首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By expressing the magnetic field and fluid velocity in terms of two Chandrasekhar-Kendall functions (n = 0, m = 0; n = 1, m = 0) we investigated the steady-state pressure profile inside a solar coronal loop. For constant density loops, we found a two-dimensional (radial and axial) structure of pressure. This work is the modified version of the work of Krishan (1985). At the base of the loop, the pressure is found to increase steeply outwards along the radius, whereas at the apex it decreases slowly. The radial variation of pressure is found to be minimum around L/5, where L is the length of the loop measured from one foot to another one. But Krishan (1985) found that the rate of increase of pressure at the base was nearly equal to the rate of decrease of pressure at the apex, and the pressure was found nearly constant at L/4. For axial variation, we found that along the loop axis the pressure increases from the base up to z = 3L/8 and then decreases up to the apex, whereas at the surface, the pressure decreases from the base up to the apex. Krishan (1985), however, found the axial variation to be linear.  相似文献   

2.
Velli  M.  Lionello  R.  Einaudi  G. 《Solar physics》1997,172(1-2):257-266
We present simulations of the non-linear evolution of the m=1 kink mode in line-tied coronal loops. We focus on the structure of the current concentrations which develop as a consequence of the instability in two different types of magnetic field configuration, one containing a net axial current and the other with a vanishing total axial current. In the first case, current sheets develop one third of the way from footpoint to loop apex (where the non-linear kink mode folds on itself) within the body of the current channel, while in the second case the current sheet develops at the loop apex at the interface between the current containing channel and the outer axial potential field. In both cases line-tying, while playing a stabilizing role in the linear theory, acts as a destabilizing agent for the non-linear resistive evolution. The unwrapping of magnetic field lines in the vanishing axial current model appears to be consistent with the geometry of compact recurrent loop flares.  相似文献   

3.
The temperature and density structure are computed for a comprehensive set of coronal loops that are in hydrostatic and thermal equilibrium. The effect of gravity is to produce significant deviations from the usual uniform-pressure scaling law (T(pL) 1/3) when the loops are taller than a scale height. For thermally isolated loops it lowers the pressure throughout the loop, which in turn lowers the density significantly and also the temperature slightly; this modifies the above scaling law considerably. For more general loops, where the base conductive flux does not vanish, gravity lowers the summit pressure and so makes the radiation decrease by more than the heating. This in turn raises the temperature above its uniform pressure value for loops of moderate length but lowers it for longer loops. A divergence in loop cross-section increases the summit temperature by typically a factor of 2, and decreases the density, while an increase in loop height (for constant loop length) changes the temperature very little but can halve the density.One feature of the results is a lack of equilibrium when the loop pressure becomes too large. This may explain the presence of cool cores in loops which originally had temperatures below 2 × 106 K. Loops hotter than 2 × 106 K are not expected to develop cool cores because the pressure necessary to produce non-equilibrium is larger than observed.  相似文献   

4.
Temperature distribution in the cylindrically symmetric coronal magnetic loop, (i) with constant pressure and (ii) with the pressure varying along the radial distance, of the (a) hotter apex and (b) cooler apex than base is investigated analytically by considering the equilibrium between the heat conduction and radiation loss. If the temperature of the loop does not lie within one of the specified temperature ranges, then the distribution is calculated numerically.The effect of the inclusion of heating due to an external source is studied and found that it increases the length of the loop. On the basis of the observed phenomenon, that the magnetic field varies along the loop, the temperature distribution in the loop is investigated for the loop-geometries proposed by Antiochos and Sturrock (1976). It is concluded that for the larger compression in the area of cross section, the height of the loop decreases.Present investigation shows that no loop with equal apex and base temperatures can exist, but a small variation between the two temperatures supports the existence of the loop, which can be observed in nature.  相似文献   

