首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A multi-proxy approach involving a study of sediment architecture, grain size, grain roundness and crushing index, petrographic and clay mineral composition, till fabric and till micromorphology was applied to infer processes of till formation and deformation under a Weichselian ice sheet at Kurzetnik, Poland. The succession consists of three superposed till units overlying outwash sediments deformed at the top. The textural characteristics of tills vary little throughout the till thickness, whereas structural appearance is diversified including massive and bedded regions. Indicators of intergranular bed deformation include overturned, attenuated folds, boudinage structures, a sediment-mixing zone, grain crushing, microstructural lineations, grain stacking and high fabric strength. Lodgement proxies are grooved intra-till surfaces, ploughing marks and consistently striated clast surfaces. Basal decoupling by pressurized meltwater is indicated by undisturbed sand stringers, sand-filled meltwater scours under pebbles and partly armoured till pellets. It is suggested that the till experienced multiple transitions between lodgement, deformation and basal decoupling. Cumulative strain was high, but the depth of (time-transgressive) deformation much lower (centimetre range) than the entire till thickness ( ca 2 m) at any point in time, consistent with the deforming bed mosaic model. Throughout most of ice overriding, porewater pressure was high, in the vicinity of glacier floatation pressure indicating that the substratum, consisting of 11 m thick sand, was unable to drain subglacial meltwater sufficiently.  相似文献   

2.
The calcite mylonites in the Xar Moron-Changchun shear zone show a significance dextral shearing characteristics. The asymmetric(σ-structure) calcite/quartz grains or aggregates, asymmetry of calcite c-axes fabric diagrams and the oblique foliation of recrystallized calcite grains correspond to a top-to-E shearing. Mineral deformation behaviors, twin morphology, C-axis EBSD fabrics, and quartz grain size-frequency diagrams demonstrate that the ductile shear zone was developed under conditions of greenschist facies, with the range of deformation temperatures from 200 to 300°C. These subgrains of host grains and surrounding recrystallized grains, strong undulose extinction, and slightly curved grain boundaries are probably results of intracrystalline deformation and dynamic recrystallization implying that the deformation took place within the dislocation-creep regime at shallow crustal levels. The calculated paleo-strain rates are between 10~(–7.87)s~(–1) and 10~(–11.49)s~(–1) with differential stresses of 32.63–63.94 MPa lying at the higher bound of typical strain rates in shear zones at crustal levels, and may indicate a relatively rapid deformation. The S-L-calcite tectonites have undergone a component of uplift which led to subhorizontal lifting in an already non-coaxial compressional deformation regime with a bulk pure shear-dominated general shear. This E-W large-scale dextral strike-slip movement is a consequence of the eastward extrusion of the Xing'an-Mongolian Orogenic Belt, and results from far-field forces associated with Late Triassic convergence domains after the final closure of the Paleo-Asian Ocean.  相似文献   

3.
It is standard practice to measure particle fabrics in glacial studies to infer palaeo‐ice flow directions and processes of till formation but few studies examine the relationships between particle fabrics at different (i.e. the macro‐ and micro‐) scales. This knowledge is critical to inform the utility of the methods and limitations of the associated interpretations. Micro‐ (sand grain) and macro‐ (pebble) fabrics of pebble‐rich, sandy subglacial till (Kamloops Lake till) deposited by the Cordilleran Ice Sheet, south‐central British Columbia, were compared to assess their similarities and differences, and therefore their utility for understanding subglacial processes. Before comparisons were made, the data were tested for robustness by assessing various controls (e.g. sampling face orientation, number of particles measured, statistical variation resulting from sampling effects, particle shape, size and concentration) on particle fabrics. A new method of microfabric analysis was applied that involves the identification and delineation of distinct clusters of similarly orientated sand grains in order to compare them with macrofabrics and inferred ice‐flow directions. The results show that microfabrics, on their own, are an unreliable indicator of ice‐flow direction in Kamloops Lake till in the study area and should not be used as a substitute for macrofabric data, as they probably record late‐stage microscale strain patterns and pore‐water flow in addition to till deposition and deformation by overriding ice. We suspect that this would also be the case for coarse‐grained till elsewhere. Our findings suggest that till microfabric interpretations should always be made after assessing corresponding macrofabric data alongside sedimentological and structural observations.  相似文献   

