首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mudstones are one of the least permeable rocks in most sedimentary sequences. Accordingly they can act as seals for fluid flow leading to abnormal overpressures. Nevertheless, mudstone compaction and related permeability and porosity decrease are not adequately described in current basin modelling software, because only mechanical compaction is taken into account. In reality, however, clay minerals undergo severe chemical diagenesis which certainly influences petrophysical properties and compaction. In this context a mathematical approach which has been originally developed in soil mechanics has been adapted to basin modelling. The underlying mathematical equations are carefully explained in the text. In the basic equation the compression coefficient is a function of void ratio and effective stress. Using these equations, overpressure can be predicted by using petroleum systems modelling techniques. This is shown for a real 3D case study in the North Sea, in which strong overpressure occurs. A compaction model for mudstones that depends strongly on the clay content of the individual stratigraphic units is used for the calibration of porosities in the 3D case study. In addition, a chemical compaction model that reduces porosities by using a kinetic reaction is used for the deeper part of the basin where mechanical compaction processes are less important. The pressure generation process depends strongly on permeability and compressibility of the porous medium. Therefore, the use of mudstone compaction and permeability models is sufficient to produce pore overpressures. In the case studied, abnormal overpressures are generated during burial together with the petroleum generation process. The mechanical and chemical compaction mechanisms ensure that the pressures are preserved in the deeper part of the basin.  相似文献   

2.
碎屑岩储集层质量在此指其渗透率和孔隙度。影响储集层质量的因素主要是沉积方面和成岩方面。沉积方面的因素包括粒度、磨圆度、分选系数和杂基含量等,成岩方面的因素包括压实强度、溶蚀孔隙含量、胶结物类型和含量等。一种砂岩储集层的质量往往是多种单因素共同作用的结果,如何理清每个因素的具体贡献率是确定主控因素的关键。作者提出了一种分析各种沉积和成岩因素对储集层质量定量贡献率的方法——单因素比较法,并以渤中凹陷古近系东营组砂岩为例进行了演示分析。该地区东营组三角洲平原分流河道砂岩与三角洲前缘河口坝砂岩储集物性差异巨大,计算了各个因素对这种差异的贡献率,确定了主控因素:杂基含量差异的贡献率为78.5%,是主控因素;粒度差异的贡献率为2.7%,分选系数差异的贡献率为1.5%,自生黏土矿物含量差异的贡献率为15.9%,碳酸盐胶结物含量差异的贡献率为2.3%,溶孔含量差异的贡献率为1.5%,压实强度差异的贡献率为1.7%。沉积因素的综合贡献率为各沉积单因素的贡献率之和,为82.7%;成岩因素的综合贡献率为各成岩单因素的贡献率之和,为18.4%(其中溶孔的影响与其他因素相反,即为-1.5%)。因此,沉积因素是导致该储集层质量差异的主要因素。  相似文献   

3.
The design of lined waste-storage facilities is significantly influenced by the permeability of the liner. The permeability of compacted clay liners, in turn, is influenced by factors such as clay type and composition, compaction type and effort, and operating conditions. The complexity of the permeation process makes it difficult to predict analytically the permeability from these factors. As a result, empirical regression models are frequently used to predict permeability. In this paper, permeability prediction models are developed using computational neural networks (CNNS). The developed CNN models are used to predict the permeability of compacted clay for a known set of soil properties and field and laboratory conditions. Moreover, the models are used to determine the relative importance of the various input parameters to the model output. Also, a comparison between regression models and neural networks for predicting permeability is presented and the advantages of utilizing CNN methodology over regression techniques in model development are highlighted.  相似文献   

4.
雒斌 《地质与勘探》2019,55(1):223-230
鄂尔多斯盆地马岭地区为三角洲前缘沉积,长8_1油层属于低渗透、特低渗透、超低渗透致密砂岩油藏。综合铸体薄片、扫描电镜、物性等试验资料,深化认识马岭地区长8_1成岩作用特征;利用沉积环境、粘土矿物、古地温、R_o、流体包裹体温度等实验结论开展成岩阶段及成岩序列的研究;在成岩作用阶段中,压实和胶结-交代作用降低了部分孔隙度,溶蚀作用产出的次生孔隙是致密储层的高渗通道,在定性认识的同时设立储层孔隙度定量演化计算,实现了孔隙度演化的定量认识,且定量计算与气测孔隙度误差为3. 2%;通过研究4类样品表明,研究区长8_1属于强烈压实型成岩作用,不同成岩阶段孔隙的差异性直接导致了储层物性的好坏。  相似文献   

