首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We derive general equations for axisymmetric Newtonian magnetohydrodynamics and use these as the basis of a code for calculating equilibrium configurations of rotating magnetized neutron stars in a stationary state. We investigate the field configurations that result from our formalism, which include purely poloidal, purely toroidal and mixed fields. For the mixed-field formalism, the toroidal component appears to be bounded at less than 7 per cent. We calculate distortions induced both by magnetic fields and by rotation. From our non-linear work, we are able to look at the realm of validity of perturbative work: we find for our results that perturbative-regime formulae for magnetic distortions agree to within 10 per cent of the non-linear results if the ellipticity is less than 0.15 or the average field strength is less than 1017 G. We also consider how magnetized equilibrium structures vary for different polytropic indices.  相似文献   

3.
4.
5.
6.
7.
8.
Neutron stars contain persistent, ordered magnetic fields that are the strongest known in the Universe. However, their magnetic fluxes are similar to those in magnetic A and B stars and white dwarfs, suggesting that flux conservation during gravitational collapse may play an important role in establishing the field, although it might also be modified substantially by early convection, differential rotation, and magnetic instabilities. The equilibrium field configuration, established within hours (at most) of the formation of the star, is likely to be roughly axisymmetric, involving both poloidal and toroidal components. The stable stratification of the neutron star matter (due to its radial composition gradient) probably plays a crucial role in holding this magnetic structure inside the star. The field can evolve on long time scales by processes that overcome the stable stratification, such as weak interactions changing the relative abundances and ambipolar diffusion of charged particles with respect to neutrons. These processes become more effective for stronger magnetic fields, thus naturally explaining the magnetic energy dissipation expected in magnetars, at the same time as the longer-lived, weaker fields in classical and millisecond pulsars. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
10.
11.
We consider the evolution of magnetic fields under the influence of Hall drift and Ohmic decay. The governing equation is solved numerically, in a spherical shell with   r i / r o = 0.75  . Starting with simple free-decay modes as initial conditions, we then consider the subsequent evolution. The Hall effect induces so-called helicoidal oscillations, in which energy is redistributed among the different modes. We find that the amplitude of these oscillations can be quite substantial, with some of the higher harmonics becoming comparable with the original field. Nevertheless, this transfer of energy to the higher harmonics is not sufficient to accelerate significantly the decay of the original field, at least not at the   R B = O (100)  parameter values accessible to us, where this Hall parameter   R B   measures the ratio of the Ohmic time-scale to the Hall time-scale. We do find clear evidence though of increasingly fine structures developing for increasingly large   R B   , suggesting that perhaps this Hall-induced cascade to ever-shorter length-scales is eventually sufficiently vigorous to enhance the decay of the original field. Finally, the implications for the evolution of neutron star magnetic fields are discussed.  相似文献   

12.
We study, via a Monte Carlo simulation, a population of isolated asymmetric neutron stars where the magnitude of the magnetic field is low enough so that the dynamical evolution is dominated by the emission of gravitational waves. A starting population, with age uniformly distributed back to 100 Myr (or 500 Myr) and endowed with a birth kick velocity, is evolved in the Galactic gravitational potential to the present time. In describing the initial spatial distribution, the Gould belt, with an enhanced neutron star formation rate, is taken into account. Different models for the initial period distribution are considered. The star ellipticity, measuring the amount of deformation, is drawn from an exponential distribution. We estimate the detectability of the emitted gravitational signals by the first and planned second generation of interferometric detectors. Results are parametrized by the fraction of the whole galactic neutron star population made up of these kinds of sources. Some possible mechanisms, which would make possible the existence of such a population, are discussed. A comparison of the gravitational spin-down with the braking due to a possible interaction of the neutron star with the interstellar medium is also presented.  相似文献   

13.
14.
Atmospheres and spectra of strongly magnetized neutron stars   总被引:1,自引:0,他引:1  
We construct atmosphere models for strongly magnetized neutron stars with surface fields     and effective temperatures     . The atmospheres directly determine the characteristics of thermal emission from isolated neutron stars, including radio pulsars, soft gamma-ray repeaters, and anomalous X-ray pulsars. In our models, the atmosphere is composed of pure hydrogen or helium and is assumed to be fully ionized. The radiative opacities include free–free absorption and scattering by both electrons and ions computed for the two photon polarization modes in the magnetized electron–ion plasma. Since the radiation emerges from deep layers in the atmosphere with     , plasma effects can significantly modify the photon opacities by changing the properties of the polarization modes. In the case where the magnetic field and the surface normal are parallel, we solve the full, angle-dependent, coupled radiative transfer equations for both polarization modes. We also construct atmosphere models for general field orientations based on the diffusion approximation of the transport equations and compare the results with models based on full radiative transport. In general, the emergent thermal radiation exhibits significant deviation from blackbody, with harder spectra at high energies. The spectra also show a broad feature     around the ion cyclotron resonance     , where Z and A are the atomic charge and atomic mass of the ion, respectively; this feature is particularly pronounced when     . Detection of the resonance feature would provide a direct measurement of the surface magnetic fields on magnetars.  相似文献   

