共查询到17条相似文献,搜索用时 108 毫秒
1.
基于标记控制分水岭分割方法的高分辨率遥感影像单木树冠提取 总被引:3,自引:0,他引:3
树冠是树木的重要组成,可以直接反映树木健康状况。高空间分辨率遥感影像和遥感技术为快速获取详细的树冠信息和实时监测林冠变化提供了有效的途径。因此,基于高空间分辨率遥感影像的单木树冠提取方法研究对现代森林管理具有重要意义。本文以黄河三角洲地区孤岛林场人工刺槐林和旱柳为研究对象,以QuickBird影像为数据源,首先利用面向对象方法实现研究区林地和非林地分类;然后以林地为掩膜,提取出树冠分布范围;在此基础上,分别选取疏林区和密林区为试验区域,通过形态学开闭重建滤波,平滑图像,去除噪声;最后,利用标记控制分水岭分割方法分别对疏林区和密林区进行树冠提取。本文以人工勾绘结果为参考进行精度验证,结果显示疏林区F测度达到87.8%,密林区F测度达到65.5%,表明该提取方法简单易行,精度可靠。 相似文献
2.
提供了对图像边缘的两步检测法.先利用样条小波变换模极大值法对图像进行处理,接着利用Otsu的阀值法把模值分为边缘点,非边缘点和待选边缘点.对待选边缘点进行Gabor小波分解,再对其系数进行单阀值处理,就可得到不同尺度下较精确的图像边缘.用小波变换对图像进行边缘检测可以很好地抑制噪声,但其缺点是边缘存在不连续的现象.提供的方法保留了小波变换的优点又进一步提高了检测的精确度和图像边缘的连续性. 相似文献
3.
在基于高分辨率遥感影像的道路提取中,阴影遮挡是导致提取的部分或整段道路缺失的重要因素,严重制约了道路提取的自动化过程,因此探索适用性强的阴影情况下道路提取方法对地图数据生产和地理大数据研究具有重要意义。本文针对传统的阴影系数修正方法难以消除植被、建筑上的阴影对道路提取带来的干扰,选用路面颜色不一、地物干扰少的郊区影像与地物丰富、路面地物阴影干扰严重的市区影像开展研究,提出了基于亮度补偿的阴影遮挡道路的提取方法。首先,在图像预处理的基础上,利用HSI阈值分割获取阴影区域;其次,在削弱蓝色分量信息后采用亮度补偿方法实现像素点空间域增强以及阴影区信息的恢复,在增大道路面阴影与周围环境差异的基础上,借助高效的分割算法实现阴影道路提取;最后,通过和由K-means聚类分割获取的非阴影道路进行合并,经细化处理最终实现阴影遮挡道路的完整提取。实验结果表明,此方法提取郊区与市区影像中阴影道路的正确率在80%以上,该方法能有效地提取阴影遮挡道路,消除其他阴影的干扰,降低阴影道路提取时的斑块破碎度,较好的保留道路的主体。 相似文献
4.
小波变换和数学形态学的高分辨率图像居民地识别 总被引:1,自引:0,他引:1
利用小波变换和数学形态学的方法对高分辨率遥感影像的面状地物居民地进行识别提取。经实验结果得出, 利用小波变换对图像进行纹理分割,而后再用数学形态学的基本运算组合成的各种算子,选择合适的结构元素,可以完成图像居民地的提取,并进行了矢量跟踪,得出的结果可以直接应用于GIS。 相似文献
5.
城市交通是经济社会发展的重要推动因素和枢纽,因此道路信息的提取与更新显得尤为重要。利用遥感图像来提取道路信息已经成为近年来道路提取的主要方法,但高分辨率遥感影像的快速发展与应用,在提供丰富信息的同时使道路提取变得更加困难。针对目前基于高分辨率遥感影像提取道路存在的问题,提出一种基于数学形态学和Hough变换的道路自动化提取方法。基于Hough变换确定道路的走向,在此基础上选定线性结构元素,利用数学形态学进行道路提取。分别选择IKONOS影像和Quickbird影像验证本文提出的模型。实验结果表明,本文提出的模型能有效地提取弯曲型道路与直线型道路,取得了较好的结果。 相似文献
6.
