首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
A continuous 10-year simulation in Asia for the period of 1 July 1988 to 31 December 1998 was conducted using the Regional Integrated Environmental Model System (RIEMS) with NCEP Reanalysis II data as the driving fields. The model processes include surface physics state package (BATS 1e), a Holtslag explicit planetary boundary layer formulation, a Grell cumulus parameterization, and a modified radiation package (CCM3). Model-produced surface temperature and precipitation are compared with observations from 1001 meteorology stations distributed over Asia and with the 0.5 × 0.5 CRU gridded dataset. The analysis results show that: (1) RIEMS reproduces well the spatial pattern and the seasonal cycle of surface temperature and precipitation; (2) When regionally averaged, the seasonal mean temperature biases are within 1–2C. For precipitation, the model tends to give better simulation in winter than in summer, and seasonal precipitation biases are mostly in the range of ?12%–50%; (3) Spatial correlation coefficients between observed and simulated seasonal precipitation are higher in north of the Yangtze River than in the south and higher in winter than in summer; (4) RIEMS can well reproduce the spatial pattern of seasonal mean sea level pressure. In winter, the model-simulated Siberian high is stronger than the observed. In summer, the simulated subtropical high is shifted northwestwards; (5) The temporal evolution of the East Asia summer monsoon rain belt, with steady phases separated by more rapid transitions, is reproduced.  相似文献   

2.
A regional chemical transport model, RAMS-CMAQ, was employed to assess the impacts of biosphere–atmosphere CO2 exchange on seasonal variations in atmospheric CO2 concentrations over East Asia. Simulated CO2 concentrations were compared with observations at 12 surface stations and the comparison showed they were generally in good agreement. Both observations and simulations suggested that surface CO2 over East Asia features a summertime trough due to biospheric absorption, while in some urban areas surface CO2 has a distinct summer peak, which could be attributed to the strong impact from anthropogenic emissions. Analysis of the model results indicated that biospheric fluxes and fossil-fuel emissions are comparably important in shaping spatial distributions of CO2 near the surface over East Asia. Biospheric flux plays an important role in the prevailing spatial pattern of CO2 enhancement and reduction on the synoptic scale due to the strong seasonality of biospheric CO2 flux. The elevation of CO2 levels by the biosphere during winter was found to be larger than 5ppm in North China and Southeast China, and during summertime a significant depletion( 7 ppm) occurred in most areas,except for the Indo-China Peninsula where positive bioflux values were found.  相似文献   

3.
The seasonal variations of the Asian monsoon were explored by applying the atmospheric general circulation model R42L9 that was developed recently at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences (LASG/IAP/CAS). The 20-yr (1979-1998) simulation was done using the prescribed 20-yr monthly SST and sea-ice data as required by Atmospheric Model Intercomparison Project (AMIP)Ⅱ in the model. The monthly precipitation and monsoon circulations were analyzed and compared with the observations to validate the model‘s performance in simulating the climatological mean and seasonal variations of the Asian monsoon. The results show that the model can capture the main features of the spatial distribution and the temporal evolution of precipitation in the Indian and East Asian monsoon areas. The model also reproduced the basic patterns of monsoon circulation. However, some biases exis tin this model. The simulation of the heating over the Tibetan Plateau in summer was too strong. The overestimated heating caused a stronger East Asian monsoon and a weaker Indian monsoon than the observations. In the circulation fields, the South Asia high was stronger and located over the Tibetan Plateau. The western Pacific subtropical high was extended westward, which is in accordance with the observational results when the heating over the Tibetan Plateau is stronger. Consequently, the simulated rainfall around this area and in northwest China was heavier than in observations, but in the Indian monsoon area and west Pacific the rainfall was somewhat deficient.  相似文献   