5.
The multi-wavelength analysis is performed on a flare on September 9, 2002 with data of Owens Valley Solar Arrays (OVSA), Big Bear Solar Observatory (BBSO), Ramaty High Energy Solar Spectroscopic Imager (RHESSI), and Extreme UV Imager Telescope (EIT), and The Michelson Doppler Imager (MDI) on board of the Solar and Heliospheric Observatory (SOHO). The radio sources at 4.8 and 6.2 GHz located in the intersection of two flaring loops at 195 of SOHO/EIT respectively with two dipole magnetic fields of SOHO/MDI, in which one EIT loop was coincident with an X-ray loop of RHESSI at 12–25 keV, and two Hαbright kernels a1 and a2 of BBSO, respectively at the two footpoints of this loop; the second EIT loop connected another two Hαkernels b1 and b2 and radio sources at 7.8 and 8.2 GHz of OVSA. The maximum phase of microwave bursts was evidently later than that of hard X-ray bursts and Hαkernels a1 and a2, but consistent with that of Hαkernels b1 and b2. Moreover, the flare may be triggered by the interaction of the two flaring loops, which is suggested by the cross-correlation of radio, optical, and X-ray light curves of a common quasi-periodic oscillation in the rising phase, as well as two peaks at about 7 and 9 GHz of the microwave spectra at the peak times of the oscillation, while the bi-directional time delays at two reversal frequencies respectively at 7.8 and 9.4 GHz (similar to the peak frequencies of the microwave spectra) may indicate two reconnection sites at different coronal levels. The microwave and hard X-ray footpoint sources located in different EUV and optical loops may be explained by different magnetic field strength and the pitch angle distribution of nonthermal electrons in these two loops.  相似文献   

6.
Propagating kink waves are ubiquitously observed in solar magnetic wave guides. We consider the possibility that these waves propagate without reflection although there is some inhomogeneity. We briefly describe the general theory of non-reflective, one-dimensional wave propagation in inhomogeneous media. This theory is then applied to kink-wave propagation in coronal loops. We consider a coronal loop of half-circle shape embedded in an isothermal atmosphere, and assume that the plasma temperature is the same inside and outside the loop. We show that non-reflective kink-wave propagation is possible for a particular dependence of the loop radius on the distance along the loop. A viable assumption that the loop radius increases from the loop footpoint to the apex imposes a lower limit on the loop expansion factor, which is the ratio of the loop radii at the apex and footpoints. This lower limit increases with the loop height; however, even for a loop that is twice as high as the atmospheric scale height, it is small enough to satisfy observational constraints. Hence, we conclude that non-reflective propagation of kink waves is possible in a fairly realistic model of coronal loops.  相似文献   

7.
Evangelidis  E.A.  Botha  G.J.J. 《Solar physics》2003,213(1):69-86
In this paper, we determine the temperature profile along the footpoints of large coronal loops observed by TRACE in both the 171 Å and 195 Å passbands. The temperature along the lower part of these coronal loops only shows small variations and can probably be considered to be isothermal. Using the obtained temperature profile T(s) and an estimate of the column depth along the loop, we then determine the pressure along the lower part of the observed coronal loops and hence the value of the pressure scale length. The obtained scale lengths correspond in order-of-magnitude with the theoretically predicted gravitational scale height. We show that the differences between the observed and predicted scale heights are unlikely to be caused by (significant) flows along the loops but could possibly be a consequence of the inclination of the loops. This implies that the quasi-periodic intensity oscillations observed in the loops are most probably caused by compressive waves propagating upward at the coronal sound speed.  相似文献   

8.
The thermal statics of constant pressure coronal loops is discussed, with particular emphasis on non-equilibrium and scaling relations. An analytical solution showing explicitly the occurrence of non-equilibrium in radiation dominated loops is presented. In addition, the general scaling law for hot loops is given. However, in view of the uncertainties in the coronal heating function and the observational determined loop parameters, it is suggested that scaling laws are currently of limited value.  相似文献   

