2–0.5%). Thus, analysis of the metal phases can provide not only a means of identifying the group to which a meteorite belongs, but also the possibility of distinguishing between individual chondrites from the same group.

The overall concentrations of Co in the metal particles in the different groups are considered to be related inversely to the abundance of metal grains in meteorites of these groups while the scatter is interpreted as reflecting characteristics inherited at the time of accretion. The absence of homogenisation of the concentrations of Fe, Ni and Co in the metal particles, even in so-called equilibrated chondrites, provides further evidence against the widely held notion that these meteorites have been involved in a high-temperature prograde metamorphism.  相似文献   


12.
Phase behaviour in the system diopside-jadeite (CaMgSi2O6NaAlSi2O6) have been investigated in the pressure region 100–300 kbar at about 1000°C in a diamond-anvil press coupled with laser heating. The omphacite solid solution extends from 30 to at least 200 kbar for the entire system. Omphacites, ranging in composition from pure diopside to more than 40 mole % jadeite, transform to diopside (II) at pressures greater than 230 kbar. Diopside (II), which probably possesses a perovskite-type structure, cannot be preserved when experiments are quenched to ambient conditions. Jadeite-rich omphacites were found to decompose into an assemblage of NaAlSiO4(CaFe2O4-type structure) + stishovite + diopside (II) (?) at pressures greater than about 260 kbar. These results suggest that an eclogitic model mantle would not display the 400-km seismic discontinuity. Moreover, sodium in the transition zone and lower mantle would most likely be accommodated in phases of omphacite and diopside (II).  相似文献   

13.
The extensive gneisses in the high‐pressure and ultrahigh‐pressure metamorphic terrane in the Dabie‐Sulu orogen usually show no evidence of eclogite‐facies metamorphism. The garnet‐mica‐plagioclase gneisses from the Qiliping region in the western Dabie Orogen, comprise garnet, phengite, biotite, plagioclase, quartz, rutile, ilmenite, chlorite, epidote, and hornblende. The garnet porphyroblasts, with inclusions of quartz, epidote, and rutile, exhibit slight compositional zonations, from core to mantle with an increase in pyrope and a decrease in spessartine, and from mantle to rim with a decrease in pyrope and grossular and an increase in spessartine. The high‐Si phengite indicates that the gneisses may be subjected to a high‐pressure metamorphism. By the P–T pseudosections calculated in a system NCKMnFMASHTO (Na2O‐CaO‐K2O‐MnO‐FeO‐MgO‐Al2O3‐SiO2‐H2O‐TiO2‐O) for two representative samples, the metamorphic P–T path, reconstructed by the compositionally zoned garnet, shows that the prograde metamorphism is characterized by a temperature increase with a slight pressure increase from the conditions of 17.6 ± 1.5 kbar at 496 ± 15°C to the peak‐pressure ones of 21.8 ± 1.5–22.7 ± 1.5 kbar at 555 ± 15–561 ± 15°C; the early retrograde stage is dominated by decompression with a temperature increase to the maximum of 608 ± 15–611 ± 18°C at 10.3 ± 1.5–11.0 ± 1.5 kbar; and the late retrograde one is predominated by pressure and temperature decreases. The mineral assemblages in the prograde metamorphism are predicted to contain garnet, glaucophane, jadeite, lawsonite, phengite, quartz, rutile, and/or chlorite, which is different from those observed at present. Such high‐pressure metamorphism can partly be reconstructed by the P–T pseudosection in combination with the high‐Si phengite and garnet compositions in the core and mantle. This provides an important constraint on the subduction and exhumation of the terrane during the continent–continent collision between the Yangtze and Sino‐Korean cratons.  相似文献   

14.
The pressure dependence of the three lattice parameters and unit cell volume of fayalite (Fe2SiO4 olivine) was determined by X-ray diffraction under hydrostatic pressures up to 70 kbar. In order to eliminate stress inhomogeneity within a composite material consisting of a specimen mixed with an internal-pressure standard, a liquid (1 : 1 mixture of ethanol and methanol) was used as a pressure-transmitting medium. The isothermal bulk modulus calculated on the basis of the second-order Birch-Murnaghan equation of state gives the values K0 = 1.19 ± 0.10 Mbar and K0′ = 7 ± 4, and if we assume K0′ = 5: K0 = 1.24 ± 0.02 Mbar. Three axes of fayalite were found to be compressible in the following order, b >c >a. Comparisons with the results obtained under non-hydrostatic compression are made.  相似文献   

15.
Desalinization effects on benthic diatom communities were investigated in two adjacent streams in Northern Thuringia, the creek Urbach and the river Helbe. Salt-saturated stockpile effluents had been introduced into the Urbach until 1996, resulting in fluctuating chloride concentrations with maximum values up to 25.4 g · 1−1 (Helbe: max. 3.7 g · 1−1).

