首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine one possible mechanism of hydrocarbon toxicity, studies were carried out to establish: (a) the availability of hydrocarbons from sea water to the crab haemolymph, (b) the effects on respiration and (c) the possible effects on haemocyanin—O2 binding characteristics in oiled crabs.Crabs incubated in 14C-naphthalene labelled oiled sea water (Kuwait crude) readily accumulated the isotope into the haemolymph, in concentrations exceeding those in the surrounding sea water medium with one-hour bioconcentration factors from 2·53 to 23·51. Respiration, as measured by uptake of O2 from the respirometer sea water, was 12·5% lower in crabs held in 11·0 ppm Kuwait crude/sea water than in the same animals when held in unoiled sea water. Respiration levels returned to preoiling levels when the oiled sea water was replaced with fresh non-oiled sea water.Despite the observed effects of oiled sea water on respiration, the haemocyanin—O2 binding potential, as well as the structural integrity of haemocyanin (as determined by its UV absorption spectrum, sub-unit dissociation and serum-free Cu++ levels), remained unaltered. The results suggest that disruption of blood-oxygen transport via disruption of haemocyanin—O2 binding as one possible mechanism of hydrocarbon toxicity is unlikely and that other alternatives must be considered.  相似文献   

2.
南海北部陆架陆坡区海流观测研究   总被引:3,自引:0,他引:3  
针对2006-2009年期间,南海北部陆架陆坡区3个站ADCP海流连续观测资料,采用功率谱分析、潮流调和分析方法,重点分析了陆架陆坡区100 m,200 m和1 200 m水深海域海流的垂向结构,探讨了环流的季节变化和空间分布特征,特别讨论了南海暖流和北陆坡流的时空变化特征。结果表明,陆架陆坡区潮流类型属于不规则日潮,深水站点中层表现为正规全日潮类型,垂向为"三层结构",甚至更加复杂。O1,K1,M2,S2等分潮总体上为顺时针旋转,在深水站点,基本表现为西北-东南走向的往复流形态。从能量角度看,表层和底层海流中,潮流所占份额较大,分别占30%~40%和40%~50%,中层较小,约为20%。对东沙群岛西南陆架陆坡区环流,观测计算结果证实了西向强流的存在,且垂向结构具有显著的季节变化,在200 m水深处没有明显的南海暖流,只是10~30 m以上层次存在逆风海流。海南岛以东海域连续15个月表层环流的结果表明,冬季明显受到南海暖流的影响,存在东北向的逆风海流,夏秋季的环流表现为西南向,流速较强,夏季也存在逆风情况,造成上述情形的原因可能是该地南海暖流的流轴具有季节性变化——冬季偏南,夏季偏北。  相似文献   

3.
利用2006年4月在海洋岛附近海域的CTD测量资料,系统分析了该海域温度、盐度、密度和声速的平面分布和垂直分布特征,并探讨了其形成机理。分析指出:4月份是海洋岛附近海域季节性跃层的生成期,海区会产生正跃层、逆跃层、冷中间层、暖中间层等复杂的垂直结构;中间层和底层水文要素受海流的影响较大,而表层水文要素主要受海面风场和气温的影响。  相似文献   

4.
滨海潜水含水层是滨海地区开采淡水的重要目的层。但由滨海潜水含水层的性质所决定,它极易因抽水过量而遭受海水入侵。本文利用滨海含水层中的稳定流模型,确定了崂山县女姑山水源地旱季和雨季的海水入侵长度,由此预测了现有水源地存在的潜在危险性。并针对实际情况提出了应采取的措施。  相似文献   

5.
国内外贝类学界都认为贝壳角质层仅由贝壳素构成.棱柱层由方解石构成.珍珠层通常为霰石构成.日本的小林新二郎提出棱柱珍珠是方解石结构,国内外许多论文对此都没有提出异议.本研究采用X-射线对贝壳和棱柱珍珠衍射结果证明:(1)贝壳珍珠层全是是霰石结构,只有牡蛎(Ostrea rivularis)壳例外,符合以上理论;(2)棱柱层几乎全是霰石结构,只有牡蛎壳和紫色裂江珧(Pinna atropurpurea)壳的棱柱层是方解石结构,基本否定了以上理论;(3)角质层由有机物—贝壳素和方解石或霰石组成的,有些还含二氧化硅等杂质,这不完全相符上面理论;(4)棱柱珍珠完全是霰石结构,证明小林新二郎的结论是错误的.  相似文献   