4.
Assessing wind energy is a key step in selecting a site for a wind farm. The accuracy of the assessment is essential for the future operation of the wind farm. There are two main methods for assessing wind power: one is based on observational data and the other relies on mesoscale numerical weather prediction(NWP). In this study, the wind power of the Liaoning coastal wind farm was evaluated using observations from an anemometer tower and simulations by the Weather Research and Forecasting(WRF) model, to see whether the WRF model can produce a valid assessment of the wind power and whether the downscaling process can provide a better evaluation. The paper presents long-term wind data analysis in terms of annual, seasonal, and diurnal variations at the wind farm, which is located on the east coast of Liaoning Province. The results showed that, in spring and summer, the wind speed, wind direction, wind power density, and other main indicators were consistent between the two methods. However, the values of these parameters from the WRF model were significantly higher than the observations from the anemometer tower. Therefore, the causes of the differences between the two methods were further analyzed. There was much more deviation in the original material, National Centers for Environmental Prediction(NCEP) final(FNL) Operational Global Analysis data, in autumn and winter than in spring and summer. As the region is vulnerable to cold-air outbreaks and windy weather in autumn and winter, and the model usually forecasted stronger high or low systems with a longer duration, the predicted wind speed from the WRF model was too large.  相似文献   

5.
In this study,records from a 3-yr intensified observational experiment at eight stations along the hillside of Seqilashan over the southeastern Tibetan Plateau were analyzed and combined with records at 28 routine observation stations in the Chinese National Meteorological Station Network to investigate the influences of station location on the different diurnal rainfall variations between station records and Tropical Rainfall Measuring Mission (TRMM) data products.The results indicate that the diurnal variation of warm season rainfall is closely related to location of stations.The prevailing nocturnal rainfall peak in observations at routine stations can be largely attributed to the relatively lower location of the stations,which are mostly situated in valleys.The records at Seqilashan stations on hillsides revealed an evident diurnal afternoon peak of warm season rainfall,similar to that indicated by TRMM data.The different diurnal phases between valley and hillside stations are closely related to the orographically induced regional circulations caused by the complex topography over the Tibetan Plateau.The results of this study indicate that the prevailing nocturnal rainfall associated with the relatively lower location of routine observation stations can partially explain the diurnal rainfall variations between observation station records and TRMM data.  相似文献   

6.
Numerical Simulation of Long-Term Climate Change in East Asia   总被引:1,自引:0,他引:1       下载免费PDF全文
A 10-yr regional climate simulation was performed using the fifth-generation PSU/NCAR Mesoscale Model Version 3 (MM5V3) driven by large-scale NCEP/NCAR reanalyses. Simulations of winter and summer mean regional climate features were examined against observations. The results showed that the model could well simulate the 10-yr winter and summer mean circulation, temperature, and moisture transport at middle and low levels. The simulated winter and summer mean sea level pressure agreed with the NCAR/NCEP reanalysis data. The model could well simulate the distribution and intensity of winter mean precipitation rates as well as the distribution of summer mean precipitation rates, but it overestimated the summer mean precipitation over North China. The model's ability to simulate the regional climate change in winter was superior to that in summer. In addition, the model could simulate the inter-annual variation of seasonal precipitation and surface air temperature. Geopotential heights and temperature at middle and high levels between simulations and observations exhibited high anomaly correlation coefficients. The model also showed large variability to simulate the regional climate change associated with the El Nino events. The MM5V3 well simulated the anomalies of summer mean precipitation in 1992 and 1995, while it demonstrated much less ability to simulate that in 1998. Generally speaking, the MM5V3 is capable of simulating the regional climate change, and could be used for long-term regional climate simulation.  相似文献   