The diatom vegetation and hydrographical and chemical data of an Urbach site were compared to those of a sampling site further downstream. Monthly sampling in 1996 started at the end of salt influx in January. Reference samples from the years 1995, 1986 and 1963 were evaluated along with the 1996 samples.

After termination of the introduction of salt-loaded effluents, relative abundances of brackish water species greatly decreased within three months. The Halobion Index (Ziemann 1982), reflecting osmotic and ion composition effects on diatoms, decreased until May 1996, then stabilized. In summer 1996, several diatoms had a mass development, showing that salinization impacts had previously overruled effects of other environmental variables.  相似文献   


16.
Ultrahigh‐temperature (UHT) granulite facies rocks from the Achankovil Shear Zone area and the southern domain of the Madurai Granulite Block in South India contain monazite useful for in situ microprobe U–Pb dating. The UHT rocks examined consist of garnet + cordierite (retrograde) + quartz + mesoperthite + biotite + plagioclase + Fe‐Ti oxides ± orthopyroxene ± sillimanite and accessory zircon and monazite. Sillimanite occurs only as inclusions in garnet. Microstructural observations suggest garnet, orthopyroxene, spinel and mesoperthite are products of peak metamorphism. Post‐peak formation of cordierite ± orthopyroxene ± quartz and cordierite + spinel + Fe‐Ti oxides assemblages is also observed. Geothermobarometry on orthopyroxene and garnet‐orthopyroxene bearing assemblages suggest peak UHT conditions of T = 940–1040°C and P = 8.5–9.5 kbar. This was followed by a retrograde stage of 3.5–4.5 kbar and 720 ± 60°C, estimated from garnet‐cordierite assemblages. A small population of rounded, probably detrital, monazites in these rocks yield ages from Meso‐ to Neoproterozoic indicating a heterogeneous source. The youngest associated spot ages are 660–600 Ma suggesting protolith deposition up to ca 600 Ma. In contrast, the vast majority of monazites that crystallized during the latest metamorphic event show late Neoproterozoic to Cambrian ages. Probability‐density plots of monazite age data show a ‘peak’ between 533 and 565 Ma, but this peak need not reflect a particular thermal event. Collating ages from homogenous metamorphic monazites associated with minerals stable at peak P‐T conditions suggests peak metamorphism in these rocks occurred at 580–600 Ma. Together with a re‐evaluation of available data from adjacent granulite blocks in southern India, these data suggest the main metamorphic event coinciding with the suturing of India with the Gondwana amalgam probably occurred 580–600 Ma. The 500–550 Ma ages commonly reported in previous studies might represent post‐peak thermal events.  相似文献   

17.
Abstract The Maksyutov Complex, situated in the southern Ural Mountains of Russia, is the first location where quartz aggregates within garnets exhibiting radial fractures were identified as coesite pseudomorphs (Chesnokov & Popov 1965). The complex consists of two tectonic units: a structurally lower eclogite-bearing schist unit and an overlying meta-ophiolite unit. Both units show evidence for multiple stages of metamorphism and deformation. The high-pressure metamorphism of the eclogite-bearing schist unit, discussed in this report, is suspected to be related to a collision between the Russian platform and a fragment of the Siberian continent during the early Cambrian. At least three stages of metamorphism (M1-3) and two stages of deformation (S1 and S2) were observed in thin sections: M1) garnet (Alm55-60, Prp22-28, Grs16-20) + omphacite (Jd46-56) + phengite (Si ≅ 3.5) + rutile; M2) garnet + glaucophane ± lawsonite + white mica; and M3) epidote + chlorite ± albite ± actinolite + white mica. Observed mineral parageneses define a retrograde P-T path for the eclogite. Mineral assemblages within the most representative eclogite from the lower unit of the Maksyutov Complex indicate minimum peak pressures of 15 kbar at temperatures of approximately 600°C. If the presence of coesite pseudomorph is confirmed, the peak ultrahigh-pressure metamorphism may be as high as 27 kbar at 615°C.  相似文献   

