首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
We use a combination of a cosmological N -body simulation of the concordance Λ cold dark matter paradigm and a semi-analytic model of galaxy formation to investigate the spin development of central supermassive black holes (BHs) and its relation to the BH host galaxy properties. In order to compute BH spins, we use the α model of Shakura & Sunyaev and consider the King et al. warped disc alignment criterion. The orientation of the accretion disc is inferred from the angular momentum of the source of accreted material, which bears a close relationship to the large-scale structure in the simulation. We find that the final BH spin depends almost exclusively on the accretion history and only weakly on the warped disc alignment. The main mechanisms of BH spin-up are found to be gas cooling processes and disc instabilities, a result that is only partially compatible with Monte Carlo models where the main spin-up mechanisms are major mergers and disc instabilities; the latter results are reproduced when implementing randomly oriented accretion discs in our model. Regarding the BH population, we find that more massive BHs, which are hosted by massive ellipticals, have higher spin values than less massive BHs, hosted by spiral galaxies. We analyse whether gas accretion rates and BH spins can be used as tracers of the radio loudness of active galactic nuclei (AGN). We find that the current observational indications of an increasing trend of radio-loud AGN fractions with stellar and BH mass can be easily obtained when placing lower limits on the BH spin, with a minimum influence from limits on the accretion rates; a model with random accretion disc orientations is unable to reproduce this trend. Our results favour a scenario where the BH spin is a key parameter to separate the radio-loud and radio-quiet galaxy populations.  相似文献   

2.
A statistical study of global galaxy parameters can help to improve our understanding of galaxy formation processes. In this paper we present the analysis of global galaxy parameters based on optical and near-infrared observations of a large sample of edge-on disc galaxies. We found a correlation between the ratio of the radial to vertical scale parameter and galaxy type: galaxies become systematically thinner when going from type S0 to type Sc, whereas the distribution seems to level off for later types. The observed scalelength ratios (and thus the radial colour gradients) largely represent the dust content of the galaxies. On average, the colour gradients indicated by the scalelength ratios increase from type Sa to at least type Sc. For galaxy types later than Sc, the average colour gradient seems to decrease again. The distribution of K -band (edge-on) disc central surface brightnesses is rather flat, although with a large scatter. However, the latest-type sample galaxies ( T  > 6) show an indication that their average disc central surface brightnesses may be fainter than those of the earlier types. This effect is probably not the result of dust extinction.  相似文献   

3.
Based on the Sloan Digital Sky Survey DR6 (SDSS) and the Millennium Simulation (MS), we investigate the alignment between galaxies and large-scale struc-ture. For this purpose, we develop two new statistical tools, namely the alignment cor-relation function and the cos(20)-statistic. The former is a two-dimensional extension of the traditional two-point correlation function and the latter is related to the ellipticity correlation function used for cosmic shear measurements. Both are based on the cross correlation between a sample of galaxies with orientations and a reference sample which represents the large-scale structure. We apply the new statistics to the SDSS galaxy cat-alog. The alignment correlation function reveals an overabundance of reference galaxies along the major axes of red, luminous (L L*) galaxies out to projected separations of 60 h-1Mpc. The signal increases with central galaxy luminosity. No alignment signal is detected for blue galaxies. The cos(2θ)-statistic yields very similar results. Starting from a MS semi-analytic galaxy catalog, we assign an orientation to each red, luminous and central galaxy, based on that of the central region of the host halo (with size similar to that of the stellar galaxy). As an alternative, we use the orientation of the host halo itself. We find a mean projected misalignment between a halo and its central region of ~ 25°. The misalignment decreases slightly with increasing luminosity of the central galaxy. Using the orientations and luminosities of the semi-analytic galaxies, we repeat our alignment analysis on mock surveys of the MS. Agreement with the SDSS results is good if the central orientations are used. Predictions using the halo orientations as proxies for cen-tral galaxy orientations overestimate the observed alignment by more than a factor of 2. Finally, the large volume of the MS allows us to generate a two-dimensional map of the alignment correlation function, which shows the reference galaxy distribution to be flat-tened parallel to the orientations of red luminous galaxies with axis ratios of ~ 0.5 and ~ 0.75 for halo and central orientations, respectively. These ratios are almost independent of scale out to 60h-1Mpc.  相似文献   

