首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 75 毫秒
1.
<正>1雷达故障个例分析及处理伊春3830B雷达故障主要包括硬件故障和软件故障两个方面。硬件故障即由雷达各分系统中某个部件引起的故障,软件故障是由雷达终端系统监控软件和雷达各服务软件以及计算机系统引起的故障。1.1硬件故障(1)故障现象:预报员无法操作雷达,遥控配电箱也无法控制。分析处理:主端软件重新启动,雷达不可控,遥控配电箱仍无法控制。分段检查雷达网络,发现主端正常,用PING命令测试远端雷达地址,不通,  相似文献   

2.
正1故障分析与故障排除新一代天气雷达故障主要包括两个方面:硬件故障和软件故障。硬件故障表现为雷达系统中各个部件引发的故障,软件故障表现在雷达终端系统中监控软件、生成雷达产品软件(RPG)、显示雷达产品软件(PUP)以及计算机系统引发的故障。1.1硬件故障(1)天线故障。由于天线转动比较频繁,故障发生率高,天线正常转动发现异响,将天线罩打开,推动雷达运转,发现汇流环的紧固件松动,将紧固件重  相似文献   

3.
针对由硬件引起的新一代天气雷达的故障,根据雷达报警信息和雷达故障现象,结合故障单元电路原理图,对故障单元进行分析并排除雷达故障,保障了新一代天气雷达的正常工作。  相似文献   

4.
太原新一代多普勒天气雷达故障浅谈   总被引:1,自引:0,他引:1  
太原新一代天气雷达C IN RA D/CC投入使用以来,经过3年多的实际运行,从中发现了一些常见故障,我们对这些故障进行了分析总结,并给出了相应的处理办法,得到了一些经验。1故障类型1.1虚假故障虚假故障是指雷达终端有故障报警,但是还处于正常工作状态。这类故障对于雷达运行没有影  相似文献   

5.
CINRAD/SA雷达故障统计分析   总被引:1,自引:8,他引:1  
对石家庄CINRAD/SA雷达运行1年的故障情况进行了统计分析。介绍了常见告警信息,故障现象及处理办法。通过对雷达开机日数、故障日数、损坏器件情况、故障发生部位、告警信息、以及与环境温度的相关性分析,认为CINRAD/SA雷达运行状态与网络保障、计算机状况、环境温度等环境因素密切相关。现场的运行环境对CINRAD/SA雷达的运行状况影响较大。CINRAD/SA雷达发射机和天线控制系统故障较多,是日常维护的重点。为保障雷达正常运行,加强CINRAD/SA雷达网络安全管理、采用高性能计算机、做好雷达维护工作、保障良好的机房环境非常重要。  相似文献   

6.
高空气象探测对时间有严格的要求,检修L波段雷达务必突出一个“快”字,好的检修方法是快修的重要手段。本文提出了快速分析与检修雷达故障的方法和措施:从GFE (L)1型测风雷达静态和动态参数的变化入手,以其作为分析、判断故障原因的主要依据,采用信息对比分析和信号关联分析方法,达到快速修复故障雷达的目的。实践证明,结合原理方框图深入分析雷达静态和动态工作特性,可快速确定故障现象、快速分析故障原因、快速判断故障范围、快速排除雷达故障,满足高空气象观测工作的需要。   相似文献   

7.
GFE(L)一1型高空探测雷达是继59-701雷达之后,我国自主研制发的新一代高空气象探测雷达设备,它以集成化、数字化、自动化为一体,在探测精度和自动化程度、稳定性能都比59-701型雷达有很大改善。该型号雷达的天控单元故障概率相对较高,结合工作经验,介绍GFE(L)一1型高空探测雷达天控单元的几类典型故障及排除方法。  相似文献   

8.
杨绍勇  王正飞  王峰 《四川气象》2013,(4):83-85,88
高空气象探测对时间有严格的要求,检修L波段雷达务必突出一个“快”字,好的检修方法是快修的重要手段.本文提出了快速分析与检修雷达故障的方法和措施:从GFE (L)1型测风雷达静态和动态参数的变化入手,以其作为分析、判断故障原因的主要依据,采用信息对比分析和信号关联分析方法,达到快速修复故障雷达的目的.实践证明,结合原理方框图深入分析雷达静态和动态工作特性,可快速确定故障现象、快速分析故障原因、快速判断故障范围、快速排除雷达故障,满足高空气象观测工作的需要.  相似文献   

