共查询到20条相似文献,搜索用时 0 毫秒
1.
地震道编辑是数据预处理中一个繁琐的过程。这可能需要大量的人力和时间成本,特别是对于大型三维数据集。目前的地震道编辑方法通常耗时较长,如果粗略地去除噪声道,可能会遗漏一些潜在的重要信息。在本章的研究中,我们提出了一种基于机器学习的自动编辑地震道的方法。此外,我们还将霍夫变换技术与卷积神经网络(CNN)相结合,以提高方法的可行性。霍夫变换是一种帮助识别图像中异常直线的特征提取方法,我们将其用来预先检测可能存在的噪声道和坏道的位置。然后,利用设计好的带通滤波器和训练好的CNN模型来识别霍夫变换标记的目标区域内真正的噪声道和坏道。在识别之后,应用自动的处理方式来确定经过处理的地震道是否有用或是仍然应该丢弃。整个方案包括四个主要步骤:数据预处理、霍夫变换检测、CNN网络训练和CNN网络预测。在实际数据应用中,准确率达到了98%,表明所提出的自动道编辑方案在实际应用中是有前景的。 相似文献
2.
为解决建筑物震害信息提取自动化程度不高的问题,本文将全卷积神经网络应用于建筑物震害遥感信息提取。以玉树地震后获取的玉树县城区0.2m分辨率航空影像作为建筑物震害信息提取试验数据源,将试验区地物划分为倒塌建筑物、未倒塌建筑物和背景3类。对427个500×500像素的子影像进行人工分类与标注,选取393个组成训练样本集,34个用于验证。利用训练样本集对全卷积神经网络进行训练,采用训练后的网络对验证样本进行建筑物震害信息提取及精度评价。研究结果表明:建筑物震害遥感信息提取总体分类精度为82.3%,全卷积神经网络方法能提高信息提取自动化程度,具有较好的建筑物震害信息提取能力。 相似文献
3.
本文提出了一种利用深度卷积神经网络的频高图分类方法,在频高图分类标记的基础上,通过对深度学习经典网络结构的网络层迁移的方式,构建频高图类型识别网络模型,实现基于传播模式分布的频高图自动分类.利用试验获取的大量频高图数据,依据频高图中电离层传播模式分布情况,结合频高图度量基本规则,人工对频高图数据分类标记,生成网络模型样本数据;然后以随机方式,选取样本数据85%的数据作为训练数据,其余数据作为测试数据;经验证训练后的网络模型能够将测试频高图数据自动分为七种类型,频高图类型识别综合准确率高于97%.该方法可为频高图特征参数的自动、精确提取提供重要技术和高质量数据支撑,对电离层结构信息有效获取具有重要意义. 相似文献
4.
本文以西昌台阵观测的8321次近震数据为例,详细介绍了利用深度卷积神经网络检测地震的数据处理流程,包括数据预处理、模型训练、波形长度、网络层数、学习率和概率阈值等关键参数对检测结果的影响,并将训练得到的最优模型,应用于事件波形和连续波形的检测.研究表明,数据预处理和数据增强可以提升模型的检测精度和抗干扰能力.用于模型训... 相似文献
5.
传统的U-Net卷积神经网络大多存在深层网络梯度消失的问题。本文在U-Net卷积神经网络中加入残差模块,提出了一种改进U-Net卷积神经网络。残差模块保证了U-Net卷积神经网络在误差反向传播过程中梯度的存在,在一定程度上可以缓解梯度消失的问题。最后将改进U-Net卷积神经网络应用于实际储层预测中,实际数据测试结果表明基于改进U-Net卷积神经网络在岩性识别以及“甜点”预测上均能取得较好的效果。 相似文献
6.
针对传统相干体属性在预测断层时存在断层假象以及易受噪声影响等缺点,本文提出一种利用卷积神经网络进行断层预测的方法。首先构建适合实际工区断层特征的卷积神经网络模型,然后利用部分分频地震数据和人工解释出的断层标签进行网络模型训练,最后把训练好的模型应用到整个三维地震数据中进行断层预测。实际地震数据预测结果表明基于卷积神经网络断层预测结果与地震数据吻合较好,并且在断层细节刻画上要优于传统地震相干体属性方法。 相似文献
8.