18.
A stock of biotite-muscovite-garnet leucogranite crops out in the lower course of Río Cisnes as an unusual minor lithology within the predominantly dioritic to tonalitic North Patagonian Batholith. Foliated and unfoliated varieties are present—the former are nearer to the main lineament of the Liquin˜e-Ofqui Fault Zone (LOFZ). Two-feldspar thermometry indicates equilibration temperatures above 600°C, for pressures probably not over 3 kbar, as suggested by the Mn-rich garnet composition. A Rb-Sr whole-rock isochron age of 9.6 ± 0.4 Ma (1σ error) probably indicates the time of magma crystallization. 40Ar-39Ar ages of 6.6 ± 0.3 Ma on muscovite and 5.5 ± 0.4 Ma on biotite are cooling ages from which a moderate average uplift/denudation rate ( 1 mm/yr) may be calculated. Paucity of occurrence, distribution close to the LOFZ and a near minimum-melt composition all suggest that the leucogranite magma was derived by partial melting of the lower crust, perhaps by decompression melting at a time when uplift/denudation rates were high (4 mm/yr or more are required). Regional evidence for rapid Holocene uplift in the immediate vicinity of the LOFZ substantiates the feasibility of the proposed petrogenetic model, which may be valid in other strike-slip orogenic environments.  相似文献   

19.
Interception losses of rainfall from Cashew trees   总被引:2,自引:0,他引:2  
The rainfall interception losses from Cashew trees were quantified, based on the records of 105 selected storms within the range 25.0 mm, occurring in a humid tropical region at Kottamparamba, India.

The storage capacity of the Cashew trees was worked out as 0.8 mm and the throughfall coefficient as 0.391. The trees under observation were 15–20 years of age with a leaf area index of 1.0–1.25.

About 31% of the storm rainfall for storms 25.0 mm was intercepted by the Cashew trees and lost to the atmosphere.

The measured interception losses from the trees were compared with the estimated interception losses using the analytical model of Gash (1979). The predicted interception losses from the Cashew trees were within ± 10% for storms with total rainfall 10.0 mm and within ± 22% for storms with a rainfall of 10.1–25.0 mm.  相似文献   


20.
Uranium and thorium diffusion in diopside   总被引:2,自引:0,他引:2  
This paper presents new experimental data on the tracer diffusion rates of U and Th in diopside at 1 atm and 1150–1300°C. Diffusion couples were prepared by depositing a thin layer of U–Th oxide onto the polished surface of a natural diopside single crystal, and diffusion profiles were measured by ion microprobe depth profiling. For diffusion parallel to [001] the following Arrhenius relations were obtained: log10DU=(−5.75±0.98)−(418±28 kJ/mol)/2.303RT log10DTh=(−7.77±0.92)−(356±26 kJ/mol)/2.303RT. The diffusion data are used to assess the extent to which equilibrium is obtained during near fractional melting of a high-Ca pyroxene bearing mantle peridotite. We find that the diffusion rates for both elements are slow and that disequilibrium between solid and melt will occur under certain melting conditions. For near-fractional adiabatic decompression melting at ascent rates >3 cm/yr, high-Ca pyroxene will exhibit disequilibrium effects. High-Ca pyroxene will become zoned in U and Th and the melts extracted will be depleted in these incompatible elements relative to melts produced by equilibrium fractional melting. U and Th diffusivities in high-Ca pyroxene are similar, and diffusive fractionation of these elements will be limited. Numerical solutions to a dynamic melting model with diffusion-controlled chemical equilibration indicate that the activity ratio [230Th/238U] in a partial melt of spinel peridotite will be slightly less than 1 for a broad range of melting parameters. This result reinforces the already widely accepted conclusion that melting of spinel peridotite cannot account for 230Th excesses in mid-ocean ridge and ocean island basalts, and that garnet must therefore be present over part of the melting column.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号