徐莹 《成都信息工程学院学报》2009,24(3)
数学形态学提供了一种以形态或集合论为基础的对图像进行分析理解的工具,主要包括扩张、腐蚀、开启和闭合4个算子.基于数学形态学理论,提出一种改进的二值图像骨架提取和重建算法,并取得了很好的效果. 相似文献
7.
利用遥感成像技术获取地面水体信息对水资源调查、自然灾害评估、流域规划和生态环境监测等具有重要意义,其中SAR成像作为大范围地面监测的可靠数据源,拥有全天时、全天候、广覆盖等光学遥感系统所不具有的优点,在水体提取中得到了广泛的应用。但由于受SAR图像相干斑噪声的影响,现有水体提取方法难以迅速、精确提取SAR图像中复杂精细的自然水体结构。为此,提出一种结合改进的降斑各向异性扩散和最大类间方差的SAR图像水体提取方法。首先,利用降斑各向异性扩散滤波SAR图像,在迭代滤波过程中通过计算图像间平均结构相似度自适应控制迭代过程,使其同时保持精细边缘和纹理结构;然后,以类间方差最大为准则,自适应确定阈值,实现滤波结果图像二值化分割。在二值化分割结果中,搜索具有相同像元值且位置相邻的前景像元点组成的连通区域,使每个单独的连通区域形成一个被标识的块,通过获取这些块的几何参数来消除图像的误分割,精确划定真实的水体区域,以实现SAR图像水体提取。为了验证提出方法的准确性,将本文方法提取的水体边界与人工绘制的水体边界叠加,结果表明二者可较好吻合。同时,从视觉、提取精度和运行时间对本文方法与目前常用3种SAR图像水体提取算法的结果进行比较分析,其中本文方法的运行时间满足实时应用的要求,提取结果的边界在2个像元评级区重叠度均达到80%,明显优于其他方法且本文方法提取结果在边界及细节信息等视觉方面也更加显著。对结果的定性及定量评价表明本文方法的优越性。 相似文献
8.
基于高分辨率遥感影像的建筑物提取一直是研究的热点问题,深度学习的深层次特征提取方法,非常适合高分辨率影像中建筑物的提取,但使用深度学习提取建筑物时,大多以改变网络结构为主进行算法优化,很少与其他方法结合.本文研究在改进深度学习网络结构的基础上,结合影像模糊度约束增强、形态学建筑指数约束增强等方法,对建筑物提取方法进行更... 相似文献
9.
基于云模型和FCM聚类的遥感图像分割方法 总被引:7,自引:0,他引:7
模糊C均值算法由于具有良好的聚类性能而被广泛应用于图像分割领域,但聚类中心的初始化问题一直影响着该算法的运行效率。好的初始聚类中心,可以使算法很快收敛于最优解,而不合适的初始聚类中心,不仅需要更多的迭代次数,而且还可能使算法最终收敛于局部最优解。文章结合云模型和FCM(模糊C均值)聚类算法,提出了一种遥感图像分割的新方法。利用云变换解决模糊C均值聚类算法的初始化中心选择问题,可以根据样本特性自动确定聚类中心值及个数,并以较少的迭代次数收敛到全局最优解,提高了模糊C均值遥感图像分割方法的效率,具有较好的稳定性和鲁棒性。文章选取三幅TM遥感图像作为样本,分别利用云模型的FCM方法和传统的FCM方法对样本进行分割实验,实验表明采用云模型的FCM方法不仅能够取得较好的分割效果,而且大大减少了使算法收敛的迭代次数,提高了分割的效率。 相似文献
10.