9.
对汕头CINRAD/SA天气雷达运行11年来的故障情况进行了统计分析。从雷达故障分布归属、雷达故障年分布、雷达故障月分布3方面进行了相关性分析,结果表明:(1)汕头雷达天线伺服系统故障发生比例非常高,是日常维护和保养的重点;(2)雷达运行初期故障率较高,后期随着机务员保障能力的提升和雷达组件的磨合,雷达运行逐渐稳定下来;(3)汕头雷达2—4月故障率比较高,是因为春季回南天造成机房湿度太大的缘故,这个时间段的维护应加强除湿工作。并对汕头雷达运行11年来的主要故障进行了梳理,总结了天线伺服、发射机、接收机、软件、附属设备等分系统常见故障的特征与处理办法。  相似文献   

10.
新一代天气雷达是一个组成结构复杂的探测平台,各个组合之间比较分散。由于机械运转的持续性,且对运行环境要求严格,所以雷达系统易发故障。对不同类型的雷达故障进行归纳和简析,并进行归类,按照雷达故障产生的原因分类为:雷达部件故障、软件故障、灾害引起的雷达故障、虚假报警、雷达产品图像错误。天气雷达故障处理和故障标准化平台的开发将相应的成果应用于日常的气象探测设备的监控业务中,并集成到综合气象观测系统运行监控平台,以实现天气雷达故障的快速响应和维修。对2007年6月至2010年5月新一代天气雷达的运行能力进行了计算,并抽样其中2种型号的天气雷达,对故障案例进行分析研究,给出了故障的分系统分布情况。  相似文献   

11.
Measurements of gaseous pollutants (03, NOx, SO2, and CO) were conducted at Dinghushan background station in southern China from January to December 2013. The levels and variations of O3, NOx, SO2, and CO were analyzed and their possible causes discussed. The annual average concentrations of 03, NOx, SO2, and CO were 24.6 ± 23.9, 12.8 ± 10.2, 4.0 ± 4.8, and 348 ± 185 ppbv, respectively. The observed levels of the gaseous pollutants are comparable to those at other background sites in China. The most obvious diurnal variation of 03 was observed in autumn, with minima in the early morning and maxima in the afternoon. The diurnal variations of SO2 showed high values during the day. The diurnal cycles of NOx showed higher values in the morning and lower values during the night. Higher CO concentrations were observed in spring followed by winter, autumn, and summer. Biomass burning, in combination with the transport of regional pollution, is an important source of CO, SO2, and NOx in spring and winter. Backward trajectories were calculated and analyzed together with corresponding pollutant concentrations. The results indicate that air masses passing over polluted areas are responsible for the high concentrations of gaseous pollutants at the Dinghushan background station.  相似文献   

12.
In this paper, a coupled model was used to estimate the responses of soil moisture and net primary production of vegetation (NPP) to increasing atmospheric CO2 concentration and climate change. The analysis uses three experiments simulated by the second-generation Earth System Model (CanESM2) of the Canadian Centre for Climate Modelling and Analysis (CCCma), which are part of the phase 5 of the Coupled Model Intercomparison Project (CMIP5). The authors focus on the magnitude and evolution of responses in soil moisture and NPP using simulations modeled by CanESM, in which the individual effects of increasing CO2 concentration and climate change and their combined effect are separately accounted for. When considering only the single effect of climate change, the soil moisture and NPP have a linear trend of 0.03 kg m^-2 yr^-1 and-0.14 gC m^- 2 yr^-2, respec- tively. However, such a reduction in the global NPP results from the decrease of NPP at lower latitudes and in the Southern Hemisphere, although increased NPP has been shown in high northern latitudes. The largest negative trend is located in the Amazon basin at -1.79 gC m^-2 yr^-2. For the individual effect of increasing CO2 concentration, both soil moisture and NPP show increases, with an elevated linear trend of 0.02 kg m^-2 yr^-1 and 0.84 gC m^-2 yr^-2, respectively. Most regions show an increasing NPP, except Alaska. For the combined effect of increasing atmospheric CO2 and climate change, the increased soil moisture and NPP exhibit a linear trend of 0.04 kg m^2 yr^-1 and 0.83 gC m^2 yr^-2 at a global scale. In the Amazon basin, the higher reduction in soil moisture is illustrated by the model, with a linear trend of-0.39 kg m^-2 yr^-1, for the combined effect. Such a change in soil moisture is caused by a weakened Walker circulation simulated by this coupled model, compared with the single effect of increasing CO2 concentration (experiment M2), and a consequence of the reduction in NPP is also shown in this area, with a linear trend of-  相似文献   