目的:探讨卷积神经网络(CNN)在颅底骨折CT诊断的应用价值。方法:回顾性搜集3 100例颅底骨折患者及2 467例正常患者的颅骨CT图像数据,经纳排标准筛选,最终选用2 488例颅底骨折及1 628例正常患者的颅底CT图像数据。对CT图像进行骨折标注后,随机分配训练集和测试集后。通过CNN构建颅骨区域识别算法模型和颅骨骨折检测算法模型,随后在测试中以颅底骨折区域识别和头颅骨折、颅底骨折对模型进行验证,验证指标为精准率(precision)、召回率(recall)、平均诊断耗时;与人工组(低年资放射科医师)测试进行诊断效能对比。结果:通过CNN运算获得的稳定模型后进行测试对比,结果显示全颅底区域骨折、前、中、后颅底骨折精准度均<0.5,低于人工组(均>0.63);召回率>0.89,均优于人工组(均<0.8);平均诊断时间为(3.12±2.67)s,明显少于人工组诊断时间。分别在颅底骨折区域测试中,精准度率:前颅底>中颅底>后颅底,召回率:中颅底>后颅底>前颅底。结论:基于CNN颅底骨折算法模型对于颅脑外伤患者CT诊断颅底骨折在召回率、诊断耗时均优于人工测试结果,在辅助临床诊断、降低漏诊及诊断耗时方面具有一定的价值。 相似文献
9.
当前地震预警中的震级估算方法是通过初至几秒地震波的特征参数与震级的经验关系来实现的, 这些特征参数依赖于人的经验和主观判断, 没有充分利用初至地震波中与震级相关的信息, 制约了震级估算效果.对此, 本文利用深层卷积神经网络(Deep Convolutional Neural Networks, CNN)直接从初至地震波中自动提取特征, 实现端到端的震级快速估算.CNN方法以单台站的初至竖向地震波作为主输入, 震中距、震源深度以及Vs30作为辅助输入, 震级作为输出.利用日本和智利的大量地表强震记录对CNN方法进行训练(98257条记录)、验证(31429条记录)和测试(40638条记录), 利用美国和新西兰的强震记录进行泛化性能测试(583条记录), 并与应用最为广泛的峰值位移Pd方法进行对比.结果表明, 当初至地震波时长为3s时, 在4~6.4级范围内, CNN方法估算震级的准确率是Pd方法的1.5倍, 在6.5~9级范围, CNN方法估算震级的准确率是Pd方法的1.2倍; 当初至地震波从3s增加到10s时, CNN方法能够随着地震波时长的增加不断提高估算震级的准确率, 并且始终高于Pd方法, 特别是对于4~6.4级地震, CNN方法在初至3s地震波时估算震级的准确率是Pd方法在初至10s地震波时的1.2倍; 随着地震波时长的增加, CNN方法对于震级饱和问题的改善效果优于Pd方法; CNN方法具有较好的泛化能力, 在训练数据集之外的区域, 比Pd方法估算震级更准确.相比于人为定义的特征参数, CNN方法从初至地震波中自动学习到了与震级更为相关的特征, 这些特征极大地改善了震级估算的准确性和时效性, 可以为地震预警系统提供更快速更准确的震级估算. 相似文献
10.
微地震监测技术是监测水力压裂过程、评价压裂效果的重要手段.对于地面监测,PP波极性能够直接、快速地反演震源机制,同时极性校正能够提高绕射叠加定位方法的成像精度.因此,准确而迅速地确定P波极性对地面微地震实时监测具有重要意义.卷积神经网络是一种深度学习算法,具有强大的特征学习与分类能力,可用来确定微地震事件的P波极性.地... 相似文献
11.
地震预警震级测定是地震预警系统最重要也是最困难的部分之一.本文提出了基于卷积神经网络的地震预警震级测定方法,将震级测定问题转化为震级分类问题,即将ML>2.0的震级分成20个不同等级类别处理.收集了福建台网2012—2019年期间记录到福建、台湾海峡及台湾共1928个地震作为研究资料,经过台站记录截取、大震样本增强、标签制作、质量筛选等预处理共得到14644条三分向地震样本记录;构建了3 s波形输入的卷积神经网络震级预测模型,并用2012—2018年震例对模型进行训练,用2019年震例对模型进行测试.结果表明,单台震级偏差有85.6%可控制在±0.3以内,前三台平均的震级偏差有91.8%可控制在±0.3以内,其中震级较大偏差的事件多为缺乏历史样本.相较于传统方法,该模型测定的震级值更加稳定可靠,可为解决地震预警震级测定这一挑战性难题提供新的技术手段. 相似文献
12.
