首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
A proxy climate record from a raised bog in County Fermanagh, Northern Ireland, is presented. The record spans the interval between 2850 cal. yr BC and cal. yr AD 1000 and chronological control is achieved through the use of tephrochronology and 14C dating, including a wiggle‐match on one section of the record. Palaeoclimatic inferences are based on a combination of a testate amoebae‐derived water table reconstruction, peat humification and plant macrofossil analyses. This multiproxy approach enables proxy‐specific effects to be identified. Major wet shifts are registered in the proxies at ca. 1510 cal. yr BC, 750 cal. yr BC and cal. yr AD 470. Smaller magnitude shifts to wetter conditions are also recorded at ca. 380 cal. yr BC, 150 cal. yr BC, cal. yr AD 180, and cal. yr AD 690. It is hypothesised that the wet shifts are not merely local events as they appear to be linked to wider climate deteriorations in northwest Europe. Harmonic analysis of the proxies illustrates statistically significant periodicities of 580, 423–373, 307 and 265 years that may be related to wider Holocene climate cycles. This paper illustrates how the timing of climate changes registered in peat profiles records can be precisely constrained using tephrochronology to examine possible climatic responses to solar forcing. Relying on interpolated chronologies with considerable dating uncertainty must be avoided if the climatic responses to forcing mechanisms are to be fully understood. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
The Holocene sediment of Lago Piccolo di Avigliana (Piedmont, Italy, 356 m a.s.l.) was dated by 14C and analysed for pollen to reconstruct the vegetation history of the area. The early‐ and mid‐Holocene pollen record shows environmental responses to centennial‐scale climatic changes as evidenced by independent palaeoclimatic proxies. When human impact was low or negligible, continental mixed‐oak forests decreased at ca. 9300 BC in response to the early‐Holocene Preboreal climatic oscillation. Abies alba expanded in two phases, probably in response to higher moisture availability at ca. 6000 and ca. 4000 BC , while Fagus expanded later, possibly in response to a climatic change at 3300 BC . During and after the Bronze Age five distinct phases of intensified land use were detected. The near synchroneity with the land‐use phases detected in wetter regions in northern and southern Switzerland points to a common forcing factor in spite of cultural differences. Increasing minerogenic input to the lake since 1000 BC coincided with Late Bronze—Iron Age technical innovations and probably indicate soil erosion as a consequence of deforestation in the lake catchment. The highest values for cultural indicators occurred at 700–450 and at 300–50 BC , coinciding with periods of high solar activity (inferred from Δ14C). This suggests that Iron Age land use was enhanced by high solar activity, while re‐occupation of partly abandoned areas after crises in earlier periods match better with the GRIP stable isotope record. On the basis of our data and comparison with independent palaeoclimatic proxies we suggest that precipitation variation was much more important than temperature oscillations in driving vegetation and societal changes throughout the Holocene. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
Two 14C accelerator mass spectrometry (AMS) wiggle‐match dated peat sequences from Denmark and northern England record changes in mire surface wetness reconstructed using plant macrofossil and testate amoebae analyses. A number of significant mid–late Holocene climatic deteriorations (wet shifts) associated with declines in solar activity were recorded (at ca. 2150 cal. yr BC, 740 cal. yr BC, cal. yr AD 930, cal. yr AD 1020, cal. yr AD 1280–1300, cal. yr AD 1640 and cal. yr AD 1790–1830). The wet shifts identified from ca. cal. yr AD 930 are concurrent with or lag decreases in solar activity by 10–50 years. These changes are replicated by previous records from these and other sites in the region and the new records provide improved precision for the ages of these changes. The rapidly accumulating (up to 2–3 yr cm?1, ~1310 yr old, 34 14C dates) Danish profile offers an unprecedented high‐resolution record of climate change from a peat bog, and has effectively recorded a number of significant but short‐lived climate change events since ca. cal. yr AD 690. The longer time intervals between samples and the greater length of time resolved by each sample in the British site due to slower peat accumulation rates (up to 11 yr cm?1, ~5250 yr old, 42 14C dates) acted as a natural smoothing filter preventing the clear registration of some of the rapid climate change events. Not all the significant rises in water table registered in the peat bog archives of the British and Danish sites have been caused by solar forcing, and may be the result of other processes such as changes in other external forcing factors, the internal variability of the climate system or raised bog ecosystem. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
We present stable isotope data (δ18O, δ13C) from a detrital rich stalagmite from Kapsia Cave, the Peloponnese, Greece. The cave is rich in archeological remains and there are reasons to believe that flooding of the cave has directly affected humans using the cave. Using a combination of U–Th and 14C dating to constrain a site-specific correction factor for (232Th/238U) detrital molar ratio, a linear age model was constructed. The age model shows that the stalagmite grew during the period from ca. 950 BC to ca. AD 830. The stable oxygen record from Kapsia indicates cyclical changes of close to 500 yr in precipitation amount, with rapid shifts towards wetter conditions followed by slowly developing aridity. Superimposed on this signal, wetter conditions are inferred around 850, 700, 500 and 400–100 BC, and around AD 160–300 and AD 770; and driest conditions are inferred to have occurred around 450 BC, AD 100–150 and AD 650. Detrital horizons in the stalagmite indicate that three major floods took place in the cave at 500 BC, 70 BC and AD 450. The stable carbon isotope record reflects changes in biological activity being a result of both climate and human activities.  相似文献   

5.