5.
张振红  朱静  余芳  李成  汪伶俐  李文厚 《地质通报》2016,35(203):440-447
依据薄片、压汞、扫描电镜、物性分析及油水驱替实验资料,对吴仓堡地区三角洲前缘亚相长6厚层砂岩储层的岩石学特征、孔渗特征、孔隙结构特征、成岩作用、微观渗流特征等进行深入研究,分析影响储层储集性能的主控因素。结果表明,受东北物源控制的长6厚层砂岩储层具有成分成熟度中等、结构成熟度较好的特点,储集空间主要为残余粒间孔和粒间溶孔、粒内溶孔,为典型中低孔、特低渗储集层;储层储集性能主要受沉积微相和成岩作用控制。对储层发育影响最大的成岩期位于中成岩A期,中等压实-粘土膜胶结残余粒间孔发育成岩相和弱压实-残余粒间孔+溶蚀孔隙发育成岩相是最有利储层发育的成岩相带。根据微观渗流特征,可划分出4种驱油类型,微观孔隙结构比宏观物性更能反映储层的本质特征。  相似文献   

6.
为了明确准噶尔盆地腹部莫索湾地区清水河组储层特征及其成因,综合利用铸体薄片、扫描电镜、物性、X衍射等多种分析测试手段,并结合钻测井、地层测试资料及区域埋藏史、古地温、沉积体系等相关研究成果,详细分析了清水河组储层成岩作用特征及其物性控制因素,并在此基础上总结成岩模式。研究结果表明:清水河组储层具有低成分成熟度、高塑性岩屑含量及高结构成熟度的"一低两高"特征;尽管储层主体埋深在3 500m以下,但储集空间仍以原生粒间孔为主,平均孔隙度为15.47%,平均渗透率可达226.6mD,为典型的深层优质储层;储层成岩作用总体表现为"中压实中强压实、强溶蚀、弱胶结"的特征,尽管储层埋深较大,但成岩阶段整体仍处于中成岩A1亚期;区域连片的厚层辫状河三角洲前缘水下分流河道及河口坝中细砂岩及中粗砂岩是形成深层优质储层的基础,而成岩过程中储层物性保存主要受控于早期碳酸盐胶结抗压实、绿泥石包壳及后期酸性成岩流体条件下的溶蚀增孔作用;除上述沉积、成岩控制因素外,地层超压的存在使得储层在深埋条件下压实强度显著降低,是储层物性保存的关键,同时在储层成岩演化过程中及现今盆地不断降低的地温梯度也有效延缓了储层的成岩进程。  相似文献   

7.
This study illustrates a procedure conducive to a preliminary risk analysis of overpressure development in sedimentary basins characterized by alternating depositional events of sandstone and shale layers. The approach rests on two key elements: (1) forward modeling of fluid flow and compaction, and (2) application of a model-complexity reduction technique based on a generalized polynomial chaos expansion (gPCE). The forward model considers a one-dimensional vertical compaction processes. The gPCE model is then used in an inverse modeling context to obtain efficient model parameter estimation and uncertainty quantification. The methodology is applied to two field settings considered in previous literature works, i.e. the Venture Field (Scotian Shelf, Canada) and the Navarin Basin (Bering Sea, Alaska, USA), relying on available porosity and pressure information for model calibration. It is found that the best result is obtained when porosity and pressure data are considered jointly in the model calibration procedure. Uncertainty propagation from unknown input parameters to model outputs, such as pore pressure vertical distribution, is investigated and quantified. This modeling strategy enables one to quantify the relative importance of key phenomena governing the feedback between sediment compaction and fluid flow processes and driving the buildup of fluid overpressure in stratified sedimentary basins characterized by the presence of low-permeability layers. The results here illustrated (1) allow for diagnosis of the critical role played by the parameters of quantitative formulations linking porosity and permeability in compacted shales and (2) provide an explicit and detailed quantification of the effects of their uncertainty in field settings.  相似文献   