为了利用结构振动响应的时间多尺度特征来提升卷积神经网络识别结构损伤的能力,给出了两种用于结构损伤识别的多尺度卷积神经网络,即多尺度输入和多尺度卷积核卷积神经网络。对于多尺度输入卷积神经网络,将通过下采样和滑动平均获取的具有不同时间尺度特征的振动信号输入固定尺寸卷积核的分支卷积神经网络;对于多尺度卷积核卷积神经网络,则将相同的振动信号输入具有不同尺寸卷积核的分支卷积神经网络。然后将各个分支卷积神经网络的输出组合成多尺度特征输入全连接层进行损伤模式的识别。数值试验和振动台试验的结果表明:相比于单一尺度卷积神经网络,多尺度卷积神经网络具有更高的损伤识别精度和抗噪性;对于损伤特征相近的损伤模式具有更好的辨别能力。 相似文献
13.
地震作用和车辆动载的日常冲击常常会引起钢箱梁的表面裂缝损伤。在日常检修和震后开展安全检查时,由于裂缝在整张图像中的占比较低且受到笔迹、锈迹和焊缝等因素的严重干扰,很难从现场采集到的图像中高效并精确地检测出裂缝。为此,本文基于卷积神经网络提出了一种结合裂缝定位和裂缝分割的级联裂缝检测模型。首先,采用分类模型在原始图像中定位出裂缝所在位置,然后采用U-Net模型实现对裂缝的像素级检测。结果表明:本文方法可以实现对大部分裂缝的精确检测,F1分数达到0.67,高于仅采用分割模型的0.55;此外,相比仅采用分割模型的检测方法,本文方法的检测效率提高了近70%,可达到9.25 s每张。 相似文献
14.
地震数据通常存在数据缺失问题,严重影响地震数据各个处理环节,需采用适当的手段对其重构.本文提出了一种基于深度学习卷积神经网络(CNN)的智能化地震数据插值技术.算法的关键在于构建一个适用于地震资料插值的CNN模型,该技术以缺失地震数据作为输入层,由卷积算法提取地震数据的特征信息,并通过池化层实现数据压缩降维,同时引入修正线性函数(ReLU)提高模型的非线性表达能力,再通过反卷积层恢复数据尺寸,最终搭建卷积自编码器模型(CAE),实现数据-数据的映射关系.该模型通过残差学习获得缺失数据特征并实现重构数据输出,与现有技术相比,该方法采用自监督学习方式,利用大量数据训练卷积自编码器模型,通过所得模型实现缺失地震道的数据重构.分别利用CAE模型及POCS插值技术对模型资料和实际数据进行插值,测试结果表明,CAE能有效实现地震数据插值,且与POCS方法相比具有更高的精度,验证了算法的可行性和有效性. 相似文献
15.
本文提出了一种利用深度卷积神经网络的频高图特征提取方法, 在频高图不同层回波信息标记的基础上, 构建包含降采样部分和上采样部分的频高图回波识别网络模型, 实现了频高图不同回波信息自动识别.利用试验获取的频高图数据, 通过人工对频高图中电离层不同层的回波信息分别标记, 生成网络模型样本数据集.以随机方式, 选取样本数据集80%的数据作为训练数据, 其余数据作为测试数据.经网络模型训练和测试, 结果显示网络模型能够自动有效地识别测试频高图中不同层的回波信息.在此基础上, 结合数字图像处理中的腐蚀算法和连通域思想, 针对性地设计滤波器, 滤除已识别回波信息中的噪声、干扰、多跳回波, 能够实现测试频高图特征参数的有效提取.并且通过与传统方法比较, 该方法特征提取精度整体上优于传统方法, 可为频高图特征的自动、精确提取提供一种新的技术方法. 相似文献
16.
