首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Geomorphological mapping in the West Drumochter Hills provides evidence of a readvance of locally nourished glaciers during the Loch Lomond (Younger Dryas) Stade, in the form of an icefield 67.7 km2 in area drained by outlet glaciers. The icefield limits accord broadly with those proposed by Sissons (1980) but all geomorphic, stratigraphic and sedimentological evidence conflicts with a recent proposal that the landforms in the area reflect southwestwards retreat of the last ice sheet. Up‐valley continuity of recessional moraines indicates that the ice remained active and close to climatic equilibrium during the earlier stages of glacier retreat, consistent with slow warming following the coldest part of the stade. The pattern of equilibrium line altitudes (ELAs) across the icefield is consistent with transfer of snow by westerly and southerly winds. The ELA of the reconstructed icefield as a whole is 622–629 m, although this figure is likely to be lower than the regional (climatic) ELA because the icefield probably received additional snow blown from adjacent plateau surfaces and slopes. Inclusion of potential snow‐blow areas in the ELA calculation yields a value of 648–656 m; the climatic ELA is therefore likely to have lain between 622 and 656 m. Mean June to August temperature at the ELA, based on chironomid assemblages at two sites, falls within the range 4.0 ± 0.7°C. Empirical relationships between temperature and precipitation at modern glacier ELAs indicate that mean annual precipitation (MAP) at the ELA was 1977 ± 464 mm, statistically indistinguishable from modern values. Comparison with precipitation values calculated for the Isle of Mull on the west coast suggest that the precipitation gradient across the Central Highlands of Scotland was steeper during the Loch Lomond Stade than at present, probably as the result of efficient scavenging of precipitation from westerly airflows by the West Highland Icefield. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
Geomorphological mapping of Mull provides evidence for an icefield 143 km2 in area flanked by six corrie glaciers with a total area of ca. 13 km2. The absence of Lateglacial periglacial features, shorelines and pollen sites from the area occupied by this readvance, together with radiocarbon dating of shell fragments, confirm that it occurred during the Loch Lomond (Younger Dryas) Stade. The thickness of glacigenic deposits within the area of the readvance is attributed to reworking of paraglacial sediments. Up‐valley continuity of recessional moraines indicates that the ice remained active and near to equilibrium during retreat, consistent with slow warming following the coldest part of the stade. Reconstructed equilibrium line altitudes (ELAs) imply vigorous snow‐blowing by westerly winds, and are consistent with a general southwestwards decline in ELAs across the Scottish Highlands. An ELA of 250 m was calculated for the Mull Icefield using an ablation:accumulation balance ratio (ABR) approach. Palaeotemperature and palaeoprecipitation estimates were derived by calculating a theoretical regional ELA from meteorological data and assuming that the combination of temperature and precipitation implied by the theoretical ELA approximates conditions at 250 m on Mull during the Loch Lomond Stade. The result indicates a mean July sea‐level temperature of 5.7 ± 0.5°C and a mean annual precipitation at 250 m of ca. 2700–3800 mm (best estimate 3200 mm), indicating higher precipitation totals than at present owing to more vigorous atmospheric circulation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
Geomorphological mapping of southern Skye indicates evidence for a single readvance of locally-nourished glaciers. These comprised a major icefield that occupied c. 155 km2 of the main mountain area, a small icefield c. 10 km2 in extent in the Kyleakin hills and ten corrie glaciers with a total area of c. 16 km2. The absence of Lateglacial pollen sites, shorelines and periglacial features within the limits of local glaciation implies a Loch Lomond Readvance age for this glacial event. The area-weighted mean equilibrium line altitude (ELA) of the reconstructed Loch Lomond Readvance glaciers (319 m) conforms with a regional eastwards rise in ELAs that indicates dominant westerly airstreams during the Loch Lomond Stadial. An easterly decline in ELAs across the former icefields is interpreted in terms of easterly transfer of snow across ice-sheds by westerly winds, though the altitudes of corrie glacier ELAs suggest that the dominant snow-bearing winds were southerlies. Calculations based on the area-weighted mean ELA for the major icefield (308 m) indicate a stadial mean July sea-level temperature of c. 6 °C. The anomalously low gradients of certain former icefield outlet glaciers are attributed to deformation of subglacial sediment, an effect that may vitiate the assumption of linear ablation/accumulation gradients in the calculation of former ELAs for reconstructed glaciers.  相似文献   