4.
We present results from two high-resolution hydrodynamical simulations of protocluster regions at   z ≃ 2.1  . The simulations have been compared to observational results for the so-called Spiderweb galaxy system, the core of a putative protocluster region at   z = 2.16  , found around a radio galaxy. The simulated regions have been chosen so as to form a poor cluster with   M 200≃ 1014  h −1 M  (C1) and a rich cluster with   M 200≃ 2 × 1015  h −1 M  (C2) at   z = 0  . The simulated protoclusters show evidence of ongoing assembly of a dominating central galaxy. The stellar mass of the brightest cluster galaxy of the C2 system is in excess with respect to observational estimates for the Spiderweb galaxy, with a total star formation rate which is also larger than indicated by observations. We find that the projected velocities of galaxies in the C2 cluster are consistent with observations, while those measured for the poorer cluster C1 are too low compared with the observed velocities. We argue that the Spiderweb complex resembles the high-redshift progenitor of a rich galaxy cluster. Our results indicate that the included supernovae feedback is not enough to suppress star formation in these systems, supporting the need of introducing active galactic nuclei feedback. According to our simulations, a diffuse atmosphere of hot gas in hydrostatic equilibrium should already be present at this redshift, and enriched at a level comparable to that of nearby galaxy clusters. The presence of this gas should be detectable with future deep X-ray observations.  相似文献   

5.
We present our spectroscopic observations of the galaxy NGC 7468 performed at the 6-m Special Astrophysical Observatory telescope using the UAGS long-slit spectrograph, the MPFS multi-pupil fiber spectrograph, and the IFP scanning Fabry-Perot interferometer. We found no significant deviations from the circular rotation of the galactic disk in the velocity field in the regions of brightness excess along the major axis of the galaxy (the putative polar ring). Thus, these features are either tidal structures or weakly developed spiral arms. However, we detected a gaseous disk at the center of the galaxy whose rotation plane is almost perpendicular to the plane of the galactic disk. The central collision of NGC 7468 with a gas-rich dwarf galaxy and their subsequent merging seem to be responsible for the formation of this disk.  相似文献   

6.
We compare observations of the high-redshift galaxy population to the predictions of the galaxy formation model of Croton et al. and De Lucia & Blaizot. This model, implemented on the Millennium Simulation of the concordance Lambda cold dark matter cosmogony, introduces 'radio mode' feedback from the central galaxies of groups and clusters in order to obtain quantitative agreement with the luminosity, colour, morphology and clustering properties of the present-day galaxy population. Here we construct deep light cone surveys in order to compare model predictions to the observed counts and redshift distributions of distant galaxies, as well as to their inferred luminosity and mass functions out to redshift 5. With the exception of the mass functions, all these properties are sensitive to modelling of dust obscuration. A simple but plausible treatment agrees moderately well with most of the data. The predicted abundance of relatively massive  (∼ M *)  galaxies appears systematically high at high redshift, suggesting that such galaxies assemble earlier in this model than in the real Universe. An independent galaxy formation model implemented on the same simulation matches the observed mass functions slightly better, so the discrepancy probably reflects incomplete or inaccurate galaxy formation physics rather than problems with the underlying cosmogony.  相似文献   