8.
I. Lerche  Z. Yu  J. Liu 《地学学报》1995,7(4):459-466
A discussion is given of the impact of normal slant faults on basinal structure, compaction, fluid overpressure development, and thermal effects in sedimentary basins. Faults which are hydraulically closed or open to fluid flow are examined in a dynamical two-dimensional fluid/ flow compaction model.
From this numerical investigation three dominant factors characterize the effects of single and multiple faults with open or closed hydraulic behaviours: (i) there is a difference in excess pressure for fault planes with open or shut hydraulic conditions, but the neighbourhood where the effect of the fault is dominant is fairly localized (to within about half a kilometre or so laterally from the fault plane); (ii) the lateral and vertical motion of sediments between faulted blocks induces a thermal difference prior to, during, and post-faulting, which can play a role in influencing hydrocarbon generation, migration, and accumulation; (iii) porosity retention and permeability modification by fault development could influence hydrocarbon exploration decisions regarding sealing, migration pathways, and fluid retention.
The general patterns of slant fault effects described here should prevail in most geological situations, because the numerical experiments are designed to illuminate sharply the dominant response characteristics within the framework of simplified situations.  相似文献   

9.
根据偏光显微镜、扫描电镜和X-衍射等分析手段获取的数据和资料,分析对比了早期沉积水介质、幔源CO2流体、大气水、超压流体和充注烃类等对储层黏土矿物的控制作用。研究表明,早期沉积水介质是储层黏土矿物的决定性因素,微咸水-半咸水湖盆储层黏土矿物以伊利石为主,淡水湖盆储层黏土矿物以高岭石为主;幔源CO2流体侵位后带来明显的储层改造和热波动效应,储层中I/S中S%含量低于同深度泥岩,储层中高岭石含量明显偏高。欠压实超压储层中黏土演化明显滞后,表现在I/S中S%含量低于同深度泥岩和常压储层。油气层高岭石含量往往远高于相近深度的水层,可能与充注烃类携带的有机酸的溶蚀作用有关,另外,烃类充注后形成的惰性成岩环境也有利于高岭石的保存,高岭石的高含量带常与油层及高渗层相对应;受大气水淋滤的储层,以长石大量溶蚀,富含高岭石为特征,储层孔隙度一般较高。  相似文献   

10.
Intergranular pressure solution (IPS) is a coupled chemical-mechanical process of widespread importance that occurs during diagenesis and low-temperature deformation of sedimentary rocks. Laboratory experiments on IPS in halite, quartz, and calcite have largely concentrated on the mechanical aspects of the process. In this study, we report the effects of pore fluid chemistry, specifically varying phosphate ion concentration, on the mechanical compaction by IPS of fine-grained calcite powders at room temperature and 1 to 4 MPa applied effective stress. Phosphate was investigated because of its importance as a biogenic constituent of sea and pore waters. Increasing the pore fluid phosphate concentration from 0 to 10−3 mol/L systematically reduced compaction strain rates by up to two orders of magnitude. The sensitivity of the compaction strain rate to phosphate concentration was the same as the sensitivity of calcite precipitation rates to the addition of phosphate ions reported in the literature, suggesting that the rate of IPS in phosphate-bearing samples was controlled by calcite precipitation on pore walls. The results imply that IPS and associated porosity/permeability reduction rates in calcite sediments may be strongly reduced when pore fluids are enriched in phosphates, for example, through high biologic productivity or a seawater origin. Future modeling of IPS-related processes in carbonates must therefore take into account the effects of pore fluid chemistry, specifically the inhibition of interfacial reactions.  相似文献   