4.
Sediment from the Attawapiskat area near James Bay, Northern Ontario was sampled for micromorphological analyses. The sediment is a glacial diamicton (till) of subglacial origin. The till contains entrained and scavenged sediments of proglacial and/or subglacial glaciofluvial/glaciolacustrine origin from a subglacial deforming layer that was emplaced due to both stress reduction and/or porewater dissipation. Evidence of porewater escape, clay translocation and other microstructures all point to emplacement under active subglacial bed deformation. The limited number of edge to edge (ee) grain crushing events, however, point to lower stress levels than might anticipated under a thin fast ice lobe of the James Bay during the Middle Pliocene. Microstructures of Pleistocene tills were quantitatively compared with the Attawapiskat till and the limited number of ee events at Attawapiskat further highlighted that grain to grain contact was curtailed possibly due to high till porosity, high porewater pressures and low strain rates or alternatively due to a high clay matrix component reducing grain crushing contact events. It is suggested that this Middle Pliocene till may be indicative of sediments emplaced under ice lobe surging conditions or fast ice stream subglacial environments. This proposal has significant implications for the glaciodynamics of this part of the Middle Pliocene James Bay lobe. This research highlights a crucial link between subglacial conditions, till microstructural analyses and glaciodynamics.  相似文献   

5.
The macro‐ and micro‐sedimentology of a supraglacial melt‐out till forming at the Matanuska Glacier was examined in relationship to the properties of the stratified basal zone ice and debris from which it is originating. In situ melting of the basal ice has produced a laminated to bedded diamicton consisting mainly of silt. Macroscopic properties include: discontinuous laminae and beds; lenses of sand, silt aggregates and open‐work gravel; deformed and elongate clasts of clay; widely dispersed pebbles and cobbles, those that are prolate usually with their long axes subparallel to parallel to the bedding. Evidence for deformation is absent except for localized bending of beds over or under rock clasts. Microscopic properties are a unique element of this work and include: discontinuous lineations; silt to granule size laminae; prolate coarse sand and rock fragments commonly with their long axis subparallel to bedding; subangular to subrounded irregular shaped clay clasts often appearing as bands; sorted and unsorted silt to granule size horizons, sometimes disrupted by pore‐water pathways. Limited deformation occurs around rock clasts and thicker parts of lamina. This study shows that in situ melting of debris‐rich basal ice can produce a laminated and bedded diamicton that inherits and thereby preserves stratified basal ice properties. Production and preservation of supraglacial melt‐out till require in situ melting of a stagnant, debris‐rich basal ice source with a low relief surface that becomes buried by a thick, stable, insulating cover of ice‐marginal sediment. Also required are a slow melt rate and adequate drainage to minimize pore‐water pressures in the till and overlying sediment cover to maintain stability and uninterrupted deposition. Many modern and ancient hummocky moraines down glacier of subglacial overdeepenings probably meet these process criteria and their common occurrence suggests that both modern and pre‐modern supraglacial melt‐out tills may be more common than previously thought.  相似文献   