6.
We discuss the results of the numerical experiment aimed at the simulation of the behavior of currents and transformations of the temperature and salt modes in the Sevastopol Bay in January–February 1997. In the numerical analysis, we use actual data on the velocity and direction of the wind, sea surface temperature, and the discharge of River Chernaya. It is shown that the circulation and structure of hydrological fields are mainly connected with the direction of the wind, its intensity, and variability in the course of time. Since the analyzed water area is shallow, the currents inside the bay undergo rapid transformations (less than for an hour after changes in the wind). At the same time, the transformations of the thermohaline fields are slower. Due to the inflow of fresh waters of River Chernaya and salt waters from the open sea through the strait, the structure of thermohaline fields formed in the bay is nonuniform (both in the vertical and horizontal directions). The distribution of salinity plays the main role in the formation of the vertical stratification, which is natural for the winter season. Due to the process of freshening of water, a quite high vertical salinity gradient is formed in the upper layer of the sea. As a result, the process of cooling does not lead to the appearance of convection and inversions of temperature are formed in the case where warmer waters are located in the bottom layers. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 2, pp. 60–76, March–April, 2005.  相似文献   

7.
刘崇义 《海岸工程》1996,15(1):29-33
简要介绍了青岛淡水资源紧缺形势,论述了解决“水困扰”的最佳选择,重点阐明海水直接利用的领域极其广阔,建议居民生活的洗涤,冲厕用水尽量“以海代淡”;最后提出了海水利用的关键技术问题和建议。  相似文献   

8.
Fresh water flowing from the Arctic Ocean via the East Greenland Current influences deep water formation in the Nordic Seas as well as the salinity of the surface and deep waters flowing from there. This fresh water has three sources: Pacific water (relatively fresh cf. Atlantic water), river runoff, and sea ice meltwater. To determine the relative amounts of the three sources of fresh water, in May 2002 we collected water samples across the East Greenland Current in sections from 81.5°N to the Irminger Sea south of Denmark Strait. We used nitrate-phosphate relationships to distinguish Pacific waters from Atlantic waters, salinity to obtain the sum of sea ice melt water and river runoff water, and total alkalinity to distinguish the latter. River runoff contributed the largest part of the total fresh water component, in some regions with some inventories exceeding 12 m. Pacific fresh water (Pacific source water S ∼ 32 cf. Atlantic source water S ∼ 34.9) typically provided about 1/3 of the river runoff contribution. Sea ice meltwater was very nearly non-existent in the surface waters of all sections, likely at least in part as a result of the samples being collected before the onset of the melt season. The fresh water from the Arctic Ocean was strongly confined to near the Greenland coast. We thus conjecture that the main source of fresh water from the Arctic Ocean most strongly impacting deep convection in the Nordic Seas would be sea ice as opposed to fresh water in the liquid phase, i.e., river runoff, Pacific fresh water, and sea ice meltwater.  相似文献   

9.
StudyonthecharacteristicsofthemarineboundarylayerintheEquatorialPacific¥ZhangZiyuandZhouMingyu(ReceivedAugust21,1993;accepted...  相似文献   

10.
A sapropelic layer with organic carbon contents of 1.0–1.5%, in contrast to the usual 0.2–0.5% of adjacent normal basin sediments, is found to be widespread in sediment cores collected from the Cilicia Basin, northeastern Mediterranean. The horizon is thought to be equivalent to the S1 sapropel of other workers. It is finely laminated with no evidence of bioturbation, has a very markedly low magnetic susceptibility, and contains a significantly higher content of pollen and plant debris than is found in the normal basin sediment. The stable oxygen and carbon isotope values suggest that the layer formed during post-glacial climatic warming when fresh nutrient-rich surface water flowed into the Cilicia Basin from the surrounding land to produce a stratified water mass which allowed the development of anoxic bottom waters. The distribution of the sapropelic layer indicates that anoxic conditions extended to within approximately 350 m of sea level during deposition, a depth shallower than previously recorded in the Eastern Mediterranean.  相似文献   

11.
淡水和不同比重的海水对条斑紫菜幼苗存活的影响   总被引:1,自引:0,他引:1  
关于淡水和不同比重的海水对紫菜幼苗生长发育的影响,山内幸児(1973)以3—10个细胞的苗进行过实验;石井重之、二宫敏郎(1977)以奈良轮条斑紫菜为材料研究了盐度对生长的影响。他们的实验结果表明,比重对紫荣幼苗生长发育的影响是此较大的,而  相似文献   