7.
We investigate the effect of orientation-dependent selection effects on galaxy clustering in redshift space. It is found that if galaxies are aligned by large-scale tidal fields, then these selection effects give rise to a dependence of the observed galaxy density on the local tidal field, in addition to the well-known dependences on the matter density and radial velocity gradient. This alters the galaxy power spectrum in a way that is different for Fourier modes parallel to and perpendicular to the line of sight. These tidal galaxy alignments can thus mimic redshift space distortions (RSD), and thus result in a bias in the measurement of the velocity power spectrum. If galaxy orientations are affected only by the local tidal field, then the tidal alignment effect has exactly the same scale and angular dependence as the RSDs in the linear regime, so it cannot be projected out or removed by masking small scales in the analysis. We consider several toy models of tidal alignments and orientation-dependent selection, normalize their free parameter (an amplitude) to recent observations, and find that they could bias the velocity amplitude   f ( z ) G ( z )  by 5–10 per cent in some models, although most models give much smaller contamination. We conclude that tidal alignments may be a significant systematic error in RSD measurements that aim to test general relativity via the growth of large-scale structure. We briefly discuss possible mitigation strategies.  相似文献   

8.
We use a simple dynamical model which consists of a harmonic oscillator and a spherical component, in order to investigate the regular or chaotic character of orbits in a barred galaxy with a central spherically symmetric nucleus. Our aim is to explore how the basic parameters of the galactic system influence the nature of orbits, by computing in each case the percentage of chaotic orbits, as well as the percentages of different types of regular orbits. We also give emphasis to the types of regular orbits that support either the formation of nuclear rings or the barred structure of the galaxy. We provide evidence that the traditional x1 orbital family does not always dominate in barred galaxy models since we found several other types of resonant orbits which can also support the barred structure. We also found that sparse enough nuclei, fast rotating bars and high energy models can support the galactic bars. On the other hand, weak bars, dense central nuclei, slowly rotating bars and low energy models favor the formation of nuclear rings.We also compare our results with previous related work.  相似文献   

9.
Void regions of the Universe offer a special environment for studying cosmology and galaxy formation, which may expose weaknesses in our understanding of these phenomena. Although galaxies in voids are observed to be predominately gas rich, star forming and blue, a subpopulation of bright-red void galaxies can also be found, whose star formation was shutdown long ago. Are the same processes that quench star formation in denser regions of the Universe also at work in voids?
We compare the luminosity function of void galaxies in the 2dF Galaxy Redshift Survey, to those from a galaxy formation model built on the Millennium simulation. We show that a global star formation suppression mechanism in the form of low-luminosity 'radio-mode' active galactic nuclei (AGN) heating is sufficient to reproduce the observed population of void early types. Radio-mode heating is environment independent other than its dependence on dark matter halo mass, where, above a critical mass threshold of approximately   M vir∼ 1012.5 M  , gas cooling on to the galaxy is suppressed and star formation subsequently fades. In the Millennium simulation, the void halo mass function is shifted with respect to denser environments, but still maintains a high-mass tail above this critical threshold. In such void haloes, radio-mode heating remains efficient and red galaxies are found; collectively these galaxies match the observed space density without any modification to the model. Consequently, galaxies living in vastly different large-scale environments but hosted by haloes of similar mass are predicted to have similar properties, consistent with observations.  相似文献   

10.
We present the Mock Map Facility, a powerful tool for converting theoretical outputs of hierarchical galaxy formation models into catalogues of virtual observations. The general principle is straightforward: mock observing cones can be generated using semi-analytically post-processed snapshots of cosmological N -body simulations. These cones can then be projected to synthesize mock sky images. To this end, the paper describes in detail an efficient technique for creating such mock cones and images from the galaxies in cosmological simulations ( galics ) semi-analytic model, providing the reader with an accurate quantification of the artefacts it introduces at every step. We show that replication effects introduce a negative bias on the clustering signal – typically peaking at less than 10 per cent around the correlation length. We also thoroughly discuss how the clustering signal is affected by finite-volume effects, and show that it vanishes at scales larger than approximately one-tenth of the simulation box size. For the purpose of analysing our method, we show that number counts and redshift distributions obtained with galics / momaf compare well with K -band observations and the two-degree field galaxy redshift survey. Given finite-volume effects, we also show that the model can reproduce the automatic plate measuring machine angular correlation function. The momaf results discussed here are made publicly available to the astronomical community through a public data base. Moreover, a user-friendly Web interface ( http://galics.iap.fr ) allows any user to recover her/his own favourite galaxy samples through simple SQL queries. The flexibility of this tool should permit a variety of uses ranging from extensive comparisons between real observations and those predicted by hierarchical models of galaxy formation, to the preparation of observing strategies for deep surveys and tests of data processing pipelines.  相似文献   