6.
Regional‐scale, high‐resolution terrain data permit the study of landforms across south‐central Ontario, where the bed of the former Laurentide Ice Sheet is well exposed and passes downflow from irregular topography on Precambrian Shield highlands to flat‐lying Palaeozoic carbonate bedrock, and thick (50 to >200 m) unconsolidated sediment substrates. Rock drumlins and megagrooves are eroded into bedrock and mega‐scale glacial lineations (MSGL) occur on patchy streamlined till residuals in the Algonquin Highlands. Downflow, MSGL pass into juxtaposed rock and drift drumlins on Palaeozoic bedrock and predominantly till‐cored drumlins in areas of thick drift. The Lake Simcoe Moraines, now traceable for more than 80 km across the Peterborough drumlin field (PDF), form a distinct morphological boundary: downflow of the moraine system, drumlins are larger, broader and show no indication of subsequent reworking by the ice, whereas upflow of the moraines, a higher degree of complexity in bedform pattern and morphology is distinguished. Discrete radial and/or cross‐cutting flowset terminate at subtle till‐cored moraine ridges downflow of local topographic lows, indicating multiple phases of late‐stage ice flow with strong local topographic steering. More regional‐scale flow switching is evident as NW‐orientated bedforms modify drumlins south of the Oak Ridges Moraine, and radial flowset emanate from areas within the St. Lawrence and Ottawa River valleys. Most of the drumlins in the PDF formed during an early, regional drumlinization phase of NE–SW flow that followed the deposition of a thick regional till sheet. These were subsequently modified by local‐scale, topographically controlled flows that terminate at till‐cored moraines, providing evidence that the superimposed bedforms record dynamic ice (re)advances throughout the deglaciation of south‐central Ontario. The patterns and relationships of glacial landform distribution and characteristics in south‐central Ontario hold significance for many modern and palaeo‐ice sheets, where similar downflow changes in bed topography and substrate lithology are observed.  相似文献   

7.
Menzies, J. & Ellwanger, D. 2010: Insights into subglacial processes inferred from the micromorphological analyses of complex diamicton stratigraphy near Illmensee‐Lichtenegg, Höchsten, Germany. Boreas, 10.1111/j.1502‐3885.2010.00194.x. ISSN 0300‐9483. Investigations of a 30‐m‐high section of Pleistocene sediments at Illmensee‐Lichtenegg, Höchsten in Baden‐Württemberg provide detailed information on subglacial conditions beneath the Rhine Glacier outlet of the Alpine ice sheet in southern Germany. The sediment exposure extends from an upper cemented sand and gravel (Deckenschotter) into diamictic units that extend down to weathered Molasse bedrock. The exposure reveals sediments symptomatic of active syndepositional stress/strain processes ongoing beneath the ice sheet. Macrosedimentology reveals diamicton subfacies units and a strong uni‐direction of ice motion based on clast fabric analyses. At the microscale level, thin‐section analyses provide a substantially clearer picture of the dynamics of subglacial sediment deformation and till emplacement. Evidence based on detailed micromorphological analyses reveals microstructural strain and depositional markers that indicate a subglacial environment of ongoing soft bed deformation in which the diamictons can be readily identified as subglacial tills. Within this subglacial environment, distinct changes in pore‐water pressure and sediment rheology can be detected. These changes reveal fluctuating conditions of progressive, non‐pervasive deformation associated with rapid changes in effective stress and shear strain leading to till emplacement. This site, through the application of micromorphology, increases our understanding of localized subglacial conditions and till formation.  相似文献   

8.
This paper presents the first integrated macroscale and microscale examination of subglacial till associated with the last‐glacial (Fraser Glaciation) Cordilleran Ice Sheet (CIS). A new statistical approach to quantifying till micromorphology (multivariate hierarchical cluster analysis for compositional data) is also described and implemented. Till macrostructures, macrofabrics and microstructures support previous assertions that primary till in this region formed through a combination of lodgement and deformation processes in a temperate subglacial environment. Macroscale observations suggest that subglacial environments below the CIS were probably influenced by topography, whereby poor drainage of the substrate in topographically constricted areas, or on slopes adverse to the ice‐flow direction at glacial maximum, facilitated ductile deformation of the glacier bed. Microscale observations suggest that subglacial till below the CIS experienced both ductile and brittle deformation, including grain rotation and squeeze flow of sediment between grains under moist conditions, and microshearing, grain stacking and grain fracturing under well‐drained conditions. Macroscale observations suggest that ductile deformation events were probably followed by brittle deformation events as the substrate subsequently drained. The prevalence of ductile‐type microstructures in most till exposures investigated in this study suggests that ductile deformation signatures can be preserved at the microscale after brittle deformation events that result in larger‐scale fractures and shear structures. It is likely that microscale ductile deformation can also occur within distributed shear zones during lodgement processes. Cluster analysis of microstructure data and qualitative observations made from thin sections suggest that the relative frequency of countable microstructures in this till is influenced by topography in relation to ice‐flow direction (bed drainage conditions) as well as by the frequency and distribution of voids in the till matrix and skeletal grain shapes.  相似文献   

