首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
For about three decades helicopter-borne electromagnetic (HEM) measurements have been used to reveal the resistivity distribution of the upper one hundred metres of the earth's subsurface. HEM systems record secondary fields, which are 3–6 orders of magnitude smaller than the transmitted primary fields. As both the primary fields and the secondary fields are present at the receivers, well-designed bucking coils are often used to reduce the primary fields at the receivers to a minimum. Remaining parts of the primary fields, the zero levels, are generally corrected by subtracting field values recorded at high altitudes (standard zero levelling) or estimated from resistivities of neighbouring lines or from resistivity maps (advanced zero levelling). These zero-levelling techniques enable the correction for long-term, quasi-linear instrumental drift. Short-term variations caused by temperature changes due to altitude variations, however, cannot be completely corrected by this procedure resulting in stripe patterns on thematic maps.Statistical methods and/or 2-D filter techniques called statistical levelling (tie-line levelling) and empirical levelling (microlevelling), respectively, used to correct stripe patterns in airborne geophysical data sets are, in general, not directly applicable to HEM data. Because HEM data levelling faces the problem that the parameter affected by zero-level errors, the secondary field, differs from the parameter generally levelled, the apparent resistivity. Furthermore, the dependency of the secondary field on both the resistivity of the subsurface and the sensor altitude is strongly nonlinear.A reasonable compromise is to microlevel both half-space parameters: apparent resistivity and apparent depth, followed by a recalculation of the secondary field components based on the half-space parameters levelled. Advantages and disadvantages of the diverse levelling techniques are discussed using a HEM data set obtained in a hilly region along the Saale River between the cities of Saalfeld and Jena in central Germany. It turns out from a comparison of apparent resistivity and apparent depth maps derived from levelled HEM data that manually advanced zero levelling of major level errors and automatic microlevelling of remaining minor level errors yield the best results.  相似文献   

2.
受激电效应影响,航空瞬变电磁响应曲线经常出现异常快速衰减和符号反转现象,使用Cole-Cole模型的等效电阻率代替原模型实电阻率能很好的解释该现象,但由于激电多个参数的引入,使得反演多解性问题更加严重.本文基于Cole-Cole模型实现了航空瞬变电磁一维正演,采用横向约束反演同时计算激电参数及层厚,增加约束条件改善多解...  相似文献   

3.
Frequency-domain airborne electromagnetics is a proven geophysical exploration method. Presently, the interpretation is mainly based on resistivity—depth imaging and one-dimensional layered inversion; nevertheless, it is difficult to obtain satisfactory results for two- or three-dimensional complex earth structures using 1D methods. 3D forward modeling and inversion can be used but are hampered by computational limitations because of the large number of data. Thus, we developed a 2.5D frequency-domain airborne electromagnetic forward modeling and inversion algorithm. To eliminate the source singularities in the numerical simulations, we split the fields into primary and secondary fields. The primary fields are calculated using homogeneous or layered models with analytical solutions, and the secondary (scattered) fields are solved by the finite-element method. The linear system of equations is solved by using the large-scale sparse matrix parallel direct solver, which greatly improves the computational efficiency. The inversion algorithm was based on damping least-squares and singular value decomposition and combined the pseudo forward modeling and reciprocity principle to compute the Jacobian matrix. Synthetic and field data were used to test the effectiveness of the proposed method.  相似文献   

4.
A case history is reported to outline a possible strategy for the construction of a pseudo-2D model of shear-wave velocity for seismic site response studies. Experimental data have been collected using the Multichannel Analysis of Surface Wave technique (MASW) at six sites in the city of Najaf (Southern Iraq). The sites are aligned along the route of a proposed subway. The dataset has been processed to extract the dispersion curves of each site and then it has been inverted by using a Laterally Constrained Inversion (LCI) algorithm. The initial model for the local search algorithm has been obtained with a preliminary Monte Carlo Inversion (MCI). A priori information from borehole logs and lateral constraints between neighbors 1D models are used to mitigate the non-uniqueness of the solution. The result is a pseudo-2D shear-wave velocity model of the area which is in good agreement with sediment lithology and thicknesses obtained from borehole logs.  相似文献   