4.
Geomorphological mapping of North Harris provides evidence for the former existence of 10 glaciers with a total area of ca 35 km2. A Loch Lomond (Younger Dryas) Stadial age (ca 12.9–11.5 kyr BP) for this glacial episode is inferred from glacier configuration, landsystems dominated by hummocky recessional moraines, and relationships with Lateglacial periglacial phenomena. Equilibrium line altitudes (ELAs) of 150–289 m were calculated for individual glaciers. ELA variability mainly reflects differences in snow-contributing area. The area-weighted mean ELA (204 m) is consistent with a northwards decline in ELAs along the western seaboard of the British Isles of 69.5 m (100 km)−1, equivalent to a northwards ablation-season temperature decrease of 0.42 °C (100 km)−1. This latitudinal temperature gradient implies a mean July sea-level temperature of ca 7.2 °C for the coldest part of the stade, roughly 6 °C lower than at present. Sea-level precipitation at the time of the LLS glacial maximum is inferred to have been between ca 1970±200 and 2350±200 mm yr−1, implying that LLS precipitation was up to 25% greater than now. Patterns of recessional moraines indicate that the glaciers remained close to climatic equilibrium as they retreated to their sources, though moraine belts implying near-stationary or readvancing ice margins on flat valley floors are separated by moraine-free zones indicating uninterrupted retreat. Calculation of ELAs for ‘residual’ glaciers in former source areas suggests that summer warming of 1.0 °C would have resulted in shrinkage of the glaciers to their sources.  相似文献   