7.
The sea-land breeze circulation (SLBC) occurs regularly at coastal locations and influences the local weather and climate significantly. In this study, based on the observed surface wind in 9 conventional meteorological stations of Hainan Island, the frequency of sea-land breeze (SLB) is studied to depict the diurnal and seasonal variations. The statistics indicated that there is a monthly average of 12.2 SLB days and an occurrence frequency of about 40%, with the maximum frequency (49%) in summer and the minimum frequency (29%) in autumn. SLB frequencies (41%) are comparable in winter and spring. A higher frequency of SLB is present in the southern and central mountains due to the enhancement effect of the mountain-valley breeze. Due to the synoptic wind the number of SLB days in the northern hilly area is less than in other areas. Moreover, the WRF model, adopted to simulate the SLBC over the island for all seasons, performs reasonably well reproducing the phenomenon, evolution and mechanism of SLBC. Chiefly affected by the difference of temperature between sea and land, the SLBC varies in coverage and intensity with the seasons and reaches the greatest intensity in summer. The typical depth is about 2.5 km for sea breeze circulation and about 1.5 km for land breeze circulation. A strong convergence zone with severe ascending motion appears on the line parallel to the major axis of the island, penetrating 60 to 100 km inland. This type of weak sea breeze convergence zone in winter is north-south oriented. The features of SLBC in spring are similar both to that in summer with southerly wind and to that in winter with easterly wind. The coverage and intensity of SLBC in autumn is the weakest and confined to the southwest edge of the central mountainous area. The land breeze is inherently very weak and easily affected by the topography and weather. The coverage and intensity of the land breeze convergence line is significantly less than those of the sea breeze. The orographic forcing of the cen  相似文献   

8.
GTS1 digital radiosonde, developed by the Shanghai Changwang Meteorological Science and Technology Company in 1998, is now widely used in operational radiosonde stations in China. A preliminary comparison of simultaneous humidity measurements by the GTS1 radiosonde, the Vaisala RS80 radiosonde, and the Cryogenic Frostpoint Hygrometer (CFH), launched at Kunming in August 2009, reveals a large dry bias produced by the GTS1 humidity sensor. The average relative dry bias is in the order of 10% below 500 hPa, increasing rapidly to 30% above 500 hPa, and up to 55% at 310 hPa. A much larger dry bias is observed in the daytime, and this daytime effect increases with altitude. The GTS1 radiosonde fails to respond to humidity changes in the upper troposphere, and sometimes even in the middle troposphere. The failure of GTS1 in the middle and upper troposphere will result in significant artificial humidity shifts in radiosonde climate records at stations in China where a transition from mechanical to digital radiosondes has occurred. A comparison of simultaneous temperature observations by the GTS1 radiosonde and the Vaisala RS80 radiosonde suggests that these two radiosondes provide highly reproducible temperature measurements in the troposphere, but produce opposite biases for daytime and nighttime measurements in the stratosphere. In the stratosphere, the GTS1 shows a warm bias (<0.5 K) in the daytime and a relatively large cool bias (-0.2 K to -1.6 K) at nighttime.  相似文献   

9.
中国均一化日平均温、最高温和最低温序列1960-2008   总被引:8,自引:0,他引:8       下载免费PDF全文
Inhomogeneities in the daily mean/maximum/ minimum temperature (Tm/Tmax/Tmin) series from 1960- 2008 at 549 National Standard Stations (NSSs) in China were analyzed by using the Multiple Analysis of Series for Homogenization (MASH) software package. Typical biases in the dataset were illustrated via the cases of Beijing (B J), Wutaishan (WT), Urumqi (UR) and Henan (HN) stations. The homogenized dataset shows a mean warming trend of 0.261/0.193/0.344℃/decade for the annual series of Tm/Tmax/Tmin, slightly smaller than that of the original dataset by 0.006/0.009/0.007℃/decade. However, considerable differences between the adjusted and original datasets were found at the local scale. The adjusted Tmin series shows a significant warming trend almost everywhere for all seasons, while there are a number of stations with an insignificant trend in the original dataset. The adjusted Tm data exhibit significant warming trends annually as well as for the autumn and winter seasons in northern China, and cooling trends only for the summer in the middle reaches of the Yangtze River and parts of central China and for the spring in southwestern China, while the original data show cooling trends at several stations for the annual and seasonal scales in the Qinghai, Shanxi, Hebei, and Xinjiang provinces. The adjusted Tmax data exhibit cooling trends for summers at a number of stations in the mid-lower reaches of the Yangtze and Yellow Rivers and for springs and winters at a few stations in southwestern China, while the original data show cooling trends at three/four stations for the annual/autumn periods in the Qinghai and Yunnan provinces. In general, the number of stations with a cooling trend was much smaller in the adjusted Tm and Tmax dataset than in the original dataset. The cooling trend for summers is mainly due to cooling in August. The results of homogenization using MASH appear to be robust; in particular, different groups of stations with consideration of elevation led to minor effects i  相似文献   