11.
We present XMM–Newton observations of the wake–radio galaxy system 4C 34.16, which shows a cool and dense wake trailing behind the host galaxy of 4C 34.16. A comparison with numerical simulations is enlightening, as they demonstrate that the wake is produced mainly by ram pressure stripping during the galactic motion through the surrounding cluster. The mass of the wake is a substantial fraction of the mass of the X-ray halo of an elliptical galaxy. This observational fact supports a wake formation scenario similar to that recently demonstrated numerically by Acreman et al.: the host galaxy of 4C 34.16 has fallen into its cluster, and is currently crossing its central regions. A substantial fraction of its X-ray halo has been stripped by ram pressure, and remains behind to form the galaxy wake.  相似文献   

12.
By analyzing the Chandra data of the central region of the galaxy cluster PKS 0745-191, the properties of a patch of bright X-ray gas distributed along the radio structure in the west of the central galaxy are investigated. This gas is found to be cooler and denser than the ambient gas. According to the calculation based on radio observations, the pressure gradient of the radio gas in the west is greater than that in the east. It means that there is interaction between that patch of cool X-ray gas and the radio gas. The cool gas is either formed by outer cool gas supported and disturbed by the radio gas, or is brought out from the central galaxy by radio buoyant bubbles. Assuming that the gas is in pressure-gravity balance, the volume filling factor of the X-ray gas in the central region is calculated to be b = 0.69 ± 0.28, and the properties of the relativistic particles in the radio gas, as well as the expansion effect of the radio gas on the cooling flow, are discussed.  相似文献   

13.
We present results for a galaxy formation model that includes a simple treatment for the disruption of dwarf galaxies by gravitational forces and galaxy encounters within galaxy clusters. This is implemented a posteriori in a semi-analytic model by considering the stability of cluster dark matter subhaloes at   z = 0  . We assume that a galaxy whose dark matter substructure has been disrupted will itself disperse, while its stars become part of the population of intracluster stars responsible for the observed intracluster light. Despite the simplicity of this assumption, our results show a substantial improvement over previous models and indicate that the inclusion of galaxy disruption is indeed a necessary ingredient of galaxy formation models. We find that galaxy disruption suppresses the number density of dwarf galaxies by about a factor of 2. This makes the slope of the faint end of the galaxy luminosity function shallower, in agreement with observations. In particular, the abundance of faint, red galaxies is strongly suppressed. As a result, the luminosity function of red galaxies and the distinction between the red and the blue galaxy populations in colour–magnitude relationships are correctly predicted. Finally, we estimate a fraction of intracluster light comparable to that found in clusters of galaxies.  相似文献   

14.
We present an analysis of the metallicity and star formation activities of H II regions in the interacting system Arp 86, based on the first scientific observations using multi-object spectroscopy with the 2.16 m telescope at the Xinglong Observing Station. We find that the oxygen abundance gradient in Arp 86 is flatter than that in normal disk galaxies, which confirms that gas inflows caused by tidal forces during encounters can flatten the metallicity distributions in galaxies. The companion galaxy NGC 7752 is currently experiencing a galaxy-wide starburst with a higher star formation rate surface density than the main galaxy NGC 7753, which can be explained in that the companion galaxy is more susceptible to the effects of interaction than the primary. We also find that the galaxy 2MASX J23470758+2926531 has similar abundance and star formation properties to NGC 7753, and may be a part of the Arp 86 system.  相似文献   