Elemental (C, N, Pb) and isotopic (δ13C, δ15N) measurements of cored sediment from a small bog in northern New Mexico reveal changes in climate during the Late Pleistocene and Holocene. Abrupt increases in Pb concentration and δ13C values ca. 14 420 cal. YBP indicate significant runoff to the shallow lake that existed at that time. Weathering and transport of local volcanic rocks resulted in the delivery of Pb‐bearing minerals to the basin, while a 13C‐enriched terrestrial vegetation source increased the δ13C values of the sedimentary material. Wet conditions developed over a 300 a period and lasted for a few hundred years. The Younger Dryas period (ca. 12 700–11 500 cal. YBP) caused a reduction in terrestrial productivity reflected in decreasing C/N values, δ15N values consistently greater than 0‰ and low organic content. By contrast, aquatic productivity increased during the second half of this period, evidenced by increasing δ13C values at the time of highest abundance of algae. Dry conditions ca. 8 000–6 000 cal. YBP were characterised by low organic carbon content and high Pb concentrations, the latter suggesting enhanced erosion and aeolian transport of volcanic rock. The range in δ13C, δ15N and C/N values in the sedimentary record fall within the range of modern plants, except during the periods of runoff and drought. The sedimentary record provides evidence of natural climate variability in northern New Mexico, including short‐ (multi‐centennial) and long‐(millennial) term episodes during the Late Pleistocene and Holocene. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
The Iberian-Roman Humid Period (IRHP, 2600-1600 cal yr BP), is the most humid phase of the last 4000 yr in southern Spain as recorded in the sedimentary sequence of Zoñar Lake (37°29′00″N, 4°41′22″ W, 300 m a.s.l.). A varve chronology supported by several AMS 14C dates allows study of the lake evolution at annual scale in response to human impact and climate changes. There are four climate phases within this period: i) gradual transition (2600-2500 yr ago, 650-550 BC) from a previous arid period; ii) the most humid interval during the Iberian-Early Roman Epoch (2500-2140 yr ago, 550-190 BC); iii) an arid interval during the Roman Empire Epoch (2140-1800 yr ago, 190 BC AD 150); and iv) a humid period synchronous with the decline of the Roman Empire (1800-1600 yr ago, AD 150-350). Varve thickness and geochemical proxies show a multi-decadal cyclicity similar to modern North Atlantic Oscillation (NAO) (60, 20 years) and solar variability cycles (11 yr). The timing and the structure of this humid period is similar to that described in Eastern Mediterranean and northern European sites and supports the same large-scale climate control for northern latitudes and the Mediterranean region.  相似文献   

7.