5.
Time‐domain electromagnetic data are conveniently inverted by using smoothly varying 1D models with fixed vertical discretization. The vertical smoothness of the obtained models stems from the application of Occam‐type regularization constraints, which are meant to address the ill‐posedness of the problem. An important side effect of such regularization, however, is that horizontal layer boundaries can no longer be accurately reproduced as the model is required to be smooth. This issue can be overcome by inverting for fewer layers with variable thicknesses; nevertheless, to decide on a particular and constant number of layers for the parameterization of a large survey inversion can be equally problematic. Here, we present a focusing regularization technique to obtain the best of both methodologies. The new focusing approach allows for accurate reconstruction of resistivity distributions using a fixed vertical discretization while preserving the capability to reproduce horizontal boundaries. The formulation is flexible and can be coupled with traditional lateral/spatial smoothness constraints in order to resolve interfaces in stratified soils with no additional hypothesis about the number of layers. The method relies on minimizing the number of layers of non‐vanishing resistivity gradient, instead of minimizing the norm of the model variation itself. This approach ensures that the results are consistent with the measured data while favouring, at the same time, the retrieval of horizontal abrupt changes. In addition, the focusing regularization can also be applied in the horizontal direction in order to promote the reconstruction of lateral boundaries such as faults. We present the theoretical framework of our regularization methodology and illustrate its capabilities by means of both synthetic and field data sets. We further demonstrate how the concept has been integrated in our existing spatially constrained inversion formalism and show its application to large‐scale time‐domain electromagnetic data inversions.  相似文献   

6.
Helicopter electromagnetic (HEM) systems are commonly used for conductivity mapping and the data are often interpreted using an isotropic horizontally layered earth model. However, in regions with distinct dipping stratification, it is useful to extend the model to a layered earth with general anisotropy by assigning each layer a symmetrical 3 × 3 resistivity tensor. The electromagnetic (EM) field is represented by two scalar potentials, which describe the poloidal and toroidal parts of the magnetic field. Via a 2D Fourier transform, we obtain two coupled ordinary differential equations in the vertical coordinate. To stabilize the numerical calculation, the wavenumber domain is divided into two parts associated with small and large wavenumbers. The EM field for small wavenumbers is continued from layer to layer with the continuity conditions. For large wavenumbers, the EM field behaves like a DC field and therefore cannot be sensed by airborne EM systems. Thus, the contribution from the large wavenumbers is simply ignored. The magnetic fields are calculated for the vertical coaxial (VCX), horizontal coplanar (HCP) and vertical coplanar (VCP) coil configurations for a helicopter EM system. The apparent resistivities defined from the VCX, VCP and HCP coil responses, when plotted in polar coordinates, clearly identify the principal anisotropic axes of an anisotropic earth. The field example from the Edwards Aquifer recharge area in Texas confirms that the polar plots of the apparent resistivities identify the principal anisotropic axes that coincide well with the direction of the underground structures.  相似文献   

7.

近年来,海洋可控源电磁法(MCSEM)被引入油气勘探领域以降低勘探风险.在海洋环境中,受沉积因素所造成的电阻率各向异性的影响,地电模型往往会非常复杂.为更好地反映地下电性结构,本文实现了基于VTI各向异性介质的频率域海洋可控源电磁三维反演.其中,正演采用基于Yee氏交错网格的三维有限差分算法,所形成的离散线性系统通过大规模并行矩阵直接求解器(MUMPS)进行求解.反演采用基于不等式约束的有限内存BFGS(L-BFGS)算法.最后,利用VTI各向异性介质合成数据,分别进行了电阻率各向异性覆盖层和电阻率各向异性高阻层的三维反演,结果表明:(1)基于并行直接法的MCSEM非常适用于海洋电磁所特有的多场源问题;(2)针对各向异性覆盖层模型进行三维各向异性约束反演,提高了解的可靠性;(3)针对电阻率各向异性高阻层,Inline和broadside数据覆盖的反演结果对异常体位置有很好的反映.