5.
A combined geomorphological–physical model approach is used to generate three‐dimensional reconstructions of glaciers in Pacific Far NE Russia during the global Last glacial Maximum (gLGM). The horizontal dimensions of these ice masses are delineated by moraines, their surface elevations are estimated using an iterative flowline model and temporal constraints upon their margins are derived from published age estimates. The equilibrium line altitudes (ELAs) of these ice masses are estimated, and gLGM climate is reconstructed using a simple degree–day melt model. The results indicate that, during the gLGM, ice masses occupying the Pekulney, Kankaren and Sredinny mountains of Pacific Far NE Russia were of valley glacier and ice field type. These glaciers were between 7 and 80 km in length, and were considerably less extensive than during pre‐LGM phases of advance. gLGM ice masses in these regions had ELAs of between 575 ± 22 m and 1035 ± 41 m (above sea level) – corresponding to an ELA depression of 350–740 m, relative to present. Data indicate that, in the Pekulney Mountains, this ELA depression occurred because of a 6.4°C reduction in mean July temperature, and 200 mm a?1 reduction in precipitation, relative to present. Thus reconstructions support a restricted view of gLGM glaciation in Pacific Far NE Russia and indicate that the region's aridity precluded the development of large continental ice sheets. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Northern Folgefonna (c. 23 km2), is a nearly circular maritime ice cap located on the Folgefonna Peninsula in Hardanger, western Norway. By combining the position of marginal moraines with AMS radiocarbon dated glacier‐meltwater induced sediments in proglacial lakes draining northern Folgefonna, a continuous high‐resolution record of variations in glacier size and equilibrium‐line altitudes (ELAs) during the Lateglacial and early Holocene has been obtained. After the termination of the Younger Dryas (c. 11 500 cal. yr BP), a short‐lived (100–150 years) climatically induced glacier readvance termed the ‘Jondal Event 1’ occurred within the ‘Preboreal Oscillation’ (PBO) c. 11 100 cal. yr BP. Bracketed to 10 550–10 450 cal. yr BP, a second glacier readvance is named the ‘Jondal Event 2’. A third readvance occurred about 10 000 cal. yr BP and corresponds with the ‘Erdalen Event 1’ recorded at Jostedalsbreen. An exponential relationship between mean solid winter precipitation and ablation‐season temperature at the ELA of Norwegian glaciers is used to reconstruct former variations in winter precipitation based on the corresponding ELA and an independent proxy for summer temperature. Compared to the present, the Younger Dryas was much colder and drier, the ‘Jondal Event 1’/PBO was colder and somewhat drier, and the ‘Jondal Event 2’ was much wetter. The ‘Erdalen Event 1’ started as rather dry and terminated as somewhat wetter. Variations in glacier magnitude/ELAs and corresponding palaeoclimatic reconstructions at northern Folgefonna suggest that low‐altitude cirque glaciers (lowest altitude of marginal moraines 290 m) in the area existed for the last time during the Younger Dryas. These low‐altitude cirque glaciers of suggested Younger Dryas age do not fit into the previous reconstructions of the Younger Dryas ice sheet in Hardanger. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
Geomorphological evidence for four former local glaciers has been mapped in the Aran and Arenig Mountains, North Wales. Former glacial extent was deduced from the distribution and assemblage of end and lateral moraines, hummocky moraine, boulder limits, drift limits and periglacial trimlines. Comparison of infilled lake sediment stratigraphies inside and outside of the former glacier limits suggests a Loch Lomond Stadial (Late Devensian) age of the former glaciers (c. 12.9–11.5 cal. ka BP ). This finding is also supported by periglacial–landform contrasts between the land inside and outside of the glacier limits. Reconstruction of the four glaciers illustrates a mean equilibrium line altitude (ELA) of c. 504 m. From the reconstructed ELAs and the combination of precipitation and snowblow input for total accumulation, by analogy with Norwegian glaciers, a mean sea‐level July temperature is calculated at 8.4°C. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
Cosmogenic 36Cl was measured in bedrock and moraine boulders in the Za Mnichem Valley (High Tatra Mountains). The post‐LGM deglaciation of the study area occurred about 15.9 ka ago. The northernmost part of the valley slopes was ice‐free around 15 ka ago. The terminal moraine on the valley threshold was finally stabilized 12.5 ka ago during the Younger Dryas cold event (Greenland Stadial 1). At that time, the Za Mnichem glacier was 1.3 km long and had an area of 0.57 km2. The AAR equilibrium line of the glacier was located at 1990 m a.s.l., which corresponds to an ELA depression of ~500 m compared to today. The mean summer temperature was colder by 4°–4.5°C than the present‐day temperature. The mean annual temperature was colder by 6°C than today. Such conditions suggest a decrease of the annual precipitation by ~15–25% compared with the present‐day annual average. These data indicate a probable uniform temperature change across central and western Europe, with the precipitation being the most significant factor affecting the mass balance of mountain glaciers. The spatial distribution of balance data suggests increasing continentality towards the east during the Younger Dryas.  相似文献   