15.
We develop a new perturbative framework for studying the r modes of rotating superfluid neutron stars. Our analysis accounts for the centrifugal deformation of the star, and considers the two-fluid dynamics at linear order in the perturbed velocities. Our main focus is on a simple model system where the total density profile is that of an   n = 1  polytrope. We derive a partially analytic solution for the superfluid analogue of the classical r mode. This solution is used to analyse the relevance of the vortex-mediated mutual friction damping, confirming that this dissipation mechanism is unlikely to suppress the gravitational-wave-driven instability in rapidly spinning superfluid neutron stars. Our calculation of the superfluid r modes is significantly simpler than previous approaches, because it decouples the r mode from all other inertial modes of the system. This leads to the results being clearer, but it also means that we cannot comment on the relevance of potential avoided crossings (and associated 'resonances') that may occur for particular parameter values. Our analysis of the mutual friction damping differs from previous studies in two important ways. First, we incorporate realistic pairing gaps which means that the regions of superfluidity in the star's core vary with temperature. Secondly, we allow the mutual friction parameters to take the whole range of permissible values rather than focusing on a particular mechanism. Thus, we consider not only the weak drag regime, but also the strong drag regime where the fluid dynamics are significantly different.  相似文献   

16.
The loss of angular momentum owing to unstable r-modes in hot young neutron stars has been proposed as a mechanism for achieving the spin rates inferred for young pulsars. One factor that could have a significant effect on the action of the r-mode instability is fallback of supernova remnant material. The associated accretion torque could potentially counteract any gravitational-wave-induced spin-down, and accretion heating could affect the viscous damping rates and hence the instability. We discuss the effects of various external agents on the r-mode instability scenario within a simple model of supernova fallback on to a hot young magnetized neutron star. We find that the outcome depends strongly on the strength of the magnetic field of the star. Our model is capable of generating spin rates for young neutron stars that accord well with initial spin rates inferred from pulsar observations. The combined action of r-mode instability and fallback appears to cause the spin rates of neutron stars born with very different spin rates to converge, on a time-scale of approximately 1 year. The results suggest that stars with magnetic fields ≤1013 G could emit a detectable gravitational wave signal for perhaps several years after the supernova event. Stars with higher fields (magnetars) are unlikely to emit a detectable gravitational wave signal via the r-mode instability. The model also suggests that the r-mode instability could be extremely effective in preventing young neutron stars from going dynamically unstable to the bar-mode.  相似文献   

17.
Recent spectropolarimetric observations of Ap and Bp stars with improved sensitivity have suggested that most Ap and Bp stars are magnetic with dipolar fields of at least a few hundred gauss. These new estimates suggest that the range of magnetic fluxes found for the majority of magnetic white dwarfs is similar to that of main-sequence Ap–Bp stars, thus strengthening the empirical evidence for an evolutionary link between magnetism on the main sequence and magnetism in white dwarfs. We draw parallels between the magnetic white dwarfs and the magnetic neutron stars and argue that the observed range of magnetic fields in isolated neutron stars  ( Bp ∼ 1011–1015 G)  could also be explained if their mainly O-type progenitors have effective dipolar fields in the range of a few gauss to a few kilogauss, assuming approximate magnetic flux conservation with the upper limit being consistent with the recent measurement of a field of   Bp ∼ 1100 G  for θ Orion C.
In the magnetic field–rotation diagram, the magnetic white dwarfs can be divided into three groups of different origin: a significant group of strongly magnetized slow rotators  ( P rot∼ 50 –100 yr)  that have originated from single-star evolution, a group of strongly magnetized fast rotators  ( P rot∼ 700 s)  , typified by EUVE J0317–853, that have originated from a merger, and a group of modest rotators ( P rot∼ hours–days) of mixed origin (single-star and CV-type binary evolution). We propose that the neutron stars may similarly divide into distinct classes at birth , and suggest that the magnetars may be the counterparts of the slowly rotating high-field magnetic white dwarfs.  相似文献   

18.
19.
We study universality in gravitational waves emitted from non-rotating neutron stars characterized by different equations of state (EOSs). We find that the quasi-normal mode frequencies of such waves, including the w -modes and the f -mode, display similar universal scaling behaviours that hold for most EOSs. Such behaviours are shown to stem from the mathematical structure of the axial and the polar gravitational wave equations, and the fact that the mass distribution function can be approximated by a cubic–quintic polynomial in the radius. As a benchmark for other realistic neutron stars, a simple model of neutron stars is adopted here to reproduce the pulsation frequencies and the generic scaling behaviours mentioned above with good accuracy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号