  相似文献   

8.
三维频率域航空电磁反演研究   总被引:3,自引:13,他引:3       下载免费PDF全文
刘云鹤  殷长春 《地球物理学报》2013,56(12):4278-4287
航空电磁数据的三维解释由于数据量大需要有高效的反演算法作为支撑.本文利用两种目前主流的数值优化技术(非线性共轭梯度和有限内存的BFGS法)实现了三维频率域航空电磁反演,并进一步比较了两种方法的有效性和运算效率.在反演过程中,为了更好地反演异常体的空间位置,模型方差矩阵中的光滑系数在反演起始阶段取值较大;当数据拟合差下降趋于平缓时,再利用较小的光滑因子约束反演过程来实现聚焦和获得精确的反演结果.理论数据反演表明这两种优化策略具有相似的内存需求,但是有限内存的BFGS技术比非线性共轭梯度法在计算时间和模型反演分辨率上具有一定的优越性,因此有限内存BFGS法更适合于求解大规模三维反演问题. 模型试验进一步表明目前主流的迭代法求解技术不适合大规模航空电磁数据反演,未来移动平台多源电磁数据快速正反演可通过引入矩阵分解技术来实现.  相似文献   

9.
频率域吊舱式直升机航空电磁资料的马奎特反演   总被引:5,自引:1,他引:5       下载免费PDF全文
频率域吊舱式航空电磁系统在国内尚处于研究和试生产阶段,由于缺少有效的数据处理手段,限制了该项技术的进一步应用和发展.本文通过对马奎特方法原理介绍,成功地将其运用到频率域航空电磁资料的反演计算中,并对几个关键技术——雅可比矩阵计算、初始模型赋值、形态模型与物性模型反演效果等进行分析,提出了切实可行的算法,并在计算机上加以实现.最后,通过理论模型和实测数据测试验证了算法的有效性和正确性,填补了国内该应用领域的技术空白,取得了较好的应用效果.  相似文献   

10.
频率域航空电磁数据的加权横向约束反演   总被引:3,自引:5,他引:3       下载免费PDF全文
传统的一维反演技术已经被广泛应用于航空电磁数据解释中.然而,利用单点水平层状介质模型模拟地下复杂地电结构有时会遇到困难.突出表现在反演参数的横向不连续性,即使相邻测点的反演结果也会出现突变.本文针对航空电磁直升机吊舱系统可进行密集采样,相邻测点地下电性结构应具有某种程度连续性的特点,研究航空电磁数据横向约束反演理论,并提出参数加权约束方法.首先阐述频率域航空电磁正演和加权横向约束反演理论,着重介绍这种拟二维反演方法的基本原理和实施步骤,以及将该方法成功应用于频率域航空电磁数据反演处理的方法技术.最后,通过对理论和实测数据反演处理,并与传统的一维反演结果进行对比,验证加权横向约束反演方法的有效性.  相似文献   

11.
频率域航空电磁数据变维数贝叶斯反演研究   总被引:3,自引:2,他引:3       下载免费PDF全文
传统的梯度反演方法已经广泛应用于频率域航空电磁数据处理中,然而此类方法受初始模型影响较大,且容易陷入局部极小.为解决这一问题,本文采用改进的变维数贝叶斯反演方法实现航空电磁数据反演.该方法根据建议分布对反演模型进行随机采样,并依据接受概率筛选合理的候选模型,最终获得反演模型的概率分布和不确定度信息.为解决贝叶斯反演方法对深部低阻层反演效果不佳的问题,本文通过引入合理加权系数,调整对反演模型约束强度,在很大程度上改善了反演效果.通过对模型统计方法进行改进,在遵循原有模型采样方法和接受标准的基础上,将满足数据拟合要求的模型纳入统计范围,削弱不合理模型对统计结果的干扰.本文最后通过对含有高斯噪声的理论数据和实测数据进行反演,并与Occam反演结果进行对比,验证了该方法的有效性.  相似文献   