9.
A microstructural and metamorphic study of a naturally deformed medium‐ to high‐pressure granitic orthogneiss (Orlica–?nie?nik dome, Bohemian Massif) provides evidence of behaviour of the felsic crust during progressive burial along a subduction‐type apparent thermal gradient (~10 °C km?1). The granitic orthogneisses develops three distinct microstructural types, as follows: type I – augen orthogneiss, type II – banded orthogneiss and type III – mylonitic orthogneiss, each representing an evolutionary stage of a progressively deformed granite. Type I orthogneiss is composed of partially recrystallized K‐feldspar porphyroclasts surrounded by wide fronts of myrmekite, fully recrystallized quartz aggregates and interconnected monomineralic layers of recrystallized plagioclase. Compositional layering in the type II orthogneiss is defined by plagioclase‐ and K‐feldspar‐rich layers, both of which show an increasing proportion of interstitial minerals, as well as the deformation of recrystallized myrmekite fronts. Type III orthogneiss shows relicts of quartz and K‐feldspar ribbons preserved in a fine‐grained polymineralic matrix. All three types have the same assemblage (quartz + plagioclase + K‐feldspar + muscovite + biotite + garnet + sphene ± ilmenite), but show systematic variations in the composition of muscovite and garnet from types I to III. This is consistent with the equilibration of the three types at different positions along a prograde P?T path ranging from <15 kbar and <700 °C (type I orthogneiss) to 19–20 kbar and >700 °C (types II and III orthogneisses). The deformation types thus do not represent evolutionary stages of a highly partitioned deformation at constant P?T conditions, but reflect progressive formation during the burial of the continental crust. The microstructures of the type I and type II orthogneisses result from the dislocation creep of quartz and K‐feldspar whereas a grain boundary sliding‐dominated diffusion creep regime is the characteristic of the type III orthogneiss. Strain weakening related to the transition from type I to type II microstructures was enhanced by the recrystallization of wide myrmekite fronts, and plagioclase and quartz, and further weakening and strain localization in type III orthogneiss occurred via grain boundary sliding‐enhanced diffusion creep. The potential role of incipient melting in strain localization is discussed.  相似文献   

10.
Microstructural and petrological analysis of samples with increasing strain in high‐pressure (HP) shear zones from the Haram garnet corona gabbro give insights into the deformation mechanisms of minerals, rheological properties of the shear zone and the role of deformation in enhancing metamorphic reactions. Scanning electron microscopy with electron backscattering diffraction (SEM–EBSD), compositional mapping and petrographic analysis were used to evaluate the nature of deformation in both reactants and products associated with eclogitization. Plagioclase with a shape‐preferred orientation that occurs in the interior part of layers in the mylonitic sample deformed by intracrystalline glide on the (0 0 1)[1 0 0] slip system. In omphacite, crystallographic preferred orientations indicate slip on (1 0 0)[0 0 1] and (1 1 0)[0 0 1] during deformation. Fine‐grained garnet deformed by diffusion creep and grain‐boundary sliding. Ilmenite deformed by dislocation glide on the basal and, at higher strains, prism planes in the a direction. Relationships among the minerals present and petrological analysis indicate that deformation and metamorphism in the shear zones began at 500–650 °C and 0.5–1.4 GPa and continued during prograde metamorphism to ultra‐high‐pressure (UHP) conditions. Both products and reactants show evidence of syn‐ and post‐kinematic growth indicating that prograde reactions continued after strain was partitioned away. The restriction of post‐kinematic growth to narrow regions at the interface of garnet and plagioclase and preservation of earlier syn‐kinematic microstructures in older parts layers that were involved in reactions during deformation show that diffusion distances were significantly shortened when strain was partitioned away, demonstrating that deformation played an important role in enhancing metamorphic reactions. Two important consequences of deformation observed in these shear zones are: (i) the homogenization of chemical composition gradients occurred by mixing and grain‐boundary migration and (ii) composition changes in zoned metamorphic garnet by lengthening diffusion distances. The application of experimental flow laws to the main phases present in nearly monomineralic layers yield upper limits for stresses of 100–150 MPa and lower limits for strain rates of 10?12 to 10?13 s?1 as deformation conditions for the shear zones in the Haram gabbro that were produced during subduction of the Baltica craton and resulted in the production of HP and UHP metamorphic rocks.  相似文献   