12.
The Adriatic basin-wide circulation and its temporal variability are reviewed on the basis of results from the analysis of hydrographic data collected during four POEM cruises. Major well known features in the circulation are revealed in the data set which covers the period from October 1985 to April 1987. A prominent signal associated with the seasonal variability is identified in the water outflowing along the Italian coast. Differences between autumn and spring in the vein of cold and fresh water flowing along the Italian shelf manifest mainly in the temperature field. During the stratified season the fresh water spreads over the entire surface layer of the southern Adriatic. On the other hand, during spring, when the sea is vertically homogeneous, the fresh water remains confined to the surface longshore boundary layer over the entire length of the Italian coast. Layers below the seasonal thermocline at the eastern portion of the sea display very weak seasonal signals. A strong signal associated with the inter-annual variations also has been documented from the analysed data set; it mainly appears in the salinity field. It is shown that in spring 1986, the salinity averaged over the entire water column north of the Palagruza Sill is lower by 0.3 psu than in spring 1987. A similar, but less prominent difference is noted in the southern Adriatic. An attempt is made to associate these differences with variations in climatic conditions over the area, the river runoff and the Mediterranean water inflow.  相似文献   

13.
To address the mechanisms controlling halocline variability in the Beaufort Sea, the relationship between halocline shoaling/deepening and surface wind fields on seasonal to decadal timescales was investigated in a numerical experiment. Results from a pan-Arctic coupled sea ice-ocean model demonstrate reasonable performances for interannual and decadal variations in summer sea ice extent in the entire Arctic and in freshwater content in the Canada Basin. Shelf-basin interaction associated with Pacific summer and winter transport depends on basin-scale wind patterns and can have a significant influence on halocline variability in the southern Beaufort Sea. The eastward transport of fresh Pacific summer water along the northern Alaskan coast and Ekman downwelling north of the shelf break are commonly enhanced by cyclonic wind in the Canada Basin. On the other hand, basin-wide anti-cyclonic wind induces Ekman upwelling and blocks the eastward current in the Beaufort shelf-break region. Halocline shoaling/deepening due to shelf-water transport and surface Ekman forcing consequently occur in the same direction. North of the Barrow Canyon mouth, the springtime down-canyon transport of Pacific winter water, which forms by sea ice production in the Alaskan coastal polynya, thickens the halocline layer. The model result indicates that the penetration of Pacific winter water prevents the local upwelling of underlying basin water to the surface layer, especially in basin-scale anti-cyclonic wind periods.  相似文献   

14.
This report describes extensive investigations of the near bottom layer of the Western Baltic (Mecklenburg Bight, Darss Sill and Arkona Basin) which were conducted over a 5 year period to determine the typical structure, vertical thickness, vertical turbulence structure, and spatial and temporal variability of this water mass with regard to the area's particular hydrographic conditions. Series of vertical profiles were obtained using the microstructure profiler MSS86, which is capable of measuring high resolution profiles of temperature, conductivity, current shear, light attenuation and pressure down to the seafloor. The near bottom current structure was simultaneously measured with conventional current metres at fixed depths. A typical vertical density structure of the near bottom layer was found. At all investigation sites the Bottom Boundary Layer was separated from the overlying water mass by a well pronounced thermohaline pycnocline. A homogeneous water layer was situated above the bottom with a mean thickness of 2.2 m and typical variation between 0.5 and 3.5 m. The thickness of both the homogeneous layer and of the near bottom layer vary considerably. It is suggested that horizontal advection is responsible for these fluctuations in thickness. The variation in thickness of the Homogeneous Layer is independent of the local mean current velocity, wind speed and energy dissipation rate. Over periods of about 2 days the thickness of the Homogeneous Layer is determined by the average wind speed. The Bottom Boundary Layer shows its own characteristic dynamic, which is largely decoupled from that of the remaining water body. A logarithmic layer was generally not resolved by the current measurements. From dissipation rate measurements, the wall layer was determined to be 0.9 m thick. There was no significant correlation between the dissipation rate and the local wind speed, or between the dissipation rate and local mean current u100. This means that any simple parameterisation relating u100 or friction velocity to the locally produced turbulence and consequently to the resuspension of sediment is probably not applicable to shallow sea areas with properties like the Western Baltic. The investigation of sediment concentration in the BBL illustrates the importance of local effects combined with advection. The sediment stratified layer covers only the bottom most 50 cm.  相似文献   

15.
以南海夏季不同深度层次的各站位的温度,盐度,pH,O2,硝酸盐,亚硝酸盐,铵,磷酸盐,硅酸盐等水化学参数作为变量,实施Q型多维聚类分析,聚类分析结果表明,在垂直方向上,南海的水团可划分为南海表层水,南海次表层水,南海中层水,南海深层水和南海深海盆水等5种类型,聚类分析结果与温盐点聚图解所得的结论完全一致,南海夏季调查的多维聚类分析及T-S点聚图一致表明,南海的海水有着良好的成层结构,自海面至海底的水体运动自然形成了化学性质各异的五个水团。  相似文献   