12.
三维反演解释是电磁法勘探发展的重要趋势,而如何提高三维反演的可靠性、稳定性和计算效率是算法开发者们目前的研究重点.本文实现了一种频率域可控源电磁(CSEM)三维反演算法.其中正演基于拟态有限体积法离散化,利用直接矩阵分解技术来求解大型线性系统方程,不仅准确、稳定,而且特别有利于含有大量发射场源位置的CSEM勘探情况;对目标函数的最优化采用高斯牛顿法(GN),具有近似二次的收敛性;使用预条件共轭梯度法(PCG)求解每次GN迭代所得到的法方程,避免了显式求解和存储灵敏度矩阵,减小了计算量.以上这些方法的结合应用,使得本文的三维反演算法准确、稳定且高效.通过陆地和海洋CSEM勘探场景中的典型理论模型的反演测试,验证了本文算法的有效性.  相似文献   

13.
频率域海洋可控源电磁垂直各向异性三维反演   总被引:1,自引:0,他引:1       下载免费PDF全文
地层宏观电性各向异性会对可控源电磁响应产生重要影响.由于海底地层电性结构常表现为电导率各向异性,若仅对海洋可控源电磁(MCSEM)数据进行常规各向同性反演,有可能无法获得准确的反演解释结果,从而削弱MCSEM技术的可靠性.本文实现了电导率垂直各向异性(VTI)条件下频率域海洋可控源电磁数据三维反演算法.其中,三维正演采用基于二次场控制方程的交错网格有限体积法,并利用直接矩阵分解技术来求解离散所得的大型线性方程组,有利于快速计算多场源的响应.反演采用具有近似二次收敛性的高斯牛顿算法对目标函数进行最优化.最后,对具有VTI电性各向异性特征的盐丘构造模型的MCSEM合成数据分别进行了电导率各向同性和垂直各向异性三维反演,结果表明:各向同性三维反演算法无法对受VTI介质影响的MCSEM数据进行正确的反演解释,而垂直各向异性三维反演能够获得更为可靠的地下电阻率结构和异常体分布,展现出对海底电性各向异性结构更为优良的反演解释能力.  相似文献   

14.
Piecewise 1D laterally constrained inversion of resistivity data   总被引:1,自引:0,他引:1  
In a sedimentary environment, layered models are often capable of representing the actual geology more accurately than smooth minimum structure models. Furthermore, interval thicknesses and resistivities are often the parameters to which non‐geophysicist experts can relate and base decisions on when using them in waste site remediation, groundwater modelling and physical planning. We present a laterally constrained inversion scheme for continuous resistivity data based on a layered earth model (1D). All 1D data sets and models are inverted as one system, producing layered sections with lateral smooth transitions. The models are regularized through laterally equal constraints that tie interface depths and resistivities of adjacent layers. Prior information, e.g. originating from electric logs, migrates through the lateral constraints to the adjacent models, making resolution of equivalences possible to some extent. Information from areas with well‐resolved parameters will migrate through the constraints in a similar way to help resolve the poorly constrained parameters. The estimated model is complemented by a full sensitivity analysis of the model parameters, supporting quantitative evaluation of the inversion result. Examples from synthetic 2D models show that the model recognition of a sublayered 2D wedge model is improved using the laterally constrained inversion approach when compared with a section of combined 1D models and when compared with a 2D minimum structure inversion. Case histories with data from two different continuous DC systems support the conclusions drawn from the synthetic example.  相似文献   

15.
The initial phase of any inversion of geophysical data must examine the question of the existence of globally distinct solutions. Previous inversion st point of view. A basic inversion strategy for geophysical data is considered. It is concluded that future progress depends on the use of synthetic data to resolve questions about the potential constraining power of GEMI data.  相似文献   

16.
采用G-S变换以及高斯数值积分法,形成了时间域直升机的航空电磁响应正演样本集,分析了飞机测量过程中吊舱高度变化对电磁响应的影响,并将吊舱高度的变化等效成电导率为零的假层厚度的变化,以去除高度计等的影响.以假层半空间模型为基础,研究了基于人工神经网络的电导率深度成像算法,通过分析两个三层模型的电导率深度成像结果得出,神经网络方法计算时间域航空电磁探测的视电导率精度较高,特别是对高阻层的视电导率计算.  相似文献   