11.
The NE-trending Bayanwula Shan–Lang Shan is an important tectonic belt lying between the North China Plate (NCP) to the east and the Alxa block to the west. An understanding of its nature and the timing of deformation are essential to understand the relationship between the NCP and the Alxa block. Two phases of ductile deformation have been observed in this belt. Large-scale top-to-the-west ductile thrusting characterized the early deformation in the Bayanwula Shan–Lang Shan. Nearly east–west trending quartz stretching lineations and lineations formed by amphibole and biotite are well developed. Different types of sheath and oblique folds with east–west trending fold hinges are also developed in the region. The shear strain of this ductile thrust is up to 17. The ductile deformation may have resulted from the top-to-the-west thrusting of the northern part of the NCP over the Alxa block, and may have occurred ca. 351 Ma (biotite 40Ar/39Ar age). Later ductile deformation was expressed as NE-trending sinistral shear along the entire Bayanwula Shan–Lang Shan and likely occurred ca. 250 Ma (biotite and muscovite 40Ar/39Ar ages); this shear may have resulted from the collision between the Yangtze and North China plates to the south during the Triassic. Combined with recently obtained detrital zircon U–Pb ages for the area, the ductile deformation events in the eastern Alxa block indicate that the block may not have been part of the NCP, at least before the end of the Devonian. Both blocks were located in the Paleo-Asian Ocean during the Paleozoic and collided or amalgamated with each other at the end of the Devonian.  相似文献   

12.
13.
A two‐part basal till at Knud Strand, Denmark reveals a uniform fabric pattern and strength, petrographical composition and clay mineralogy. The nature of the contact with the underlying sediments, ductile deformation structures, partly intact soft sediment clasts, small meltwater channels and thin horizontal outwash stringers dispersed in the till indicate both bed deformation and basal decoupling by pressurised subglacial water. A time‐transgressive model is suggested to explain the lack of vertical gradation in till properties in which debris released from the active ice sole is sheared in a thin zone moving upward as till accretion proceeds. It is suggested that, although strain indicators occur throughout the entire till thickness, the deformation at any point of time encompassed the uppermost part of the till only, allowing preservation of fragile clasts below. The substantial thickness of the till (up to 6 m) coupled with a much smaller (by more than one order of magnitude) inferred thickness of the deforming bed suggests that the bulk of till material was transported englacially prior to deposition. The lack of petrographical gradation in the till is attributed to effective mixing and homogenisation of material along the ice flow path. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
Turbidite sandstones of the Miocene Marnoso‐arenacea Formation (northern Apennines, Italy) display centimetre to decimetre long, straight to gently curved, 0·5 to 2·0 cm regularly spaced lineations on depositional (stratification) planes. Sometimes these lineations are the planform expression of sheet structures seen as millimetre to centimetre long vertical ‘pillars’ in profile. Both occur in the middle and upper parts of medium‐grained and fine‐grained sandstone beds composed of crude to well‐defined stratified facies (including corrugated, hummocky‐like, convolute, dish‐structured and dune stratification) and are aligned sub‐parallel to palaeoflow direction as determined from sole marks often in the same beds. Outcrops lack a tectonic‐related fabric and therefore these structures may be confidently interpreted to be sedimentary in origin. Lineations resemble primary current lineations formed by the action of turbulence during bedload transport under upper stage plane bed conditions. However, they typically display a larger spacing and micro‐topography compared to classic primary current lineations and are not associated with planar‐parallel, finely laminated sandstones. This type of ‘enhanced lineation’ is interpreted to develop by the same process as primary current lineations, but under relatively high near‐bed sediment concentrations and suspended load fallout rates, as supported by laboratory experiments and host facies characteristics. Sheets are interpreted to be dewatering structures and their alignment to palaeoflow (only noted in several other outcrops previously) inferred to be a function of vertical water‐escape following the primary depositional grain fabric. For the Marnoso‐arenacea beds, sheet orientation may be linked genetically to the enhanced primary current lineation structures. Current‐aligned lineation and sheet structures can be used as palaeoflow indicators, although the directional significance of sheets needs to be independently confirmed. These indicators also aid the interpretation of dewatered sandstones, suggesting sedimentation under a traction‐dominated depositional flow – with a discrete interface between the aggrading deposit and the flow – as opposed to under higher concentration grain or hindered‐settling dominated regimes.  相似文献   