11.
南岭地区两种类型盆地的压实流体系统及其矿化作用   总被引:9,自引:5,他引:4  
盆地构造演化—流体系统—矿化作用是矿床学研究的前缘课题。盆地演化的特征直接影响盆地沉积建造的结构特征。建造结构和地球化学特征对压实流体系统的温度场、动力场、地球化学场和矿化作用产生决定性的影响。滇东南白牛厂早古生代盆地是典型的裂谷式凹陷盆地,上万米厚的黑色页岩与上部碳酸盐岩和砂岩组合有利于矿化的压实流体系统的形成,形成了白牛厂式超大型银多金属矿床。粤北晚古生代盆地为地台型浅海盆地,沉积物主要由透水性较好的粗碎屑物质和碳酸盐岩组成,沉积建造厚度较薄。数字模拟结果表明,粤北盆地压实流体系统难以形成较高的地热储和流体势,流体只能在沉积层的特殊部位汇聚并形成红岩型低温黄铁矿矿床。  相似文献   

12.
《Computers and Geotechnics》2006,33(6-7):316-329
The aim of the paper is to provide new elements concerning the constitutive behavior of sedimentary rocks and the numerical aspects for basin simulators. A comprehensive model for mechanical compaction of sedimentary basins is developed within finite poroplasticity setting. Particular concern is paid to the effects of large porosity changes on the poromechanical properties of the sediment material. A simplified micromechanics-based approach is used to account for the stiffness increase and hardening induced by large plastic strains.A key challenge for numerical assessment of sedimentary basin evolution is to integrate multiple coupled processes in the context of open material systems. To this end, a numerical approach inspired from the ‘deactivation/reactivation’ method used for the simulation of excavation process and lining placement in tunnel engineering, has been developed. Periods of sediments accretion are simulated by progressive activation of the gravity forces within a fictitious closed system. Fundamental components of the constitutive model developed before (hydromechanical coupling, dependence of poroelastic properties on large plasticity, impact of irreversible porosity changes on the hardening rule, evolution of permeability with porosity) are included into our finite element code.Illustrative examples of basin simulation are performed in the one-dimensional case. Various aspects of the constitutive model are investigated. Their influence on the corresponding basin response is analyzed in terms of compaction law, porosity and fluid pressure profiles.  相似文献   

13.
通过详细的岩心观察和描述,同时结合铸体薄片、扫描电镜、X-射线衍射、压汞、核磁共振以及物性等资料的研究,认为海坨子地区扶余油层为末端扇中部亚相沉积,储层岩石类型主要为岩屑长石砂岩和长石岩屑砂岩,孔喉结构为小孔隙、细喉或微细喉型,束缚水饱和度高,渗流能力差,属于超低渗透储层。沉积作用和成岩作用是扶余油层超低渗透储层形成的关键。末端扇沉积控制了扶余油层原始沉积物的粒度、碎屑成分以及填隙物成分和含量,使得储层初始孔渗性较差,同时强烈的机械压实作用导致扶余油层原生粒间孔隙体积直线下降,而胶结作用,尤其碳酸盐连晶状基底胶结几乎完全封堵了孔喉,喉道内伊利石等粘土矿物的搭桥生长,也使孔喉变得越来越曲折、狭窄,储层渗流能力因此遭受严重破坏。此外,末端扇储层中大量非渗透性隔夹层导致的强非均质性也是超低渗透储层形成的一个因素。溶蚀作用对扶余油层渗透性的改善有限,但成岩微裂缝和构造裂缝的发育对海坨子地区超低渗透油藏的开发起着至关重要的作用。  相似文献   

14.
Reservoir depletion results in rock failure, wellbore instability, hydrocarbon production loss, oil sand production, and ground surface subsidence. Specifically, the compaction of carbonate reservoirs with soft rocks often induces large plastic deformation due to rock pore collapse. On the other hand, following the compaction of reservoirs and failure of rock formations, the porosity and permeability of formations will, in general, decrease. These bring a challenge for reservoir simulations because of high nonlinearity of coupled geomechanics and fluid flow fields. In this work, we present a fully implicit, fully coupled, and fully consistent finite element formulation for coupled geomechanics and fluid flow problems with finite deformation and nonlinear flow models. The Pelessone smooth cap plasticity model, an important material model to capture rock compaction behavior and a challenging material model for implicit numerical formulations, is incorporated in the proposed formulation. Furthermore, a stress-dependent permeability model is taken into account in the formulation. A co-rotational framework is adopted for finite deformation, and an implicit material integrator for cap plasticity models is consistently derived. Furthermore, the coupled field equations are consistently linearized including nonlinear flow models. The physical theories, nonlinear material and flow models, and numerical formulations are the focus of part I of this work. In part II, we verify the proposed numerical framework and demonstrate the performance of our numerical formulation using several numerical examples including a field reservoir with soft rocks undergoing serious compaction.  相似文献   