9.
Lake sediment, glacier extent and tree rings were used to reconstruct Holocene climate changes from Goat Lake at 550 m asl in the Kenai Mountains, south‐central Alaska. Radiocarbon‐dated sediment cores taken at 55 m water depth show glacial‐lacustrine conditions until about 9500 cal. yr BP, followed by organic‐rich sedimentation with an overall increasing trend in organic matter and biogenic silica content leading up to the Little Ice Age (LIA). Through most of the Holocene, the northern outlet of the Harding Icefield remained below the drainage divide that currently separates it from Goat Lake. A sharp transition from gyttja to inorganic mud about AD 1660 signifies the reappearance of glacier meltwater into Goat Lake during the LIA, marking the maximum Holocene (postglacial) extent. Meltwater continued to discharge into the lake until about AD 1900. A 207 yr tree‐ring series from 25 mountain hemlocks growing in the Goat Lake watershed correlates with other regional tree‐ring series that indicate an average summer temperature reduction of about 1°C during the 19th century compared with the early–mid 20th century. Cirque glaciers around Goat Lake reached their maximum LIA extent in the late 19th century. Assuming that glacier equilibrium‐line altitudes (ELA) are controlled solely by summer temperature, then the cooling of 1°C combined with the local environmental lapse rate would indicate an ELA lowering of 170 m. In contrast, reconstructed ELAs of 12 cirque glaciers near Goat Lake average only 34 ± 18 m lower during the LIA. The restricted ELA lowering can be explained by a reduction in accumulation‐season precipitation caused by a weakening of the Aleutian low‐pressure system during the late LIA. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Using data from glacial geomorphology, tephra–soil stratigraphy and mineralogy, palynology, and radiocarbon dating, a sequence of glacial and bioclimatic stades and interstades has been identified for the last ca. 50000 yr in the Ruiz-Tolima massif, Cordillera Central, Colombia. Six Pleistocene cold stades separated by warmer interstades occurred: before 48000, between 48000 and 33000, between 28000 and 21000, from ≥16000 to ca. 14000, ca. 13000–12400, and ca. 11000–10000 yr BP. Although these radiocarbon ages are minimum-limiting ages obtained from tephra layers on top of tills, the tills are not significantly older because most are bracketed by dated tephra sets in measured stratigraphic sections. Two minor moraine stages likely reflect glacier standstill during cold intervals ca. 7400 yr BP and slightly earlier. Finally, glaciers readvanced between the seventeenth and nineteenth centuries. In contrast to the ice-clad volcanoes of the massif, ca. 34 km2 in area above an altitude of ca. 4800 m, the ice cover expanded to 1200 km2 during the Last Glacial Maximum (LGM) and was still 800 km2 during Late-glacial time (LGT). Glacier reconstructions based on the moraines suggest depression of the equilibrium line altitude (ELA) by ca. 1100 m during the LGM and 500–600 m during LGT relative to the modern ELA, which lies at ca. 5100 m in the Cordillera Central. Glaciers in this region apparently reached their greatest extent when the climate was cold and wet, e.g. during stades corresponding to Oxygen Isotope Stage 3; glaciers were still expanding during the LGM ca. 28000–21000 yr BP, but they shrank considerably after 21000 yr BP because of greatly reduced precipitation. © 1997 John Wiley & Sons, Ltd.  相似文献   

11.
青藏高原及周边山地拥有地球上最高大且最广阔的高山高原,是除两极外最大的现代冰川作用中心,这也使得中国成为中低纬度地区现代冰川最发育的国家之一. 现代冰川平衡线分布具有纬度地带性特征,在青藏高原上还呈不对称的环状. 根据相关研究资料估算,中国末次冰期最盛期时的冰川面积约为50×104 km2,是现代的8.4倍. 基于平衡线处年降水量和夏季平均气温(6-8月)之间的相关关系重建的中国西部(105° E以西)末次冰期最盛期时的平衡线分布图与现代的相似. 在青藏高原内部与西北部,平衡线下降值在500 m以内,小的仅为200~300 m;在青藏高原东南边缘下降值约800 m,最大可达1 000~1 200 m. 天山与阿尔泰山平衡线下降值均在500 m左右. 中国东部(105° E以东)没有发育现代冰川,仅有数处中高山地,如贺兰山、太白山、长白山与台湾山地保存有确切的末次冰期冰川地形,末次冰期最盛期时的平衡线下降800~900 m,大于青藏高原、天山与阿尔泰山地区的下降值. 根据中国东部末次冰期的平衡线分布图以及相关的古气候与古环境研究资料,海拔2 000 m以下的中低山地在第四纪期间任何一次冰川作用中都不具备冰川发育所需的地势条件.  相似文献   

12.
Geomorphological mapping of locally nourished glaciers was conducted in four glens in the southeastern Monadhliath Mountains, Scotland. Three glaciers are interpreted to be of Younger Dryas age based on geomorphological similarity to features in other Scottish upland areas known to have been glaciated during the Younger Dryas, and on comparison to adjacent ice‐free areas in the lower glens where landform‐sediment assemblages typically reflect peri/paraglacial readjustment during the stadial. Here we reconstruct Younger Dryas glacier termini based on moraine alignments and associated geomorphological and sedimentological evidence. An adjacent wide plateau area at high altitude may have permitted extensive ice accumulation, but no unequivocal geomorphological signature is evident. To establish upper glacier limits, a series of ice profiles are modelled. The results yield a range of realistic glacier configurations bracketed between two distinct scenarios: a valley glaciation with the glaciers' upper limit on the plateau edge, and a low‐domed icecap centred on the plateau with ice flowing radially into the lower glens. Reconstructed equilibrium‐line altitudes are 795 m a.s.l. for the valley‐glacier scenario and 894 m a.s.l. for the icecap scenario. Calculated mean ablation‐season temperatures at the ELA are 1.2°C and 0.4°C for the valley‐glacier and the icecap scenario, respectively, from which we infer mean annual precipitation rates between 323 and 520 mm a?1. Palaeoclimate results indicate a stadial climate in central Scotland 65–79% more arid than at present, comparable to that of western Norway for the stadial and to the present‐day Canadian Arctic.  相似文献   