建筑物立面是城市地物的重要组成部分,而移动激光扫描是获取城市地物三维信息的重要手段之一。本文提出了一种基于移动激光扫描点云的建筑物立面半自动提取算法。该方法首先构建研究区水平网格;然后计算局部点云几何特征,并且将特征投影到水平网格生成点云特征图像;接着基于支持向量机(Support Vector Machine,SVM)对建筑物立面网格进行粗提取;最后使用网格属性(形状系数、网格面积、最大高程)对粗提取结果进行过滤,并将结果反投影到三维空间中得到精确的建筑物立面。以卡内基梅隆大学的移动激光扫描点云进行试验后表明,本算法能够较好地提取出建筑物立面,提取精度为84%,召回率为90%,数据修正后精度为88%,召回率为91%。通过与现有算法对比,本文提出的算法具有较高精度。 相似文献
11.
针对在手写字符识别中由于书写习惯和风格的不同造成字符模式不稳定的问题,将支持向量机SVM方法用于手写字符的识别.算法首先采用Gabor变换提取手写字符图像的特征参数,然后采用提取的特征训练SVM分类器.再应用SVM分类器分类和判别手写字符.实验表明这种方法具有良好的车牌识别效果,较强的鲁棒性,较大的应用价值. 相似文献
12.
传统基于光谱信息的水体提取未能考虑水体形状、纹理、大小、相邻关系等问题,且存在同物异谱、异物同谱现象,导致水体提取精度较低。而传统基于分类提取水体方法设计特征过程较为繁琐,且不能挖掘深度信息特征。因此,本文提出改进的U-Net网络语义分割方法,借鉴经典U-Net网络的解编码结构对网络进行改进:① 将VGG网络用于收缩路径以提取特征;② 在扩张路径中对低维特征信息进行加强,将收缩特征金字塔上一层的特征图与下一层对应扩张路径上的特征图进行融合,以提高提取结果分割精度;③ 在分类后处理中引入条件随机场,以将分割结果精细化。在保持相同训练集、验证集和测试集的情况下,分别用SegNet、经典U-Net网络和改进的U-Net网络做对照试验。试验结果表明,改进的U-Net网络结构在IoU、精准率和Kappa系数指标上均高于SegNet和经典U-Net网络,与SegNet相比,3项指标分别提升了10.5%、12.3%和0.14,与经典U-Net网络结果相比,各个指标分别提升了5.8%、4.4%和0.05。改进的网络水体提取结果较为完整,对小目标水体能够准确提取。改进的U-Net网络能够有效地实现水体提取任务。 相似文献
13.
油菜作为我国主要的农业经济作物及食用油的主要来源,及时、准确地获取其种植分布信息,是全面掌握油菜种植状况、加强生产管理、优化作物种植空间格局的重要依据。高分六号(GF-6)的宽视场(Wide Field View,WFV)传感器在可见光-近红外波段基础上增设了2个红边波段、1个黄波段和1个紫波段,为油菜遥感识别提供了更加丰富的光谱信息,进而相较于蓝、绿、红、近红外4个“传统波段”的识别精度有所提升。本文以油菜开花期内两景不同时相GF-6 WFV影像拼接图像作为数据源,选择油菜生产优势区的河南省固始县为研究区,针对油菜同其他地物的“异物同谱”现象以及不同生长阶段油菜的“同物异谱”现象,利用油菜开花期独特的反射光谱特征,结合均值间标准化近距离提出了NDSI28、S34、NDSI23和NDSI46共4个光谱指数,并由此构建油菜种植区域提取的决策树模型。研究结果表明,基于4个指数组合构建的决策树模型对油菜种植分布信息的提取达到了较好的效果,总体精度为96.17%,与随机森林、支持向量机、最大似然法相比分别高出0.31%、0.88%和1.24%;制图精度方面,决策树法为98.15%,比随机森林、支持向量机、最大似然法分别高4.72%、4.21%和5.59%;对于用户精度,决策树法为86.89%,较随机森林、最大似然法分别低2.2%和1.63%,比支持向量机高0.11%。由此说明,GF-6 WFV数据中的新增波段极大地丰富了其光谱信息,使其在包括油菜在内的农作物种植分布信息提取中具有独特的优势和巨大潜力。 相似文献
14.