15.
In this paper we employ mixed finite elements and numerically study an integrated two-dimensional model of fluid flow and compaction in a sedimentary basin. This model describes a single phase incompressible flow in a two-dimensional section of a sedimentary basin with vertical compaction. At each time step, an iterative algorithm is used to solve this model. The determination of the grid movement is based on the mass conservation and movement of sediments in the basin, while the mixed method is utilized to solve the fluid flow over the moving grid. Numerical experiments are presented to verify this iterative algorithm and show representative solutions for the model under consideration.  相似文献   

16.
在西湖凹陷花港组储层整体低渗的背景下,优质储层的发育往往伴随绿泥石的富集。通过薄片观察、X衍射分析和扫描电镜及能谱分析等研究,认为研究区绿泥石呈黏土包膜、孔隙衬里和孔隙充填3种产出状态。黏土包膜为同沉积期铁镁物质絮凝吸附形成,成分复杂。孔隙衬里是绿泥石最主要的产出状态:Ⅰ类孔隙衬里绿泥石在早压实期前后由黏土包膜重结晶形成,单晶呈半自形片状,铁镁质量分数较低,排列杂乱;Ⅱ类孔隙衬里绿泥石在早压实期后由孔隙流体在洁净的颗粒表面结晶而成,单晶呈相对自形六方片状,铁镁质量分数较高,多垂直颗粒表面有序排列。孔隙充填绿泥石可细分为分散片状、书页状和绒球状,与溶蚀作用密切相关,单晶自形程度和铁镁质量分数均最高。黏土包膜绿泥石对储层物性的影响较小,但有助于衬里绿泥石的形成;孔隙衬里绿泥石难以缓解压实作用,但能够在一定程度上抑制压溶作用和有效地抑制早期石英加大,其中Ⅰ类孔隙衬里绿泥石由于连续性较好、排列杂乱、结晶较差和晶间孔复杂,对硅质胶结抑制作用明显,而Ⅱ类孔隙衬里绿泥石则相反,对硅质胶结的抑制作用有限;孔隙充填绿泥石仅充填较大原生粒间孔和粒间溶孔,对渗透率影响较小,仅在一定程度上减小了孔隙度。现今储层物性更多受控于储层砂岩的原始沉积组构以及相应的压实和溶蚀强度的改造过程,绿泥石的富集对优质储层具指示作用。  相似文献   

17.
塔里木盆地西北地区苏盖特布拉克组发育一套潮坪相沉积,是该层系油气勘探的主要目标。基于什艾日克剖面、奇格布拉克剖面、肖尔布拉克剖面的地质测量,采用薄片鉴定、阴极发光、扫描电镜、流体包裹体测温及黏土矿物X衍射等分析手段开展海相碎屑岩成岩作用和成岩演化研究,为塔里木盆地苏盖特布拉克组进一步开展油气勘探部署和甜点储层预测提供地质依据。结果表明:(1)研究区苏盖特布拉克组发育潮坪沉积环境的砂体,砂岩类型以岩屑石英砂岩、岩屑砂岩为主,偶见长石岩屑砂岩,成分成熟度和结构成熟度中等;(2)苏盖特布拉克组砂岩经历了压实(溶)作用、胶结作用、溶蚀作用及交代作用等成岩作用,压实作用是造成储层致密的直接原因,钙质胶结和硅质胶结是储层致密化的根本因素;(3)苏盖特布拉克组砂岩的成岩演化阶段已达到中成岩B期,成岩演化序列为:压实作用/自生黏土矿物(绿泥石)环边—第一期长石、岩屑溶蚀作用—第一期硅质胶结—第一期泥微晶方解石胶结/压溶作用/黏土矿物的伊利化—第二次硅质胶结/第二期铁方解石胶结—钙质胶结物溶蚀。据此建立的成岩演化模式为塔里木盆地超深层致密砂岩中甜点储层预测提供可靠的地质依据。  相似文献   