15.
High‐resolution swath bathymetry and TOPAS sub‐bottom profiler acoustic data from the inner and middle continental shelf of north‐east Greenland record the presence of streamlined mega‐scale glacial lineations and other subglacial landforms that are formed in the surface of a continuous soft sediment layer. The best‐developed lineations are found in Westwind Trough, a bathymetric trough connecting Nioghalvfjerdsfjorden Gletscher and Zachariae Isstrøm to the continental shelf edge. The geomorphological and stratigraphical data indicate that the Greenland Ice Sheet covered the inner‐middle shelf in north‐east Greenland during the most recent ice advance of the Late Weichselian glaciation. Earlier sedimentological and chronological studies indicated that the last major delivery of glacigenic sediment to the shelf and Fram Strait was prior to the Holocene during Marine Isotope Stage 2, supporting our assertion that the subglacial landforms and ice sheet expansion in north‐east Greenland occurred during the Late Weichselian. Glacimarine sediment gravity flow deposits found on the north‐east Greenland continental slope imply that the ice sheet extended beyond the middle continental shelf, and supplied subglacial sediment direct to the shelf edge with subsequent remobilisation downslope. These marine geophysical data indicate that the flow of the Late Weichselian Greenland Ice Sheet through Westwind Trough was in the form of a fast‐flowing palaeo‐ice stream, and that it provides the first direct geomorphological evidence for the former presence of ice streams on the Greenland continental shelf. The presence of streamlined subglacially derived landforms and till layers on the shallow AWI Bank and Northwind Shoal indicates that ice sheet flow was not only channelled through the cross‐shelf bathymetric troughs but also occurred across the shallow intra‐trough regions of north‐east Greenland. Collectively these data record for the first time that ice streams were an important glacio‐dynamic feature that drained interior basins of the Late Weichselian Greenland Ice Sheet across the adjacent continental margin, and that the ice sheet was far more extensive in north‐east Greenland during the Last Glacial Maximum than the previous terrestrial–glacial reconstructions showed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Shelf‐edge deltas record the potential magnitude of sediment delivery from shallow water shelf into deep water slope and basin floor and, if un‐incised, represent the main increment of shelf‐margin growth into the basin, for that period. The three‐dimensional complexity of shelf‐edge delta systems and along‐strike variability at the shelf edge in particular, remains understudied. The Permian–Triassic Kookfontein Formation of the Tanqua Karoo Basin, South Africa, offers extensive three‐dimensional exposure (>100 km2) and therefore a unique opportunity to evaluate shelf‐edge strata from an outcrop perspective. Analysis of stratal geometry and facies distribution from 52 measured and correlated stratigraphic sections show the following: (i) In outer‐shelf areas, parasequences are characterized by undeformed, river‐dominated, storm‐wave influenced delta mouth‐bar sandstones interbedded with packages showing evidence of syn‐depositional deformation. The amount and intensity of soft‐sediment deformation increases significantly towards the shelf edge where slump units and debris flows sourced from collapsed mouth‐bar packages transport material down slope. (ii) On the upper slope, mouth‐bar and delta‐front sandstones pinch out within 2 km of the shelf break and most slump and debris flow units pinch out within 4 km of the shelf break. (iii) Further down the slope, parasequences consist of finer‐grained turbidites, characterized by interbedded, thin tabular siltstones and sandstones. The results highlight that river‐dominated, shelf‐edge deltas transport large volumes of sand to the upper slope, even when major shelf‐edge incisions are absent. In this case, transport to the upper slope through slumping, debris flows and un‐channellized low density turbidites is distributed evenly along strike.  相似文献   