13.
Glaciers in the southern province of the Southern Volcanic Zone (SVZ) of Chile (37–46°S) have experienced significant frontal retreats and area losses in recent decades which have been primarily triggered by tropospheric warming and precipitation decrease. The resulting altitudinal increase of the Equilibrium Line Altitude or ELA of glaciers has lead to varied responses to climate, although the predominant volcanic stratocone morphologies prevent drastic changes in their Accumulation Area Ratios or AAR. Superimposed on climate changes however, glacier variations have been influenced by frequent eruptive activity. Explosive eruptions of ice capped volcanoes have the strongest potential to destroy glaciers, with the most intense activity in historical times being recorded at Nevados de Chillán, Villarrica and Hudson. The total glacier area located on top of the 26 active volcanoes in the study area is ca. 500 km2. Glacier areal reductions ranged from a minimum of −0.07 km2 a −1 at Mentolat, a volcano with one of the smallest ice caps, up to a maximum of −1.16 km2 a −1 at Volcán Hudson. Extreme and contrasting glacier–volcano interactions are summarised with the cases ranging from the abnormal ice frontal advances at Michinmahuida, following the Chaitén eruption in 2008, to the rapid melting of the Hudson intracaldera ice following its plinian eruption of 1991. The net effect of climate changes and volcanic activity are negative mass balances, ice thinning and glacier area shrinkage. This paper summarizes the glacier changes on selected volcanoes within the region, and discusses climatic versus volcanic induced changes. This is crucial in a volcanic country like Chile due to the hazards imposed by lahars and other volcanic processes.  相似文献   

14.
《China Geology》2021,4(3):389-401
Glaciers are crucial water resources for arid inland rivers in Northwest China. In recent decades, glaciers are largely experiencing shrinkage under the climate-warming scenario, thereby exerting tremendous influences on regional water resources. The primary role of understudying watershed scale glacier changes under changing climatic conditions is to ensure sustainable utilization of regional water resources, to prevent and mitigate glacier-related disasters. This study maps the current (2020) distribution of glacier boundaries across the Kaidu-Kongque river basin, south slope of Tianshan Mountains, and monitors the spatial evolution of glaciers over five time periods from 2000–2020 through thresholded band ratios approach, using 25 Landsat images at 30 m resolution. In addition, this study attempts to understand the role of climate characteristics for variable response of glacier area. The results show that the total area of glaciers was 398.21 km2 in 2020. The glaciers retreated by about 1.17 km2/a (0.26%/a) from 2000 to 2020. The glaciers were reducing at a significantly rapid rate between 2000 and 2005, a slow rate from 2005 to 2015, and an accelerated rate during 2015–2020. The meteorological data shows slight increasing trends of mean annual temperature (0.02°C/a) and annual precipitation (2.07 mm/a). The correlation analysis demonstrates that the role of temperature presents more significant correlation with glacier recession than precipitation. There is a temporal hysteresis in the response of glacier change to climate change. Increasing trend of temperature in summer proves to be the driving force behind the Kaidu-Kongque basin glacier recession during the recent 20 years.© 2021 China Geology Editorial Office.  相似文献   