13.
The structures and characteristics of the marine-atmospheric boundary layer over the South China Sea during the passage of strong Typhoon Hagupit are analyzed in detail in this paper. The typhoon was generated in the western Pacific Ocean, and it passed across the South China Sea, finally landfalling in the west of Guangdong Province. The shortest distance between the typhoon center and the observation station on Zhizi Island(10 m in height) is 8.5 km. The observation data capture the whole of processes that occurred in the regions of the typhoon eye, two squall regions of the eye wall, and weak wind regions,before and after the typhoon's passage. The results show that:(a) during the strong wind(average velocityˉu 10 m s-1) period, in the atmospheric boundary layer below 110 m, ˉu is almost independent of height,and vertical velocity ˉw is greater than 0, increasing with ˉu and reaching 2–4 m s-1in the squall regions;(b) the turbulent fluctuations(frequency 1/60 Hz) and gusty disturbances(frequency between 1/600 and1/60 Hz) are both strong and anisotropic, but the anisotropy of the turbulent fluctuations is less strong;(c) ˉu can be used as the basic parameter to parameterize all the characteristics of fluctuations; and(d) the vertical flux of horizontal momentum contributed by the average flow(ˉu ·ˉw) is one order of magnitude larger than those contributed by fluctuation fluxes(u w and v w), implying that strong wind may have seriously disturbed the sea surface through drag force and downward transport of eddy momentum and generated large breaking waves, leading to formation of a strongly coupled marine-atmospheric boundary layer. This results in ˉw 0 in the atmosphere, and some portion of the momentum in the sea may be fed back again to the atmosphere due to ˉu ·ˉw 0.  相似文献   

14.
1961-200年中国各季降水趋势变化   总被引:1,自引:0,他引:1       下载免费PDF全文
Trends in six indices of precipitation in China for seasons during 1961-2007 were analyzed based on daily observations at 587 stations. The trends were estimated by using Sen's method with Mann-Kendall's test for quantifying the significance. The geographical patterns of trends in the seasonal indices of extremes were similar to those of total precipitation. For winter, both total and extreme precipitation increased over nearly all of China, except for a small part of northern China. Increasing trends in extreme precipitation also occurred at many stations in southwestern China for spring and the midlower reaches of the Yangtze River and southern China for summer. For autumn, precipitation decreased in eastern China, with an increasing length of maximum dry spell, implying a drying tendency for the post-rainy season. Wetting trends have prevailed in most of western China for all seasons. The well-known 'flood in the south and drought in the north' trend exists in eastern China for summer, while a nearly opposite trend pattern exist for spring.  相似文献   

15.
The Brazilian coast is characterized by dif- ferent tidal regimes and distinct meteorological influ- ences. The northern part has larger tidal amplitudes and is permanently affected by trade winds and tropical distur- bances; the southern portion has smaller tidal amplitudes and is frequently influenced by extratropical cyclone ac- tivity. Besides these aspects, many features regarding current structure and behavior are also present, such as the equatorial system of currents, the subtropical gyre and the corresponding western boundary currents, and the Bra- zil-Malvinas confluence region. Within this context, ef- forts were made to develop the BRAZCOAST system, capable of describing the processes that determine the oceanic circulation from large to coastal scales. A cus- tomized version of the Princeton Ocean Model (POM) was implemented in a basin-scale domain covering the whole of the tropical and southern Atlantic Ocean, with 0.5° spatial resolution, as well as three nested grids with (1/12)° resolution covering the different parts of the Bra- zilian shelf, in a one-way procedure. POM was modified to include tidal potential generator terms and a par- tially-clamped boundary condition for tidal elevations. The coarse grid captured large-scale features, while the nested grids detailed local circulations affected by bathymetry and coastal restrictions. An interesting aspect at the coarse grid level was the relevance of the Weddell Sea to the location of the tidal amphidromic systems.  相似文献   

16.
In this study, the high-accuracy multisource integrated Chinese land cover (MICLCover) dataset was used in version 4 of the Community Land Model (CLM4) to assess how the new land cover information affected land surface simulation over China. Compared to the default land cover dataset in CLM4, the MICL data indicated lower values for bare soil (14.6% reduction), nee- dleleaf tree (3.6%), and broadleaf tree (1.9%); higher values for shrub cover (1.8% increase), grassland (9.9%), cropland (5.0%), glaciers (0.5%), lakes (1.6%), and wetland (1.1%); and unchanged for urban areas. Two comparative CLM4 simulations were conducted for the 33-yr period from 1972 to 2004, one using the MICL dataset and the other using the default dataset. The results revealed that the MICL data produced a 0.3% lower mean annual surface albedo over China than the original data. The largest contributor to the reduced value was semiarid regions (2.1% reduction). The MICL-data albedo value agreed more closely with observations (MODIS broad- band black-sky albedo products) over arid and semiarid regions than for the original data to some extent. The simulated average sensible heat flux over China increased by only 0.1 W m 2 owing to the reduced values in arid and semiarid regions, as opposed to increases in humid and semihumid regions, while an increased latent heat flux of I W m-2 was reflected in almost identical changes over the whole region. In addition, the mean annual runoff simulated by CLM4 using MICL data decreased by 6.8 mm yr-1, primarily due to large simulated decreases in humid regions.  相似文献   