17.
Deformation partitioning is identified as the fingerprint of late Palaeozoic continental subduction that affected various lithologies whose field relationship, thermobarometric and petrofabric features are closely related. Different modes of deformation partitioning can be identified within medium temperature, high‐P eclogite lenses, between them and the host gneisses, and within the latter. Development of foliations and lineations with a coherent attitude in all these rocks and their related structural petrology demonstrate that eclogite enclosures and their country rocks underwent a common, pervasive deformational event. The published P–T stability fields of the eclogite phases that define the microscopic fabric are used to define the metamorphic conditions prevailing during the deformation event and relate it to the subduction process. The mineral equilibria of the gneisses (ortho‐ and paragneisses) fail to record the full range of those P–T conditions, but the field relationships show that eclogites were originally basic dykes emplaced in acid igneous rocks and demonstrate that the eclogites and gneisses shared a common tectonometamorphic evolution. Deformation partitioning within the latter occurred at variable scales and involved (1) meso macroscale preservation of virtually undeformed metagranite bodies, surrounded by (2) pervasively foliated and lineated gneisses, and (3) the simultaneous microscale operation in the latter of ductile and brittle–ductile mechanisms at conditions above 500°C and below 1.5 GPa. A subduction channel tectonic setting is proposed to explain the subduction of upper to mid‐crustal igneous rocks and exhumation subsequent to high‐P metamorphism. Its currently accessible dimensions, and its organization into several lithotectonic units mapped as nappes support tectonic amalgamation of units several km3 in volume. Maximum burial in the subduction channel likely reached depths shallower than the lithostatic pressure implied by geobarometric calculations, possibly conditioned by a sudden pressure drop during the initial retrogression stages accompanying exhumation.  相似文献   

18.
To understand the preservation of coesite inclusions in ultrahigh‐pressure (UHP) metamorphic rocks, an integrated petrological, Raman spectroscopic and focussed ion beam (FIB) system–transmission electron microscope (TEM) study was performed on a UHP kyanite eclogite from the Sulu belt in eastern China. Coesite grains have been observed only as rare inclusions in kyanite from the outer segment of garnet and in the matrix. Raman mapping analysis shows that a coesite inclusion in kyanite from the garnet rim records an anisotropic residual stress and retains a maximum residual pressure of ~0.35 GPa. TEM observations show quartz is absent from the coesite inclusion–host kyanite grain boundaries. Numerous dislocations and sub‐grain boundaries are present in the kyanite, but dislocations are not confirmed in the coesite. In particular, dislocations concentrate in the kyanite adjacent to the boundary with the coesite inclusion, and they form a dislocation concentration zone with a dislocation density of ~109 cm?2. A high‐resolution TEM image and a fast Fourier transform‐filtered image reveal that a tiny dislocation in the dislocation concentration zone is composed of multiple edge dislocations. The estimated dislocation density in most of the kyanite away from the coesite inclusion–host kyanite grain boundaries is ~108 cm?2, being lower than that in kyanite adjacent to the coesite. In the case of a coesite inclusion in a matrix kyanite, using Raman and TEM analyses, we could not identify any quartz at the grain boundaries. Dislocations are not observed in the coesite, but numerous dislocations and stacking faults are developed in the kyanite. The estimated overall dislocation density in the coesite‐bearing matrix kyanite is ~108 cm?2, but a high dislocation density region of ~109 cm?2 is also present near the coesite inclusion–host kyanite grain boundaries. Inclusion and matrix kyanite grains with no coesite have dislocation densities of ≤108 cm?2. Dislocation density is generally reduced during an annealing process, but our results show that not all dislocations in the kyanite have recovered uniformly during exhumation of the UHP rocks. Hence, one of the key factors acting as a buffer to inhibit the coesite to quartz transformation is the mechanical interaction between the host and the inclusion that lead to the formation of dislocations in the kyanite. The kyanite acts as an excellent pressure container that can preserve coesite during the decompression of rocks from UHP conditions. The search for and study of inclusions in kyanite may be a more suitable approach for tracing the spatial distribution of UHP metamorphic rocks.  相似文献   