9.
F. Nagai 《Solar physics》1980,68(2):351-379
A dynamical model is proposed for the formation of soft X-ray emitting hot loops in solar flares. It is examined by numerical simulations how a solar model atmosphere in a magnetic loop changes its state and forms a hot loop when the flare energy is released in the form of heat liberation either at the top part or around the transition region in the loop.When the heat liberation takes place at the top part of the loop which arches in the corona, the plasma temperature around the loop apex rises rapidly and, as the result, the downward thermal conductive flux is increased along the magnetic tube of force. Soon after the thermal conduction front rushes into the upper chromosphere, a local peak of pressure is produced near the conduction front and the chromospheric material begins to expand into the corona to form a high-temperature (107 K-3 × 107 K at the loop apex) and high-density (1010 cm–3-1011 cm–3 at the loop apex) loop. The velocity of the expanding material can reach a few hundred kilometres per second in the coronal part. The thermal conduction front also plays a role of piston pushing the chromospheric material downward and gives birth to a shock wave which propagates through the minimum temperature region into the photosphere. If, on the other hand, the heat source is placed around the transition region in the loop, the expansion of the material into the corona occurs from the beginning of the flare and the formation process of the hot loop differs somewhat from the case with the heat source at the top part of the loop.Thermal components of radiations emitted from flare regions, ranging from soft X-rays to radio wavelengths, are interpreted in a unified way by using physical quantities obtained as functions of time and position in our flare loop model as will be discussed in detail in a following paper.  相似文献   

10.
11.
It is now known that the corona is filled with a multitude of loop-like structures. The likelihood of these loops being in static equilibrium is small and so this paper explores the possibility of steady isothermal or adiabatic flows, driven by a pressure difference between the loop feet. For a symmetric loop the flow becomes supersonic at the summit and is then retarded by a shock-wave at some point on the downflowing leg. The effect of adiabatic flow is to lower both pressure and temperature by at least a factor of two and so provide a possible explanation for the cool cores that are sometimes observed in coronal loops. Asymmetric loops, whose cross-sectional area increases or decreases in the flow direction, are found to possess a wide range of both subsonic and shocked flows. Converging loops have subsonic flows if the pressure difference between the footpoints is small, but shocked flows if the pressure difference is large enough. Diverging loops exhibit only shocked flows towards a low pressure footpoint, but can have either subsonic or shocked flow towards a high pressure footpoint. Flows in diverging loops can therefore be either accelerated or decelerated.  相似文献   

12.
We investigate the damping of longitudinal (i.e., slow or acoustic) waves in nonisothermal, hot (T≥ 5.0 MK), gravitationally stratified coronal loops. Motivated by SOHO/SUMER and Yohkoh/SXT observations, and by taking into account a range of dissipative mechanisms such as thermal conduction, compressive viscosity, radiative cooling, and heating, the nonlinear governing equations of one-dimensional hydrodynamics are solved numerically for standing-wave oscillations along a magnetic field line. A semicircular shape is chosen to represent the geometry of the coronal loop. It was found that the decay time of standing waves decreases with the increase of the initial temperature, and the periods of oscillations are affected by the different initial footpoint temperatures and loop lengths studied by the numerical experiments. In general, the period of oscillation of standing waves increases and the damping time decreases when the parameter that characterises the temperature at the apex of the loop increases for a fixed footpoint temperature and loop length. A relatively simple second-order scaling polynomial between the damping time and the parameter determining the apex temperature is found. This scaling relation is proposed to be tested observationally. Because of the lack of a larger, statistically relevant number of observational studies of the damping of longitudinal (slow) standing oscillations, it can only be concluded that the numerically predicted decay times are well within the range of values inferred from Doppler shifts observed by SUMER in hot coronal loops.  相似文献   