15.
Only a few chronological constraints on Lateglacial and Early Holocene glacier variability in the westernmost Alps have hitherto been obtained. In this paper, moraines of two palaeoglaciers in the southern Écrins massif were mapped. The chronology of the stabilization of selected moraines was established through the use of 10Be cosmic ray exposure (CRE) dating. The equilibrium line altitude (ELA) during moraine deposition was reconstructed assuming an accumulation area ratio (AAR) of 0.67. Ten pre‐Little Ice Age (LIA) ice‐marginal positions of the Rougnoux palaeoglacier were identified and seven of these have been dated. The 10Be CRE age of a boulder on the lowermost sampled moraine indicates that the landform may have been first formed during a period of stable glaciers at around 16.2±1.7 ka (kiloyears before AD 2017) or that the sampled boulder experienced pre‐exposure to secondary cosmic radiation. The moraine was re‐occupied or, alternatively, shaped somewhat before 12.2±0.6 ka when the ELA was lowered by 230 m relative to the LIA ELA. At least six periods of stable ice margins occurred thereafter when the ELA was 220–160 m lower than during the LIA. The innermost dated moraine stabilized at or before 10.9±0.7 ka. Three 10Be CRE ages from a moraine of the Prelles palaeoglacier indicate a period of stationary ice margins at or before 10.9±0.6 ka when the ELA was lowered by 160 m with respect to the end of the LIA. The presented 10Be CRE ages are in good agreement with those of moraines that have been attributed to the Egesen stadial. Assuming unchanged precipitation, summer temperature in the southern Écrins massif at ~12 ka must have been at least 2 °C lower relative to the LIA.  相似文献   

16.
This study presents the first regional analysis of cirques on Vestfirðir, NW Iceland, using a Geographical Information System (GIS). The length, width, elevation of cirque‐floor, latitude and the distance to the modern coastline (both ocean and fjord coastlines) of cirques were quantified using ArcGIS. The topographical analysis revealed a total of 100 cirques on western and northern Vestfirðir. Several additional cirques are present, but they had poorly defined toewalls, making the cirque‐floor difficult to identify. Mean cirque length is 515 m and mean cirque width is 752 m. The modal orientation of the aspect of cirques is northeast, with a strong secondary mode to the northwest. Cirques at low elevations are more abundant close to the ocean, whereas cirques further from the ocean are present at high elevations. Three techniques were used to reconstruct past equilibrium‐line altitudes (ELAs) of cirque glaciers: the cirque‐floor method, the altitude‐ratio method and the accumulation‐area ratio method. The largest range of past ELAs is generated from the cirque‐floor method with values from 40 up to 730 m. Mean past ELA values range from ~395 to 423 m depending on the method used to reconstruct former ELAs. A strong positive relationship is observed between past ELA values and distance to the ocean demonstrating the importance of access to a moisture source for glacier survival. This relationship is stronger than the relationship between former ELAs and latitude. Based on the small size of cirque glaciers, it is likely that even minor fluctuations in the Irminger Current and the East Greenland Current influence cirque glaciation on Vestfirðir.  相似文献   

17.
Equilibrium line altitudes (ELAs) of alpine glaciers are sensitive indicators of climate change and have been commonly used to reconstruct paleoclimates at different temporal and spatial scales. However, accurate interpretations of ELA fluctuations rely on a quantitative understanding of the sensitivity of ELAs to changes in climate. We applied a full surface energy- and mass-balance model to quantify ELA sensitivity to temperature and precipitation changes across the range of climate conditions found in the Andes. Model results show that ELA response has a strong spatial variability across the glaciated regions of South America. This spatial variability correlates with the distribution of the present-day mean climate conditions observed along the Andes. We find that ELAs respond linearly to changes in temperature, with the magnitude of the response being prescribed by the local lapse rates. ELA sensitivities to precipitation changes are nearly linear and are inversely correlated with the emissivity of the atmosphere. Temperature sensitivities are greatest in the inner tropics; precipitation becomes more important in the subtropics and northernmost mid-latitudes. These results can be considered an important step towards developing a framework for understanding past episodes of glacial fluctuations and ultimately for predicting glacier response to future climate changes.  相似文献   