18.
In order to determine the genesis and the factors that control the low-porosity and low- permeability sandstone reservoirs in the eastern Sulige Gas Field in the Ordos Basin, systematic studies on the sedimentary facies and diagenesis were conducted by means of analysis of cores, thin sections, fluid inclusions, X-ray diffraction, cathode luminescence and scanning electron microscope. It was found that the sand bodies of the major gas reservoirs in the Shan1 section (P1S1) and the He8 section (P2H8) were formed during the Permian as sedimentary facies such as braided-channel bars, braided-river channels and point bars of a meandering river. Four types of diagenetic facies developed subsequently: in order from the best to the poorest properties these are type A (weak compaction, early calcite cement-chlorite film facies), type B (moderate compaction, quartz overgrowth-feldspar corrosion-kaolinite filling facies), type C (strong compaction, late calcite cement-quartz corrosion facies) and type D (matrix filling and strong compaction facies). This diagenesis is undoubtedly the main reason for the poor reservoir properties of sandstone reservoirs, but the sedimentary facies are the underlying factors that greatly affect the diagenesis and thus the reservoir performance. Favorable diagenetic facies developed mainly in relatively small lithofacies such as braided-river channels, channel bars and point bars. The vertical distribution of the physical properties and the diagenetic facies of the reservoirs are related to the stratigraphic succession. Most of the sandstones between mudstones and thin beds of sandstone are unfavorable diagenetic facies. Analyses indicate that siliceous cementation can hardly be stopped by hydrocarbon filling. Authigenic chlorite could hardly protect the primary porosity. It not only occupies pore space, but also blocks pathways through sandstone reservoirs, so that it has significant influence on the permeability. Authigenic chlorite cannot be used as a marker for a  相似文献   

19.
随着南海西部海域的勘探与开发,越来越多的砂砾岩油气藏被发现。但由于研究区域砂砾岩储层孔隙结构复杂,因此,孔隙度基本相同的储层之间渗透率差别很大,并且低渗砂砾岩储层的油水层测井响应特征不明显。针对于此,本文深入分析砂砾岩储层的孔隙结构特征及其对储集层电性的影响,总结不同沉积环境条件下渗透率的分布特征及影响因素。从宏观上看:受近物源的控制,快速堆积的碎屑杂基充填孔隙,储层渗透率表现为低渗特征;由于溶蚀作用改善了孔隙,远物源孔隙连通性较好,渗透率表现为中高渗特征;而压实作用较为强烈的储层则表现为特低渗特征。从微观上看,岩石平均孔喉半径是渗透率的重要内在控制因素。依据不同的沉积环境及孔隙结构特征,采用流动单元分析法,将砂砾岩储层细分为三大类,从而建立了三大类砂砾岩储层渗透率测井解释模型;并采用最能表征储层储集性能的补偿密度、补偿中子、泥质体积分数、地层流动带指数进行模糊聚类分析,得到Fisher线性判别模型。结果显示,流动单元法所建渗透率模型最终预测渗透率相对误差基本保持在50%以内,比传统孔渗模型方法精度更高,在研究区域更具有适用性和准确性。  相似文献   

20.
The dynamical evolution of sediments in basins, and their compaction, is the underpinning keystone on which rests the ability to model thermal history of the basin and hydrocarbon generation, migration, and accumulation histories. A presentation is given of the dynamical tomography method, which inverts dynamical indicators to evaluate the parameters in a 1-D fluid-flow/compaction model, including values dealing with geological events as well as values dealing with intrinsic, or assumed, lithologic equations of state. Synthetic tests illustrate the operation of the system. Using observed downhole quantities: total depth, formation thicknesses, variation of porosity, permeability, and total fluid pressure with depth from the Navarin Basin COST No. 1 well, Bering Sea, Alaska, the numerical algorithm was tested and found to be effective in a nonlinear inverse sense to determine and/or constrain the parameters entering quantitative models of dynamical sedimentary evolution. The predictions of present day total depth, formation thicknesses, porosity, permeability, and fluid pressure with depth are close to the measured data. The minimization provides the uncertainty in each parameter and so the geohistory of a well can be defined better.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号