13.
V. Krishan 《Solar physics》1985,97(1):183-189
The steady-state pressure structure of a solar coronal loop is discussed using the theory of magneto-hydrodynamical turbulence in cylindrical geometry. The steady state is represented by the superposition of two Chandrasekhar-Kendall functions. This representation, in principle can delinetate the three dimensional temperature structure of the coronal loop. In this paper, we have restricted ourselves to a two dimensional modeling since only this structure submits itself to the scrutiny of the available observations. The radial as well as the axial variations of the pressure in a constant density loop are calculated. These variations are found to conform to the observed features of cool core and hot sheath of the loops as well as to the location of the temperature maximum at the apex of the loop. We find that these features are not present uniformly all along either the length of the loop or across the radius as will be shown in the text. We have also discussed the possible oscillatory nature of these pressure variations and the associated time periods have been estimated.  相似文献   

14.
The effect of temperature inhomogeneity on the periods, their ratios (fundamental versus first overtone), and the damping times of the standing slow modes in gravitationally stratified solar coronal loops are studied. The effects of optically thin radiation, compressive viscosity, and thermal conduction are considered. The linearized one-dimensional magnetohydrodynamic (MHD) equations (under low-?? condition) were reduced to a fourth-order ordinary differential equation for the perturbed velocity. The numerical results indicate that the periods of nonisothermal loops (i.e., temperature increases from the loop base to apex) are smaller compared to those of isothermal loops. In the presence of radiation, viscosity, and thermal conduction, an increase in the temperature gradient is followed by a monotonic decrease in the periods (compared with the isothermal case), while the period ratio turns out to be a sensitive function of the temperature gradient and the loop lengths. We verify that radiative dissipation is not a main cooling mechanism in both isothermal and nonisothermal hot coronal loops and has a small effect on the periods. Thermal conduction and compressive viscosity are primary mechanisms in the damping of slow modes of the hot coronal loops. The periods and damping times in the presence of compressive viscosity and/or thermal conduction dissipation are consistent with the observed data in specific cases. By tuning the dissipation parameters, the periods and the damping times could be made consistent with the observations in more general cases.  相似文献   

15.
Coronal dimming can be considered to be a disk signature of front-side coronal mass ejections (CMEs) (Thompson et al.: 2000, Geophys. Res. Lett. 27, 1431). The study of the magnetic connectivity associated with coronal dimming can shed new light on the magnetic nature of CMEs. In this study, four major flare-CME events on 14 July 2000, 28 October 2003, 7 November 2004, and 15 January 2005 are analyzed. They were all halo CMEs associated with major flare activity in complex active regions (ARs) and produced severe space weather consequences. To explore the magnetic connectivity of these CMEs, global potential-field extrapolations based on the composite synoptic magnetograms from the Michelson Doppler Imager onboard the Solar and Heliospheric Observatory are constructed, and their association with coronal dimming is revealed by the Extreme ultraviolet Imaging Telescope. It is found that each flare-CME event involved interaction of more than ten sets of magnetic-loop systems. These loop systems occupied over 50% of all identified loop systems in the visible hemisphere and covered a wide range of solar longitudes and latitudes. We categorize the loop systems as active-region loops (ARLs), AR-interconnecting loops (ARILs) including transequatorial loops (TLs), and long arcades (LAs) straddling filament channels. A recurring pattern, the saddle-field configuration (SFC), consisting of ARILs, is found to be present in all four major flare-CME events. The magnetic connectivity revealed by this work implies that intercoupling and interaction of multiple flux-loop systems are required for a major CME. For comparison, a simple flare-CME event of 12 May 1997 with a relatively simple magnetic configuration is chosen. Even for this simple flare-CME event, we find that multiple flux-loop systems are also present.  相似文献   

16.
The evolution of the soft X-ray and EUV coronal loops related to the April 15, 1998 solar flare–CME event is studied with multiwavelength observations including hard X-rays (BATSE), microwaves (NoRP, CNAO) and magnetograms (SOHO/MDI), as well as images from Yohkoh/SXT and SOHO/EIT at 195 Å. It is shown that: (1) two soft X-ray and EUV loops rose, crossed and turned bright, (2) near one footpoint of these loops, the background magnetic field decreased, (3) there were similar quasi periodic oscillations in the time profiles of hard X-ray and microwave emissions, which characterized the loop–loop coalescence instability, (4) after the loop–loop reconnection, two new loops formed, the small one stayed at the original place, and the large one ejected out as part of the constructed prominence cloud. Based upon these observations, we argue that the decrease of the background magnetic field near these loops caused them to rise and approach each other, and in turn, the fast loop–loop coalescence instability took place and triggered the flare and the CME.  相似文献   