18.
The cirques of Snowdonia, North Wales were last occupied by glacier ice during the Younger Dryas Chronozone (YDC), c. 12.9–11.7 ka. New mapping presented here indicates 38 small YDC cirque glaciers formed in Snowdonia, covering a total area of 20.74 km2. Equilibrium line altitudes (ELAs) for these glaciers, calculated using an area–altitude balance ratio (AABR) approach, ranged from 380 to 837 m asl. A northeastwards rise in YDC ELAs across Snowdonia is consistent with southwesterly snow-bearing winds. Regional palaeoclimate reconstructions indicate that the YDC in North Wales was colder and drier than at present. Palaeotemperature and annual temperature range estimates, derived from published palaeoecological datasets, were used to reconstruct values of annual accumulation and ‘winter balance plus summer precipitation’ using a degree-day model (DDM) and non-linear regression function, respectively. The DDM acted as the best-estimate for stadial precipitation and yielded values between 2073 and 2687 mm a?1 (lapse rate: 0.006 °C m?1) and 1782–2470 mm a?1 (lapse rate: 0.007 °C m?1). Accounting for the potential input of windblown and avalanched snow onto former glacier surfaces, accumulation values dropped to between 1791 and 2616 mm a?1 (lapse rate: 0.006 °C m?1) and 1473–2390 mm a?1 (lapse rate: 0.007 °C m?1). The spatial pattern of stadial accumulation suggests a steep precipitation gradient and provides verification of the northeastwards rise in ELAs. Glaciers nearer the coast of North Wales were most responsive to fluctuations in climate during the YDC, responding to sea-ice enforced continentality during the coldest phases of the stadial and to abrupt warming at the end of the stadial.  相似文献   

19.
张越  许向科  孙雅晴 《冰川冻土》2022,44(4):1248-1259
末次冰盛期(LGM)时全球大范围降温,青藏高原冰川大规模扩张,重建LGM时期古冰川规模对认识高原冰川水资源演化及古气候条件有重要的科学意义。根据青藏高原东南巴松措流域及派山谷两地的冰川地貌及其10Be暴露年代数据,本文应用冰川纵剖面模型定量重建了两地冰川在LGM时期的范围、冰储量和平衡线高度(ELA)等参数,并通过冰川气候模型恢复了LGM时的气候条件。结果表明:巴松措流域LGM时期的冰川面积约为982.3km2,是现代冰川面积的4.5倍,冰储量约为274.4km3;派山谷无现代冰川分布,LGM时期的冰川面积达5.76km2,冰储量约为0.51km3;LGM时期两冰川的平衡线高度分别为4 460~4 547m和3 569~3 694m,与现代冰川相比分别降低了535m和1 034~1 184m。在降水减少60%的情况下,考虑LGM以来的构造剥蚀对平衡线高度变化的影响,LGM时期巴松措流域和派山谷冰川的夏季平均气温分别比现在低约2.96~4.89℃和5.09~6.99℃。  相似文献   

20.
During the Itkillik Glaciation the Brooks Range supported an extensive mountain-glacier complex that extended for 750 km between 141° and 158°W longitude. Individual ice streams and piedmont lobes flowed as much as 50 km beyond the north and south margins of the range. Glaciers in the southern Brooks Range were longer than those farther north because of a southerly precipitation source, whereas those in the central and eastern part of the range were larger than glaciers at the extremities of the mountain system because of higher and more-extensive accumulation areas. Glacier equilibrium-line altitudes (ELAs) at the time of greatest advance were depressed 600 ± 100 m below present levels, whereas during a less-extensive late-glacial readvance (Alapah Mountain) ELA depression was about 300 ± 30 m. Radiocarbon dates indicate that Itkillik drift correlates with Late Wisconsin drift along the southern margin of the Laurentide Ice Sheet and with drift of Cordilleran glaciers in southern Alaska and the western conterminous United States deposited during the last glaciation. Itkillik I moraines represent the maximum ice advance under cold full-glacial conditions between about 24,000 and 17,000 14C y. a. Itkillik II sediments, probably deposited close to 14,000 y. a., are characterized by abundant outwash and ice-contact stratified drift implying a milder climate than that of the Itkillik I phase. Alapah Mountain moraines at the heads of valleys draining high-altitude (≥1800 m) source areas record a possible late Itkillik readvance that is not yet closely dated. Itkillik glaciers may have largely disappeared from Brooks Range valleys by the beginning of the Holocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号