A 38 m long sediment core (MD992201) retrieved from a water depth of 290 m from the leeward margin of the Great Bahama Bank (GBB; 25°53·49′N, 79°16·34′W) has been investigated for changes in aragonite content. The core covers the Mid to Late Holocene (the past 7230 yr). Sediment lightness (L*-values) was used as a proxy for aragonite content, based on a high linear correlation (R = 0·93) between the X-ray diffraction derived aragonite content and L*-values. The resulting time resolution of the L*-values derived aragonite content ranges from 1 yr at the base of the core to 4 yr at the top. Detailed time series analysis using Monte Carlo Singular Spectrum Analysis and spectral analysis (Lomb–Scargle Fourier transform) identifies the presence of seven signals with varying amplitudes and wavelengths that could be traced throughout the past 5500 yr. During the first ∼1600 yr of sedimentation the aragonite record is dominated by the initial flooding of the flat-topped GBB. Superimposed on a multimillennial signal, related to Holocene sea-level changes, a millennial-scale fluctuation and five quasi-periodic oscillations were detected (∼1·3–2 kyr, ∼500–600 yr, ∼380 yr, ∼260 yr, ∼200 yr and ∼100 yr period). Comparisons with other proxies (e.g. tree ring-Δ14C, 10Be and δ18O in ice cores) provides information on the origin and dynamics of the individual signals. The analysis shows that the ∼200 yr and ∼100 yr signals can be attributed to solar forcing. The ∼260 yr, ∼380 yr and the ∼500–600 yr quasi-periodic signals are found to be of climatic origin, whereas the millennial scale fluctuations remain enigmatic, although solar forcing mechanisms seem likely. The data show that variability of solar output as well as past oceanographic and atmospheric changes have modulated the Mid to Late Holocene climate, which in turn controlled sediment input variations found in the Holocene wedge leeward of the GBB. Although these periplatform sediments have a rather uniform appearance, they still contain a large variety of subtle sedimentary variations.  相似文献   

8.
From temporal variation in δ18O in Globigerinoides ruber and G. sacculifer and geochemical indices of weathering/erosion (chemical index of alteration, Al and Ti), we infer rapid southwest monsoon (SWM) deterioration with dwindling fluvial and detrital fluxes at ca. 450–650, 1000 and 1800–2200 cal. a BP during the late Holocene. We have evaluated the role of solar influx (reconstructed) and high‐latitude climate variability (archived in GRIP and GISP‐2 cores) on SWM precipitation. Broadly, our δ18O climate reconstruction is concordant with GRIP and GISP‐2, and supports a teleconnection through atmospheric connection between the SWM and the North Atlantic climate – albeit temporal extents of the Little Ice Age and Medieval Warm Period from high latitude are not entirely coeval. Moreover, there is a humid climate and enhanced precipitation during the terminal stages of the Little Ice Age. The medieval warming (ca. AD 800–1300) is not synchronous either, and is punctuated by an arid event centred at 1000 a BP. Although the delineation of the specific influence of solar influx on SWM precipitation is elusive, we surmise that SWM precipitation is a complex phenomenon and local orography along southwestern India may have a role on the entrapment of moisture from the southwest trade winds, when these hit land. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
This paper investigates evidence for palaeoclimatic changes during the period ca. 1500–500 cal. yr BC through peat humification studies on seven Irish ombrotrophic bogs. The sites are well‐correlated by the identification of three mid‐first millennium BC tephras, which enable the humification records at specific points in time to be directly compared. Phases of temporarily increased wetness are suggested at ca. 1300–1250 cal. yr BC , ca. 1150–1050 cal. yr BC , ca. 940 cal. yr BC and ca. 740 cal. yr BC . The last of these is confirmed to be synchronous at five sites, suggesting external forcing on a regional scale. The timing of this wet‐shift is constrained by two closely dated tephras and is demonstrated to be distinct from the widely reported changes to cooler/wetter conditions associated with a solar minimum at 850–760 cal. yr BC , at which time the Irish sites appear instead to experience drier conditions. The results suggest the possibility of either non‐uniform responses to solar forcing in northwest Europe at this time, or the existence of unrelated climate events in the early first millennium BC . The findings caution against the correlation of loosely dated palaeoclimate data if the effects of forcing mechanisms are to be understood. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