10.
A validation study of land surface temperature (LST) obtained from the Ka band (37 GHz) vertically polarized brightness temperature over northern China is presented.The remotely sensed LST derived jointly by the Vrije Universiteit Amsterdam and the NASA Goddard Space Flight Center (VUA-NASA) from the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) were compared to the daily in-situ top soil temperature/infrared surface temperature observations from eleven/three Enhanced Coordinated Observation stations in arid and semi-arid regions of northern China.The VUA-NASA LST from the descending path exhibited a stronger correspondence to the in-situ infrared surface temperature than soil temperature observations,whereas correlations (R 2) of the latter ranged from 0.41 to 0.86.Meanwhile,the ascending overpass LST was generally warmer than the in-situ soil temperature observations at all stations,and the correlation (R 2) was between 0.07 and 0.72.Furthermore,the correlation of the descending path was generally greater than that of the ascending path at the same station.The descending path VUA-NASA LST was sensitive to precipitation and presented good agreement with ground temperature dynamics.The analyses demonstrated that the descending overpass LST was reliable to reflect reasonable patterns of temperature dynamics for land surface temperature in the region.  相似文献   

11.
利用非色散红外气体分析方法,在不受人为污染直接影响的瓦里关山进行了大气CO2的连续测量,给出了我国内陆高原大气CO2本底浓度的变化特征,观测表明内陆大气CO2随陆地植被的生长而有明显的日变化及季节的周期变化,其季节变化规律与全球大气CO2本底值的地理分布相一致。瓦里关山大气CO2的年增长率在1993年明显偏低,1994年又有较快的“回升”。地表CO2排放的观测研究还给出了冬季高原草甸土壤的排放特征,测量表明在冬季陆地植被光合作用基本停滞的情况下,土壤CO2的排放率相对增强,其最大排放量可达170 mg/m2·h以上。  相似文献   

12.
This paper presents an evaluation of the simulated coupling between cloud base height (CBH) and surface fluxes over selected Coordinated Enhanced Observing Period (CEOP) reference stations by five regional climate models as part of a transferability intercomparison experiment. The model results are compared with station data obtained during the first phase of the CEOP measuring campaigns. The models gave a credible simulation of both diurnal and seasonal cycles of cloud base height and surface variables over the stations. However, the models exhibited some difficulty in reproducing the diurnal and seasonal temperatures over the tropical stations. The study used principal component analysis to show that three factors account for most of the variability in the observed and simulated data and to investigate the coupling between cloud base height and surface fluxes in the data. In the observations, CBH is well coupled with the surface fluxes over Cabauw, Bondville, Lamont, and Berms, but coupled only with temperature over Lindenberg and Tongyu. All models but GEMLAM simulate substantial coupling between CBH and surface fluxes at all stations; GEMLAM does not couple CBH with surface fluxes, but with surface temperature and specific humidity.  相似文献   