16.
南麂岛附近海域潮汐和潮流的特征   总被引:2,自引:2,他引:2  
以2008年冬季在浙江近海南麂岛附近投放的4个底锚系观测的水位和流速资料为依据,分析了潮汐和潮流特征。水位谱分析结果显示半日分潮最显著,全日分潮其次;近岸的浅水分潮比离岸大。水位调和分析结果表明:潮汐类型均为正规半日潮,近岸处的平均潮差大于3m,最大可能潮差大于6m,潮汐呈现出显著的低潮日不等和回归潮特征。流速谱分析结果显示半日分潮流最强,全日分潮流其次,且比半日分潮流小得多;近岸浅水分潮流比远离岸显著。流速调和分析结果表明:潮流类型均为正规半日潮流,靠近岸的两个站浅水分潮流较显著;最显著的半日分潮流是M2分潮流,其最大流速介于0.32~0.48m/s之间,全日分潮流均很弱,最大流速小于0.06m/s。M2分潮流均为逆时针旋转,椭圆率越靠近海底越大;最大分潮流流速分布为中上层最大、表层略小、底层最小;最大分潮流流速方向的垂向变化很小,底层比表层略为偏左;最大分潮流流速到达时间随深度的加深而提前,底层比中上层约提前30min。潮流椭圆的垂向分布显示这里的半日分潮流以正压潮流为主;日分潮流则表现出很强的斜压性。  相似文献   

17.
During the summer seasons of 2002 and 2004, the total alkalinity (TA) and dissolved calcium (Ca) were studied at 41 stations in different areas of the Sea of Okhotsk: the Kuril depression, Deryugin Basin, the slopes of the Kamchatka Peninsula and Sakhalin Island, and in Sakhalin Bay. It was shown that the distributions of the TA and Ca in the water mass of deep sea areas are determined by the processes of CaCO3 formation and dissolution according to the relation Δ Ca = 0.5 Δ TA (1). The variations of the TA and Ca values observed in the upper 10-m layer and in the near-bottom layers of local depressions in the Deryugin Basin do not satisfy relationship (1). Probable reasons for this discrepancy are considered: organic matter mineralization, mixing of water masses with different preform TA and Ca values, sea ice melting, runoff from land, and sea bottom effects. It is shown that the enrichment in the alkalinity and calcium is caused by the Amur River runoff in the desalinated sea surface layer and by the high geochemical activity in the Deryugin Basin in the near-bottom 200-m layer of local depressions.  相似文献   

18.
The study of the Laptev Sea was a part of a comprehensive program for investigating Arctic seas during the cruise 63 of the R/V Akademik Mstislav Keldysh. On a transect along 130° E (September 8–14, 2015) from the estuary area of the Lena River on the traverse of the city of Tiksi to the continental slope (over 700 km), water samples were taken to study the hydrochemical structure of waters and the influence of the Lena River flow. From the obtained data, it was found that the effect of fresh water on the sea surface layer was very high and can be traced to a great distance from the river delta. An unconservative distribution of some hydrochemical parameters in the mixing zone was recorded. The concentration of nutrients in the surface layer, and a high turbidity can serve as limiting factors in the development of the phytoplankton community.  相似文献   

19.
A thermohaline front is located at the southeastern entrance of the Yellow Sea in winter, and it is generated by the intrusion of warm saline water into the Yellow Sea caused by a strong northerly wind. Recently, a westward transversal current traveling away from the west coast of Korea toward the open sea area along the front was reported. The westward transversal current is dominant in the surface layer during the temperature inversion period. The formation and structure of this current are examined using a numerical vertical ocean-slice model. When two different water masses meet, a front is formed and adjusted geostrophically. In this frontal zone, a horizontal pressure gradient flow by the vertically inclined isopycnal occurs under the thermal wind process in a baroclinic effect, and the cold fresh coastal water moves westward along the front in the upper layer. The barotropic effect across the front and the bottom friction effect strengthen the westward component of the velocity. The velocity of the bottom layer decreases remarkably in the increase of the bottom drag coefficient. This means that the bottom friction with the strong background tidal current causes a reduction in the current in the bottom layer.  相似文献   

20.
热带印度洋上层水温的年循环特征   总被引:1,自引:0,他引:1  
通过分析多年气候月平均的Levitus水温资料,结合多年气候月平均海表面风场资料以及观测的热带印度洋上层海流的分布状况,探讨热带印度洋上层水温的时空分布特征,剖析了热带印度洋混合层深度及印度洋暖水的季节变化规律。分析表明:热带印度洋的海表面温度低值区始终位于大洋的南部,而高值区呈现明显的季节变化,冬季位于赤道附近,在夏季则处于大洋的东北部;在热带印度洋的中西部、赤道偏南海域的次表层终年存在一冷心结构;热带印度洋表面风场的季节变化是影响该海域混合层深度季节性变化的主要因素;印度洋暖水在冬、春季范围较大,与西太平洋暖池相连,而在夏、秋季范围较小,并与西太平洋暖池分开。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号