15.
High-resolution H  i imaging observations of a heterogeneous sample of small galaxy groups are presented. The five galaxy groups studied show a broad range of individual H  i properties: e.g. loose groups surrounding LGG 138 and the genuinely compact LGG 455 are identified; a massive ring of neutral gas is discovered encircling two luminous galaxies in the LGG 138 group; a galaxy-sized mass of H  i is found in LGG 455 confined to an extragalactic cloud which exceeds the threshold density for star formation, yet is optically invisible; and the CCG 1 group is argued to be a chance alignment of Centaurus cluster galaxies. Global results of the study are that the deficit of H  i flux in synthesis imaging data compared with single-dish data is put forward as a quantitative measure of the diffuseness of neutral gas in galaxy groups; several groups contain gas-poor galaxies that ordinarily would contain detectable quantities of H  i – this is interpreted as being caused by an increased chance of gas-sweeping collisions in the group environment; and some evidence is found to support previous findings that compact groups preferentially occur in loose systems.  相似文献   

16.
17.
18.
In the 2dF Galaxy Redshift Survey, we study the properties of voids and of fainter galaxies within voids that are defined by brighter galaxies. Our results are compared with simulated galaxy catalogues from the Millennium simulation coupled with a semi-analytical galaxy formation recipe. We derive the void size distribution and discuss its dependence on the faint magnitude limit of the galaxies defining the voids. While voids among faint galaxies are typically smaller than those among bright galaxies, the ratio of the void sizes to the mean galaxy separation reaches larger values. This is well reproduced in the mock galaxy samples studied. We provide analytic fitting functions for the void size distribution. Furthermore, we study the galaxy population inside voids defined by galaxies with   B J− 5 log  h < −20  and diameter larger than  10  h −1 Mpc  . We find a clear bimodality of galaxies inside voids and in the average field but with different characteristics. The abundance of blue cloud galaxies inside voids is enhanced. There is an indication of a slight blueshift of the blue cloud. Furthermore, galaxies in void centres have slightly higher specific star formation rates as measured by the η parameter. We determine the radial distribution of the ratio of early- and late-type galaxies through the voids. We find and discuss some differences between observations and the Millennium catalogues.  相似文献   

19.
Magnetic fields have been observed in galaxy clusters with strengths of the order of  ~ μG. The non-thermal pressure exerted by magnetic fields also contributes to the total pressure in galaxy clusters and can in turn affect the estimates of the gas mass fraction, fgas. In this paper, we have considered a central magnetic field strength of 5μG, motivated by observations and simulations of galaxy clusters. The profile of the magnetic field has also been taken from the results obtained from simulations and observations. The role of magnetic field has been taken into account in inferring the gas density distribution through the hydrostatic equilibrium condition (HSE) by including the magnetic pressure. We have found that the resultant gas mass fraction is smaller with magnetic field as compared to that without magnetic field. However, this decrease is dependent on the strength and the profile of the magnetic field. We have also determined the total mass using the NFW profile to check for the dependency of fgas estimates on total mass estimators. From our analysis, we conclude that for the magnetic field strength that galaxy clusters seem to possess, the non-thermal pressure from magnetic fields has an impact of  ≈ 1 % on the gas mass fraction of galaxy clusters. However, with upcoming facilities like Square Kilometre Array (SKA), it can be further expected to improve with more precise observations of the magnetic field strength and profile in galaxy clusters, particularly in the interior region.  相似文献   

20.
We use galaxy groups selected from the Sloan Digital Sky Survey (SDSS) together with mass models for individual groups to study the galaxy–galaxy lensing signals expected from galaxies of different luminosities and morphological types. We compare our model predictions with the observational results obtained from the SDSS by Mandelbaum et al. for the same samples of galaxies. The observational results are well reproduced in a Λ cold dark matter (ΛCDM) model based on the Wilkinson Microwave Anisotropy Probe ( WMAP ) 3-yr data, but a ΛCDM model with higher σ8, such as the one based on the WMAP 1-yr data, significantly overpredicts the galaxy–galaxy lensing signal. We model, separately, the contributions to the galaxy–galaxy lensing signals from different galaxies: central versus satellite, early type versus late type and galaxies in haloes of different masses. We also examine how the predicted galaxy–galaxy lensing signal depends on the shape, density profile and the location of the central galaxy with respect to its host halo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号