17.
对于三维可控源电磁,反演计算效率、张量测量、旁侧效应以及阴影效应是目前研究的热点.本文正演采用基于库仑规范条件的耦合势有限体积算法,反演采用有限内存BFGS(L-BFGS)算法.合成数据反演结果表明:(1)有限内存BFGS法比非线性共轭梯度法,在反演计算效率上具有一定的优势,更适合求解大规模三维可控源电磁反演问题.(2)张量可控源电磁法相对于标量可控源电磁法,前者在模型分辨率上优于后者.(3)在某个区域无法布置测网的情况下,我们可利用旁侧效应在异常体周围布置测网进行三维反演,从而获得真实异常体的信息.同时,为避免阴影效应,我们应在测网外增加可控源电磁控制点,使得三维反演的数据更加完备.  相似文献   

18.
Seafloor massive sulfide (SMS) deposits are generated by high-temperature hydrothermal systems. Their precious resources have attracted global interest. A number of investigations with controlled-source electromagnetic (CSEM) methods have been implemented in recent years. There are three major problems with SMS surveying using EM methods. First, SMS imaging techniques for hydrothermal systems have a limited range. Simulations and applications have validated only simple layered models. Second, their inversion efficiencies must be improved further. Laterally constrained inversions and spatially constrained inversions are usually used to map geological structures. However, choosing their suitable weighting parameters is inefficient. Third, the effects of induced polarization (IP) on ore deposits are not considered in such inversions. A non-polarizable model is unable to accurately depict a polarizable model. To resolve these problems, an advanced strategy is used to improve the efficiency of the pseudo-3D inversion process. The proposed imaging method has the ability to map complex 3D geoelectrical structures, and therefore, it can both obtain information regarding surface ore deposits and distinguish between active and inactive hydrothermal systems. However, this method can also be used to depict the distributions of alteration zones and buried deposits. Furthermore, the influences of IP on the inversion are discussed with respect to the Cole- Cole model, and it is shown that the effects of IP on polarizable deposits cannot be ignored during the inversion.  相似文献   

19.

本文基于拟牛顿法对大地电磁与接收函数进行联合反演,提出了新的联合约束算子,实现了电阻率模型和速度模型之间的相似度约束.该方法给予两种模型足够的变化自由度,同时又约束两种模型向耦合方向演化.根据联合约束算子在反演迭代中的变化趋势,以及两种模型的空间梯度分布,可以判断电阻率模型和速度模型是否耦合.合成数据和野外实测结果表明,联合反演相对于单独反演可以提高电阻率和速度模型之间耦合程度,同时也能保持较好的数据拟合.联合反演提高了大地电磁的纵向分辨率,一定程度降低了大地电磁的非唯一性.

  相似文献   

20.
Rock fractures are of great practical importance to petroleum reservoir engineering because they provide pathways for fluid flow, especially in reservoirs with low matrix permeability, where they constitute the primary flow conduits. Understanding the spatial distribution of natural fracture networks is thus key to optimising production. The impact of fracture systems on fluid flow patterns can be predicted using discrete fracture network models, which allow not only the 6 independent components of the second‐rank permeability tensor to be estimated, but also the 21 independent components of the fully anisotropic fourth‐rank elastic stiffness tensor, from which the elastic and seismic properties of the fractured rock medium can be predicted. As they are stochastically generated, discrete fracture network realisations are inherently non‐unique. It is thus important to constrain their construction, so as to reduce their range of variability and, hence, the uncertainty of fractured rock properties derived from them. This paper presents the underlying theory and implementation of a method for constructing a geologically realistic discrete fracture network, constrained by seismic amplitude variation with offset and azimuth data. Several different formulations are described, depending on the type of seismic data and prior geologic information available, and the relative strengths and weaknesses of each approach are compared. Potential applications of the method are numerous, including the prediction of fluid flow, elastic and seismic properties of fractured reservoirs, model‐based inversion of seismic amplitude variation with offset and azimuth data, and the optimal placement and orientation of infill wells to maximise production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号