高分辨率遥感影像特征分割及算法评价分析 总被引:7,自引:2,他引:7
图像分割一直是图像处理和计算机视觉领域中的一项关键技术。本文首先从遥感影像地学处理与应用的角度阐述了影像分割技术对于遥感信息提取和目标识别的重要性,然后提出了基于特征的高分辨率遥感影像信息提取技术框架,建立了一套基于特征的遥感影像分割方法及分类体系。同时,鉴于遥感影像分割方法评价的重要性, 阐述了一种高分辨率遥感影像分割方法评价的思路,并对几种典型的基于特征的遥感影像分割方法进行定性和定量的试验和评价,对其各自的性能和适用面进行对比分析。最后,指出了遥感影像特征分割方法所存在的问题及其发展趋势。 相似文献
15.
近年来,水产养殖用地分布广泛,但由于其在影像上所表现的复杂性和不均匀性,造成该用地类型提取中的困难,尤其针对中分辨率遥感影像。对此,本文提出了一种基于纹理和空间特征的养殖用地提取方法,该方法主要包括3个步骤:首先,利用纹理熵和归一化差异水体指数NDWI实现水产养殖用地的粗提取;然后,依据相邻地物间的关系实现同类型地物合并;最后,本文构建一种相对宽度作为地物的近似宽度,再次利用NDWI实现水产养殖用地的准确识别。本文以越南万丰湾为研究区域,以Landat-8融合影像(融合后的像元大小为15 m)的目视解译结果为标准,对本文方法与最小距离法分类结果进行比较。实验结果表明,该方法的精度可达91.13%,远高于传统的面向对象方法,并且所提方法的错误率和虚假率分别为0.09%和8.87%,表明了该方法可靠性,因而该方法可为基于中分辨率影像的地物类型提取提供一种有效手段。 相似文献
16.
面向对象的方法提取湖泊,常常面临边界识别不精确的问题.本研究在面向对象方法的基础上,利用分水岭算法,解决湖泊边界识别问题.该方法初步将遥感影像划分为确定湖泊区域、潜在湖泊区域和背景;然后通过分水岭算法对潜在湖泊区域进行二次提取.研究选择昆仑-喀喇和喜马拉雅山脉区域的3个山地湖泊发育良好的区域作为实验区,利用Landsa... 相似文献
17.
河源区边界是重要的国家基础地理信息之一,但除长江、黄河等大江大河外的我国大部分其他中小流域仍缺乏确切的河源区边界信息,需要科学划定河源区边界以支持流域水生态保护相关政策的规划与实施。对此,本文在确立河源区划分原则、明确划分依据的基础上,提出了基于多特征指标和层次聚类分析法的河源区边界划定方法。以沁河流域为研究案例,首先利用均值变点分析法计算沁河流域子流域提取的最佳汇流累积量分位数阈值为0.15%,再基于子流域的多特征指标运用层次聚类分析法最终确定河源区范围边界,并将该方法应用于长江、黄河流域进行验证分析。结果表明:(1)基于多特征指标和层次聚类分析提取的沁河流域河源区范围处于河底比降法、水文站点方法得到的源区范围面积之间;(2)该方法在长江、黄河流域河源区划分结果的交并比分别达到85.40%和79.99%,侧面验证了本文方法进行河源区边界划分的合理性与适用性。基于多特征指标和层次聚类分析的河源区边界自动划分方法可以简捷高效地识别缺乏明确河源区边界信息的流域河源区范围,为我国河源区生态安全屏障识别、水资源保护相关政策的规划和实施提供科学支撑。 相似文献