Fluctuations in climatic proxies of the Milanggouwan section in the Salawusu River valley of the Ordos Plateau (Inner Mongolia, China) during Marine Isotope stage 3 (MIS 3) coincide well with sedimentary cycles for palaeo‐mobile dune sands alternating with fluvial–lacustrine facies and palaeosols. We compared the palaeo‐mobile dune sands with modern mobile dune sands (products of a cold and dry climate dominated by the East Asian winter monsoon), whereas the fluvial–lacustrine facies and palaeosols were controlled by a wet–warm climate similar to that of the East Asian summer monsoon. The MIS 3 climate of the Salawusu River valley appears to have experienced at least nine wet–warm and ten cold–dry fluctuations, divided into five stages: MIS 3e (58 900–49500 yr BP), MIS 3d (49 500–40 700 yr BP), MIS 3c (40 700–36 900 yr BP), MIS 3b (36 900–27 000 yr BP) and MIS 3a (27 000–22 300 yr BP). The 19 cold–warm climatic fluctuations corresponded roughly to the GRIP and Guliyan records, and with fluctuations in the North Atlantic climate. Notable peaks in the spectral analysis occurred at 19 500 yr, 1020 yr, 640 yr and 500 yr. Our results show that the millennial–centennial climate was closely related to the relative strengths of East Asian monsoons, which are controlled by the North Atlantic thermohaline circulation, and which is also closely linked to the Sun's precession period. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Sediment cores from Lake Pupuke in Auckland City, New Zealand, contain a high‐resolution millennial to centennial‐scale record of changing climate and catchment hydrology spanning the past ca. 10 000 years. Here, we focus on the period between 9500 ± 25 and 7000 ± 155 cal. yr BP during which grain size, diatom palaeoecology, biogenic silica concentrations, sediment elemental and carbon isotope geochemistry reflect changes in sediment sources and lake conditions, with a significant event commencing at ca. 8240 cal. yr BP, commensurate with a lowering of lake level, faster erosion rates and increased sediment influx with a duration of ca. 360 yrs. However, the changes in the lake are not reflected in the terrestrial vegetation, where the pollen record indicates that podocarp forest dominated the Auckland region, with apparent environmental stability during this part of the early Holocene. The synchronous change in most of the proxies between ca. 8240 and 7880 cal. yr BP at Lake Pupuke indicates the presence of a sustained episode of relatively low lake level and concomitant increased rate of erosion in the early Holocene that appears to be at least partly coeval with the 8200 cal. yr BP meltwater event proposed for the North Atlantic region. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Annually resolved June–July–August (JJA) temperatures from ca. 570 BC to AD 120 (±100 a; approximately 690 varve years) were quantified from biogenic silica and chironomids (Type II regression; Standard Major Axis calibration‐in‐time) preserved in the varved sediments of Lake Silvaplana, Switzerland. Using 30 a (climatology) moving averages and detrended standard deviations (mean–variability change, MVC), moving linear trends, change points and wavelets, reconstructed temperatures were partitioned into a warmer (+0.3°C; ca. 570–351 BC), cooler (?0.2°C; ca. 350–16 BC) and moderate period (+0.1°C; ca. 15 BC to AD 120) relative to the reconstruction average (10.9°C; reference AD 1950–2000 = 9.8°C). Warm and variable JJA temperatures at the Late Iron Age–Roman Period transition (approximately 50 BC to AD 100 in this region) and a cold anomaly around 470 BC (Early–Late Iron Age) were inferred. Inter‐annual and decadal temperature variability was greater from ca. 570 BC to AD 120 than the last millennium, whereas multi‐decadal and lower‐frequency temperature variability were comparable, as evident in wavelet plots. Using MVC plots of reconstructed JJA temperatures from ca. 570 BC to AD 120, we verified current trends and European climate model outputs for the 21st century, which suggest increased inter‐annual summer temperature variability and extremes in a generally warmer climate (heteroscedasticity; hotspot of variability). We compared these results to MVC plots of instrumental and reconstructed temperatures (from the same sediment core and proxies but a different study) from AD 1177 to AD 2000. Our reconstructed JJA temperatures from ca. 570 BC to AD 120 showed that inter‐annual JJA temperature variability increased rapidly above a threshold of ~10°C mean JJA temperature. This increase accelerated with continued warming up to >11.5°C. We suggest that the Roman Period serves with respect to inter‐annual variability as an analogue for warmer 21st‐century JJA temperatures in the Alps. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Pollen-assemblage data from a sediment core from Hulun Lake in northeastern Inner Mongolia describe the changes in the vegetation and climate of the East Asian monsoon margin during the Holocene. Dry steppe dominated the lake basin from ca. 11,000 to 8000 cal yr BP, suggesting a warm and dry climate. Grasses and birch forests expanded 8000 to 6400 cal yr BP, implying a remarkable increase in the monsoon precipitation. From 6400 to 4400 cal yr BP, the climate became cooler and drier. Chenopodiaceae dominated the interval from 4400 to 3350 cal yr BP, marking extremely dry condition. Artemisia recovered 3350-2050 cal yr BP, denoting an amelioration of climatic conditions. Both temperature and precipitation decreased 2050 to 1000 cal yr BP as indicated by decreased Artemisia and the development of pine forests. During the last 1000 yr, human activities might have had a significant influence on the environment of the lake region. We suggest that the East Asian summer monsoon did not become intensified until 8000 cal yr BP due to the existence of remnant ice sheets in the Northern Hemisphere. Changes in the monsoon precipitation on millennial to centennial scales would be related to ocean-atmosphere interactions in the tropical Pacific.  相似文献   

14.