17.
In May 2008, ScienceWatch.com named Advances in Atmospheric Sciences a Rising Star among Geosciences journals. According to Essential Science IndicatorsSM from Thomson Reuters, the journal's cur-rent citation record includes 764 papers cited a total of 1,658 times between January 1, 1998 and February 29 2008.  相似文献   

18.
Diurnal temperature range (DTR) is an im- portant measure in studies of climate change and variability. The changes of DTR in different regions are affected by many different factors. In this study, the degree of correlation between the DTR and atmospheric precipitable water (PW) over China is explored using newly homogenized surface weather and sounding observations. The results show that PW changes broadly reflect the geographic patterns of DTR long-term trends over most of China during the period 1970-2012, with significant anticorrelations of trend patterns between the DTR and PW, especially over those regions with higher magnitude DTR trends. PW can largely explain about 40% or more (re 0.40) of the DTR changes, with a d(PW)/d(DTR) slope of -2% to -10% K^-1 over most of northwestern and southeastern China, despite certain seasonal dependencies. For China as whole, the significant anticorrelations between the DTR and PW anomalies range from -0.42 to -0.75, with a d(PW)/d(DTR) slope of-6% to -11% K^-1. This implies that long-term DTR changes are likely to be associated with opposite PW changes, approximately following the Clausius-Clapeyron equation. Furthermore, the relationship is more significant in the warm season than in the cold season. Thus, it is possible that PW can be considered as one potential factor when exploring long-term DTR changes over China. It should be noted that the present study has a largely statistical focus and that the underlying physical processes should therefore be examined in future work.  相似文献   

19.
The aerosol optical depth (AOD) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Satellite Aqua, along with the altitude-resolved aerosol subtypes product from the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP), as well as surface PM 10 measurements, were utilized to investigate the dust activities common in springtime of northern China. Specifically, a dust storm episode that occurred over the North China Plain (NCP) during 17-21 March 2010 was identified. The PM 10 concentration at Beijing (39.8 °N, 116.47 °E) reached the peak value of 283 μgm -3 on 20 March 2010 from the background value of 15 μg m-3 measured on 17 March 2010, then dropped to 176 μgm-3 on 21 March 2010. Analysis of the CALIOP aerosol subtypes product showed that numerous large dust plumes floated over northern China, downwind of main desert source regions, and were lifted to altitudes as high as 3.5 km during this time period. The MODIS AOD data provided spatial distributions of dust load, broadly consistent with ground-level PM 10 , especially in cloud free areas. However, inconsistency between the MODIS AOD and surface PM 10 measurements under cloudy conditions did exist, further highlighting the unique capability of the CALIOP lidar. CALIOP can penetrate the cloud layer to give unambiguous and altitude-resolved dust measurements, albeit a relatively long revisit period (16 days) and narrower swath (90 m). A back trajectory simulation using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model was performed, and it was found that the sand-dust storm originated from the Gobi Desert on 18 March 2010 travelled approxi-mately 1200-1500 km day-1 eastward and passed over the NCP on 19 March 2010, in good agreement with previous findings. In addition, the multi-sensor measurements integrated with the HYSPLIT model output formed a three-dimensional view of the transport pathway for this dust episode, indicating that this episode was largely associated with the desert source regions to the northwest of the NCP. The results imply the importance of integration of multi-sensor measurements for clarifying the overall structure of dust events over northern China.  相似文献   

20.
Using a regional climate model MM5 nested to an atmospheric global climate model CCM3, a series of simulations and sensitivity experiments have been performed to investigate the relative LGM climate response to changes of land-sea distribution, vegetation, and large-scale circulation background over China. Model results show that compared with the present climate, the fluctuations of sea-land distribution in eastern Asia during the LGM result in the temperature decrease in winter and increase in summer. It has significant impact on the temperature and precipitation in the east coastal region of China. The impact on precipitation in the east coastal region of China is the most significant one, with 25%-50% decrease in the total precipitation change during the LGM. On the other hand, the changes in sea-land distribution have less influence on the climate of inland and western part of China. During the LGM, significant changes in vegetation result in temperature alternating with winter increase and summer decrease, but differences in the annual mean temperature are minor. During the LGM, the global climate, i.e., the large-scale circulation background has changed significantly. These changes have significant influences on temperature and precipitation over China. They result in considerable temperature decreases in this area, and direct the primary patterns and characteristics of temperature changes. Results display that, northeastern China has the greatest temperature decrease, and the temperature decrease in the Tibetan Plateau is larger than in the eastern part of China located at the same latitude. Moreover, the change of large-scale circulation background also controls the pattern of precipitation change. Results also show that, most of the changes in precipitation over western and northeastern parts of China are the consequences of changing large-scale circulation background, of which 50%-75% of precipitation changes over northern and eastern China are the results of changes in large-scale circulation backgrou  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号