19.
This study of tills from the Eastern Alps, Austria, illustrates the insights obtained using microsedimentology on subglacial tills in the context of palaeogeographical reconstructions of glacier advances. Investigations of several sites with tills derived from both local glaciers and the ice‐sheet streaming of the Inn Glacier during the Last Glacial Maximum and its termination reveal a detailed picture of subglacial sedimentology that provides evidence of soft sediment subglacial deformation under polythermal conditions. All the tills exhibit microstructures that are proxy evidence of significant changes in till rheology. The tills originate from multiple sources, incorporating older tills and other deposits picked up by the subglacial deformation within a polythermal but dominantly warm temperate subglacial thermal regime. The analyses of till microstructures reveal a direct relationship between basal ice strain conditions and their development. A hypothesis is derived, from the various microstructures observed in these Austrian tills formed under soft sediment deforming basal ice conditions, that suggests that with basal thermal changes and fluctuations in clay content, pore‐water content and pressure, microstructures form in a non‐random manner. It is postulated that in clay‐deficient sediments, edge‐to‐edge events are most likely to occur first; and where clay content increases, grain stacks, rotation structures, deformation bands and, finally, shear zones are likely to evolve in an approximate sequential manner. After repeated transport, emplacement, reworking and, probably, further shearing and deformation events, an emplaced ‘till’, as observed in these Austrian tills, will form that carries most, if not all of these microstructures, in varying percentages. Finally, the impact of the Inn Glacier Ice Stream on these tills is not easily detected and/or differentiated, but indications of high pore water and probable dilatant events leading to reductions in the number of edge‐to‐edge events point to the impact of fast or thick ice upon these subglacial tills.  相似文献   

20.
Within the Albany–Fraser Orogen of southwestern Australia, the Coramup Gneiss is a NE–SW trending zone of high‐strain rocks that preserves a detailed record of orogenesis related to Mesoproterozoic convergence of the West Australian and Mawson cratons. New structural, metamorphic and U–Pb SHRIMP zircon age data establish that the Coramup Gneiss underwent high‐grade tectonism during both Stage I (c. 1290 Ma) and Stage II (c. 1170 Ma) of the Albany–Fraser Orogeny. Stage I commenced with c. 1300 Ma high‐T, low‐P M1a metamorphism during extension, and the formation of small‐scale ptygmatic folds within a subhorizontal S1a gneissosity. High‐P M1b metamorphism at c. 1290 Ma was accompanied by the transposition and shearing of S1a into a composite, shallow SE‐dipping S1b foliation, and the development of tight recumbent F1b folds with S1‐parallel axial surfaces and asymmetries indicating NW‐directed thrusting. The preservation of a similar PT–time record in the Fraser Complex (NE of the Coramup Gneiss) is consistent with large‐scale, NW‐directed Stage I thrusting of the Mawson Craton margin over the south‐eastern edge of the West Australian Craton. Stage II tectonism in the western Coramup Gneiss involved high‐T, low‐P M2a metamorphism and the formation of subvertical SE‐dipping D2 shear zones, shallow SW‐plunging L2 mineral stretching lineations, and NW‐verging F2 folds with S2‐parallel axial surfaces. A synkinematic pegmatite dyke emplaced into a D2 shear zone yielded a U–Pb SHRIMP zircon age of 1168 ± 12 Ma. Kinematic indicators suggest a combination of pure shear flattening perpendicular to S2, and dextral simple shear. However, contemporaneous structures elsewhere in the Albany–Fraser Orogen are consistent with continued NW–SE convergence at craton‐scale during Stage II, and oblique compression in the Coramup Gneiss is attributed to the arcuate geometry of the orogen‐scale deformation front.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号