La Virgen is an ephemeral tributary of the Ebro River in northeast Spain with a complex alluvial sequence. We analyzed alluvial stratigraphy to develop a model of Holocene fluvial evolution for La Virgen and infer causes of floodplain dynamics. Three alluvial terraces were mapped and described using a combination of geoarchaeological and geomorphological techniques. Stratigraphic ages were estimated using 14C dating and archaeological remains. Sedimentation in the valley floor commenced in the Neolithic period ca. 6000 BC and continued during the Bronze and Iron ages (ca. 1800–500 BC), the Iberian and Roman periods (ca. 500 BC–AD 500), and the Middle Ages (ca. AD 500–1500). The main terrace (N3) is 14m thick and predominantly composed of sand, silt, and clay that we believe are derived from local hillslopes and represent a long period of human‐induced soil erosion that intensified during the Bronze and Iron ages until the Late Roman period. © 2010 Wiley Periodicals, Inc.  相似文献   

15.
The objective of this study was to investigate the possible links between regional climate, fire and vegetation at the small spatial scale during the early and mid Holocene in southern Sweden using pollen, plant macrofossil and charcoal records from a small bog. The fire history was compared with climate reconstructions inferred from various proxy records in the study region. High fire activity is related to dry and warm climate around 8550, 7600, 5500–5100 and 4500 cal. a BC. Low fire activity ca. 6500–6000 and 4750 BC may correspond to the widespread ‘8.2 k event’ (ca. 6200 BC) recorded across the North Atlantic region, and a later, brief period of increased precipitation, respectively. The decrease in broadleaved trees culminating ca. 6500–6000 BC correlates with the ‘8.2 k event’. A long mid Holocene period with low fire activity (ca. 4350–1000 BC) agrees with the pattern emerging for Europe from the global charcoal database, and may correspond to generally wetter and cooler conditions. High fire activity ca. 8550 BC probably triggered the local establishment of Corylus. Warmer and drier conditions (and high fire activity) ca. 7600 BC might have favoured the establishment of Alnus, Quercus and Tilia. The fire‐adapted Pinus maintained important populations throughout the early and mid Holocene. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
The regional climate correlation within the Northern Hemisphere in the cold/dry mid-Younger Dryas event (YD) remains elusive. A key to unraveling this issue is sufficient knowledge of the detailed climate variability at the low latitudes. Here we present a high-resolution (3-yr) δ18O record of an annually laminated stalagmite from central China that reveals a detailed Asian monsoon (AM) history from 13.36 to 10.99 ka. The YD in this record is expressed as three phases, characterized by gradual onsets but rapid ends. During the mid-YD, the AM variability exhibited an increasing trend superimposed by three centennial oscillations, well-correlated to changes in Greenland temperatures. These warming/wetting fluctuations show a periodicity of ~ 200 yr, generally in agreement with centennial changes in cosmogenic nuclides indicated by the 10Be flux from the Greenland ice. This relationship implies that centennial-scale climate changes during the mid-YD are probably caused by solar output and rapidly transported over broad regions through atmosphere reorganization.  相似文献   

17.