17.
High-lying, dynamic loops have been observed at transition region temperatures since Skylab observations. The nature of these loops has been debated for many years with several explanations having been put forward. These include that the loops are merely cooling from hotter coronal loops, that they are produced from siphon flows, or that they are loops heated only to transition region temperatures. In this paper we will make use of combined SOHO-MDI (Michelson-Doppler Imager), SOHO-CDS (Coronal Diagnostic Spectrometer) and Yohkoh SXT (Soft X-ray Telescope) datasets in order to determine whether the appearance of transition region loops is related to small-scale flaring in the corona, and to estimate the magnetic configuration of the loops. The latter allows us to determine the direction of plasma flows in the transition region loops. We find that the appearance of the transition region loops is often related to small-scale flaring in the corona and in this case the transition region loops appear to be cooling with material draining down from the loop top.  相似文献   

18.
High-lying, dynamic loops have been observed at transition region temperatures since Skylab observations. The nature of these loops has been debated for many years with several explanations having been put forward. These include that the loops are merely cooling from hotter coronal loops, that they are produced from siphon flows, or that they are loops heated only to transition region temperatures. In this paper we will make use of combined SOHO-MDI (Michelson-Doppler Imager), SOHO-CDS (Coronal Diagnostic Spectrometer) and Yohkoh SXT (Soft X-ray Telescope) datasets in order to determine whether the appearance of transition region loops is related to small-scale flaring in the corona, and to estimate the magnetic configuration of the loops. The latter allows us to determine the direction of plasma flows in the transition region loops. We find that the appearance of the transition region loops is often related to small-scale flaring in the corona and in this case the transition region loops appear to be cooling with material draining down from the loop top.  相似文献   

19.
The three-dimensional (3D) modeling of coronal loops and filaments requires algorithms that automatically trace curvilinear features in solar EUV or soft X-ray images. We compare five existing algorithms that have been developed and customized to trace curvilinear features in solar images: i) the oriented-connectivity method (OCM), which is an extension of the Strous pixel-labeling algorithm (developed by Lee, Newman, and Gary); ii) the dynamic aperture-based loop-segmentation method (developed by Lee, Newman, and Gary); iii) unbiased detection of curvilinear structures (developed by Steger, Raghupathy, and Smith); iv) the oriented-direction method (developed by Aschwanden); and v) ridge detection by automated scaling (developed by Inhester). We test the five existing numerical codes with a TRACE image that shows a bipolar active region and contains over 100 discernable loops. We evaluate the performance of the five codes by comparing the cumulative distribution of loop lengths, the median and maximum loop length, the completeness or detection efficiency, the accuracy, and flux sensitivity. These algorithms are useful for the reconstruction of the 3D geometry of coronal loops from stereoscopic observations with the STEREO spacecraft, or for quantitative comparisons of observed EUV loop geometries with (nonlinear force-free) magnetic field extrapolation models.  相似文献   

20.
Models of the solar corona which include the effects of hot downflowing material are considered. Temperature-height profiles of the quiet and flaring corona are derived, under the assumptions of hydrostatic equilibrium and that the dominant cause of transition region heating is due to the enthalpy of the downflowing matter. In addition, scaling laws for the lengths of coronal loops are derived. It is found that inclusion of the downward enthalpy flux leads to a loop scaling law for quiet Sun loops which does not differ appreciably from that of Rosner et al. (1978). However, inclusion of the effects of enthalpy flux lead to a scaling law for compact flare loops of L = (3.6 × 109)T infc sup0.55 cm, which predicts much smaller loop sizes than expected from the quiet Sun loop law; these predicted lengths, however, are in agreement with the observed small sizes of compact flare loops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号