地震发生后震级的快速准确估算是确保地震预警减灾效果的最重要部分,而基于经验参数的传统方法在准确性和时效性方面各自存在局限性。通过建立多全连接层卷积神经网络模型,选用日本KiK-net和K-NET台网1997年至2019年记录到的3 065次地震的16万4 547条初至波在3—9 s不同时段的频域数据、对应地震事件的震源信息(震中距和震源深度)以及场地信息(v S30)作为全数据集,对提出的模型进行训练并对估算效果予以评估。结果显示:当初至波截取时段为3 s时,模型震级预测的整体准确率为89.92%,并且随着初至波长度的增大,估算震级的准确率持续提高;当截取时段为9 s时,整体准确率达到96.08%。与传统P d方法的预估结果相比,结果表明:基于本文提出的多全连接层卷积神经网络模型估算的震级精度有所改善,具有绝对误差标准差和均值更小、时效强等特性,实现了基于单台站记录的端到端震级持续快速估算,能更好地增强地震预警的减灾效果。 相似文献
17.
本文以提高地震数据的成像质量为目标,提出一种智能的卷积神经网络降噪框架,从带有噪声的地震数据中自适应地学习地震信号。为了加速网络训练和避免训练时出现梯度消失现象,我们在网络中加入残差学习和批标准化的方法,并采用了ReLU激活函数和Adam优化算法优化网络。此外,Marmousi和F3数据集被用来对网络进行训练和测试,经过充分训练的网络不仅能在学习中保留地震数据特征,而且能去除随机噪声。首先充分地训练网络,从中提取出随机噪声,并保留学习到的地震数据特征,之后通过重建地震数据估算测试集中的波形特征。合成记录和实际数据的处理结果显示了深度卷积神经网络在随机噪声压制任务中的潜力,并通过实验验证表明了深度卷积神经网络框架有很好的去噪效果。 相似文献
18.
随着受干扰地磁观测仪器数量的不断增多,现有半人工识别干扰事件的方法存在效率低、工作量大、识别结果因人而异等问题。本文利用2012年1月1日至2014年12月31日全国地磁台网原始观测数据和地磁专家标注的2小时内干扰事件记录,分别构建干扰事件样本和正常样本各51 357条,基于卷积神经网络和自注意力机制提出一种新的干扰事件识别模型,实现干扰事件的自动、快速分类。实验结果显示,该模型在验证集的准确率达到92.93%,在测试集的准确率达到93.37%。与MLP、FCN、ResNet三种模型相比,本模型在测试集上的准确率平均提高近8.76%,表明卷积神经网络和自注意力机制等深度学习算法在地磁观测数据干扰事件识别领域具有巨大潜力,为进一步精确识别各类干扰事件探索了一种新思路。 相似文献
19.
传统结构损伤识别需对采集数据进行分析,提取相应特征进行损伤诊断。特征提取过程需消耗大量的计算成本,无法满足结构健康监测在线损伤识别的需求。为提高损伤识别的计算效率和自动化程度,提出基于一维卷积神经网络的结构损伤识别方法,其特点是可以直接从原始振动信号中自主学习损伤特征,并准确快速地识别结构的损伤位置和损伤程度。采用简支梁数值模型和IABMAS BHM Benchmark数值模型验证所提方法的有效性。数值结果表明:所建立的一维卷积神经网络模型能够准确识别结构的损伤位置和损伤程度,具备一定的抗噪性能,整体模型收敛快,对单条样本测试延迟低。设计了钢框架结构损伤识别试验,采用所提方法对框架结构的损伤情况进行了识别。分析结果表明:所提方法可准确识别结构损伤程度及损伤类别,测试集准确率为100%,验证了方法在实际结构损伤识别的应用可行性。 相似文献
20.
地球物理反演问题具有病态性、不适定性,传统的线性反演方法面临着次优逼近和初始模型选择等挑战,为了提高磁场数据反演的精度,受深度学习卓越的非线性映射能力的启发,本文提出了一种基于全卷积神经网络的磁异常及磁梯度异常反演方法.文中首先提出了一种基于网格点几何格架的磁异常及磁梯度异常的空间域快速正演算法,这为本文全卷积神经网络... 相似文献
|