We present a high‐resolution record of lacustrine sedimentation spanning ca. 30 000 to 9000 cal. a BP from Onepoto maar, northern North Island, New Zealand. The multi‐proxy record of environmental change is constrained by tephrochronology and accelerator mass spectrometric 14C ages and provides evidence for episodes of rapid environmental change during the Last Glacial Coldest Period (LGCP) and Last Glacial–Interglacial Transition (LGIT) from northern New Zealand. The multi‐proxy palaeoenvironmental record from Onepoto indicates that the LGCP was cold, dry and windy in the Auckland region, with vegetation dominated by herb and grass in a beech forest mosaic between ca. 28 500 and 18 000 cal. a BP. The LGCP was accompanied by more frequent fires and influx of clastic sediment indicating increased erosion during the LGCP, with a mid‐LGCP interstadial identified between ca. 25 000 and 23 000 cal. a BP. Rapid climate amelioration at ca. 18 000 cal. a BP was accompanied by increased terrestrial biomass exemplified by the expansion of lowland podocarp forest, especially Dacrydium cupressinum. Increasing biomass production is reversed briefly by LGIT perturbations which are apparent in many of the proxies that span ca. 14 000–10 500 cal. a BP, suggesting generally increased wetness and higher in situ aquatic plant productivity with reduced terrestrial organic matter and terrigenous detrital influx. Furthermore, conditions at that time were probably warmer and frosts rare based on the increasing importance of Ascarina. The subsequent early Holocene is characterised by podocarp conifer forest and moist mild conditions. Postglacial sea‐level rise breached the crater rim and deposited 36 m of estuarine mud after ca. 9000 cal. a BP. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
近1500年来新疆艾比湖同位素记录的气候环境演化特征   总被引:10,自引:1,他引:10       下载免费PDF全文
利用介形虫壳体δ18O,δ13C及其沉积物有机质δ13C同位素组成等环境代用指标,重建了西北干旱区艾比湖地区近1500年来气候环境演化特征。结果表明,气候不稳定性不但出现在时段约660~760A.D.及约1380~1500A.D.由暖干变冷湿的气候转换时期,也出现在时段约1050~1150A.D.及约1850~1940A.D.由冷湿变暖干的转换时期。尤其是由冷湿到暖干的气候转换时期,频繁而大幅度的气候变化影响湖泊水环境的稳定连续性,限制了介形虫等湖泊生物的生存,造成湖泊生态环境系统的破坏。而在百年尺度上艾比湖地区气候表现为暖干、冷湿的组合特征。约1850年开始,气候出现明显的干旱化趋势。  相似文献   

19.
A macrofossil-rich glaciomarine–marine–lacustrine sediment from a soft-water lake in southwestern Sweden has provided an opportunity to 14C date different components of its sediments. Bulk sediment dates are 100 to 500 yr older than fragile terrestrial macrofossils of corresponding levels, with a mean age difference of ca. 300 yr. This is explained by the presence of old and reworked organic material in the sediment. Five age comparisons between terrestrial macrofossils and periostraca of marine bivalves (probably Arctica islandica) of Allerød age give a mean age difference of 380 yr, i.e. slightly greater than the present reservoir age of 340 ± 30 yr for the Swedish west coast. This difference is roughly the same as for the marine macroalga Desmarestia aculeata. A date from shell carbonate fragments of Mytilus edulis yields an age that is more than 1000 yr older than corresponding periostraca and terrestrial macrofossils and 500–1000 yr older than the age of the supposed deglaciation of the site. Altogether this indicates a larger marine reservoir effect during the Allerød than at present. © 1998 John Wiley & Sons, Ltd.  相似文献   

20.
Palynological analysis of a core from the Atlantic rain forest region in Brazil provides unprecedented insight into late Quaternary vegetational and climate dynamics within this southern tropical lowland. The 576-cm-long sediment core is from a former beach-ridge “valley,” located 3 km inland from the Atlantic Ocean. Radio-carbon dates suggest that sediment deposition began prior to 35,000 14C yr B.P. Between ca. 37,500 and ca. 27,500 14C yr B.P. and during the last glacial maximum (LGM; ca. 27,500 to ca. 14,500 14C yr B.P.), the coastal rain forest was replaced by grassland and patches of cold-adapted forest. Tropical trees, such as Alchornea, Moraceae/Urticaceae, and Arecaceae, were almost completely absent during the LGM. Furthermore, their distributions were shifted at least 750 km further north, suggesting a cooling between 3°C and 7°C and a strengthening of Antarctic cold fronts during full-glacial times. A depauperate tropical rain forest developed as part of a successional sequence after ca. 12,300 14C yr B.P. There is no evidence that Araucaria trees occurred in the Atlantic lowland during glacial times. The rain forest was disturbed by marine incursions during the early Holocene period until ca. 6100 14C yr B.P., as indicated by the presence of microforaminifera. A closed Atlantic rain forest then developed at the study site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号