13.
An emission inventory containing emissions from traffic and other sources was complied. Based on the analysis, Carbon Monoxide (CO) emissions from traffic play a very important role in CO levels in Chiang Mai area. Analysis showed that CO emissions from traffic during rush hours contributed approximately 90% of total CO emissions. Regional Atmospheric Modeling System (RAMS) was applied to simulate wind fields and temperatures in the Chiang Mai area, and eight ca~es were selected to study annual variations in wind fields and temperatures. Model results can reflect major features of wind fields and diurnal variations in temperatures. For evaluating the model performance, model results were compared with observed wind speed, wind direction and temperature, which were monitored at a meteorological tower. Comparison showed that model results are in good agreement with observations, and the model captured many of the observed features. HYbrid Particle And Concentration Transport model (HYPACT) was used to simulate CO concentration in the Chiang Mai area. Model results generally agree well with observed CO concentrations at the air quality monitoring stations, and can explain observed CO diurnal variations.  相似文献   

14.
利用传统的气象站法, 结合空间统计学方法(普通克里金插值法), 对福建省晋江市2010—2014年40个自动气象站逐小时温度资料加以计算处理, 分析了晋江市年、季、昼夜热岛强度时空变化规律。(1)晋江市年、季、昼夜热岛强度都呈带状分布, 等值线呈西南-东北走向, 年、季、昼夜变化趋势显著, 北部热岛强度高于南部。五年间热岛强度持续增强, 但增幅不大, 增速放缓。(2)城市化水平的提高, 会导致热岛强度高值出现季节提前, 故旅游区秋冬季热岛强度高于春夏季, 中心城区和产业经济区夏秋季热岛强度高于冬春季。(3)晋江市热岛效应昼夜空间分布格局差异性大, 夜间热岛强度显著高于白天, 最低值出现在14—16时, 中心城区和产业经济区最低值出现时间较旅游区略推迟, 三个功能区的最高值均出现在凌晨。   相似文献   

15.
In this study, the performances of the Community Atmosphere Model (CAM) and Pleim–Xiu (PX) surface layer parameterization schemes are investigated by using field observations. The parameterization schemes are evaluated against continuous momentum and sensible heat flux observations measured at two flat and homogeneous grassland sites in the suburb of Nanjing, eastern China. The observations were conducted from 30 December 2014 to 18 April 2017 at Jiangxinzhou and from 9 February 2015 to 26 March 2018 at Jiangning. It is found that the momentum flux is overall in good agreement with the observation, and the sensible heat flux is overestimated. The parameterizations of the momentum and sensible heat fluxes well capture the diurnal and seasonal patterns seen in the observations at the two sites. At Jiangxinzhou, the PX parameterization underestimates the momentum flux throughout the day and the CAM parameterization slightly overestimates it around the noon, while they underestimate the momentum flux throughout the year. The two parameterizations overestimate the sensible heat flux in the daytime as well as over the entire year. At Jiangning, the two parameterizations overestimate the momentum flux throughout the day and the sensible heat flux in the daytime, and overestimate both of them over the entire year. The two parameterizations are not significantly different from each other in reproducing the turbulent fluxes at the same site, while they perform differently at the two sites in terms of statistics. In addition, the parameterized fluxes increase with increased roughness length.  相似文献   

16.
Continuous measurements of ozone and its precursors including NO, NO2, and CO at an urban site (32°03′N, 118°44′E) in Nanjing, China during the period from January 2000 to February 2003 are presented. The effects of local meteorological conditions and distant transports associated with seasonal changed Asian monsoons on the temporal variations of O3 and its precursors are studied by statistical, backward trajectory, and episode analyses. The diurnal variation in O3 shows high concentrations during daytime and low concentrations during late night and early morning, while the precursors show high concentrations during night and early morning and low concentrations during daytime. The diurnal variations in air pollutants are closely related to those in local meteorological conditions. Both temperature and wind speed have significant positive correlations with O3 and significant negative correlations with the precursors. Relative humidity has a significant negative correlation with O3 and significant positive correlations with the precursors. The seasonal variation in O3 shows low concentrations in late autumn and winter and high concentrations in late spring and early summer, while the precursors show high concentrations in late autumn and winter and low concentrations in summer. Local mobile and stationary sources make a great contribution to the precursors, but distant transports also play a very important role in the seasonal variations of the air pollutants. The distant transport associated with the southeastern maritime monsoon contributes substantially to the O3 because the originally clean maritime air mass is polluted when passing over the highly industrialized and urbanized areas in the Yangtze River Delta. The high frequency of this type of air mass in summer causes the fact that a common seasonal characteristic of surface O3 in East Asia, summer minimum, is not observed at this site. The distant transports associated with the northern continental monsoons that dominate in autumn and winter are related to the high concentrations of the precursors in these two seasons. This study can contribute to a better understanding of the O3 pollution in vast inland of China affected by meteorological conditions and the rapid urbanization and industrialization.  相似文献   

17.
In this study, the diurnal and seasonal variations of CO2 fluxes in a subtropical mixed evergreen forest in Ningxiang of Hunan Province, part of the East Asian monsoon region, were quantified for the first time. The fluxes were based on eddy covariance measurements from a newly initiated flux tower. The relationship between the CO2 fluxes and climate factors was also analyzed. The results showed that the target ecosystem appeared to be a clear carbon sink in 2013, with integrated net ecosystem CO2exchange(NEE), ecosystem respiration(RE), and gross ecosystem productivity(GEP) of-428.8, 1534.8 and1963.6 g C m-2yr-1, respectively. The net carbon uptake(i.e. the-NEE), RE and GEP showed obvious seasonal variability,and were lower in winter and under drought conditions and higher in the growing season. The minimum NEE occurred on12 June(-7.4 g C m-2d-1), due mainly to strong radiation, adequate moisture, and moderate temperature; while a very low net CO2 uptake occurred in August(9 g C m-2month-1), attributable to extreme summer drought. In addition, the NEE and GEP showed obvious diurnal variability that changed with the seasons. In winter, solar radiation and temperature were the main controlling factors for GEP, while the soil water content and vapor pressure deficit were the controlling factors in summer. Furthermore, the daytime NEE was mainly limited by the water-stress effect under dry and warm atmospheric conditions, rather than by the direct temperature-stress effect.  相似文献   

18.
基于组网观测的那曲土壤湿度不同时间尺度的变化特征   总被引:2,自引:0,他引:2  
李博  张淼  唐世浩  董立新 《气象学报》2018,76(6):1040-1052
利用第三次青藏高原大气科学试验的土壤湿度观测数据,分析了那曲多空间尺度组网观测的28个站2、5、10、20和30 cm 5个不同深度土壤湿度的季节变化和日变化特征,并对比讨论了土壤湿度站点间的差异。分析表明,各层土壤湿度均存在显著的季节变化。冬春季节,20 cm以上土壤湿度随深度变浅而减小。夏秋季节土壤湿度随深度增加而减小,并分别在7月上、中旬和9月出现两个峰值。10月以后进入土壤湿度衰减期。土壤温度和土壤湿度存在协同变化关系。在一定的温度范围内,土壤发生冻结-融化过程,引起土壤湿度变化。在太阳辐射加热下,土壤表层水分蒸发,进而影响土壤温度。不同观测站间土壤湿度差异较大,夏秋季离散性大于冬春季。不同季节土壤湿度的日变化存在差异。春季10 cm以上土壤湿度日变化明显,08-10时(北京时)达到最低,19-20时达到最高。夏季土壤湿度日变化较为平缓。秋季2 cm深度土壤湿度日变化明显。线性拟合结果表明,1、4、10月土壤湿度和土壤温度为正相关关系。但是在夏季,土壤湿度与土壤温度为负相关。站点间土壤湿度变化的离散性表明,多测站才能全面体现青藏高原某区域的陆面状态。文中结果为青藏高原地区土壤湿度卫星参数验证和数值模式参数化提供了多角度的观测依据。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号