首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SEIFERT  F. 《Journal of Petrology》1970,11(1):73-100
The equilibrium temperatures of the reaction muscovite+chlorite+quartz= cordierite+phlogopite+H2O (1) in the pure system K2O—MgO—Al2O2—SiO2—H2Owere found to be 495±10°C at 1 kb PH2O; 525±10°Cat 2 kb; 610±15°C at 5 kb; 635±10°C at6 kb. From intersection of this curve with the lower temperaturestability limit of cordierite close to 645°C, 6.5 kb PH2O,a reaction cordieritc+muscovite = phlogopite+aluminum silicate+quartz+H2O(2) is generated which has a negative slope and passes throughthe points 645°C, 6.5 kb PH2O and 700°C, 5 kb PH2O.On the high-pressure side of this reaction curve cordieriteis restricted to K2O—poor bulk compositions. Application of the experimentally determined phase relationsto more complex natural pelitic rocks suggests that reaction(1) represents maximum temperatures for the disappearance ofchlorite from pelitic assemblages containing muscovite and quartz,whereas reaction (2) gives maximum water pressures for the disappearanceof cordierite from these rocks.  相似文献   

2.
On the pseudobinary join CaO:3MgO:Al2O3:2SiO2:xH2O–CaO:1.25MgO:2.75 Al2O3: 0.25SiO2:xH2O clintonite mixed crystals Ca(Mg1+ xAl2 – x) (Al4 – xSixO10)(OH)2 with x rangingfrom 0.6 to 1.4 occur in the temperature range 600–830?C, 2 kb fluid pressure. On the MgSirich side clintonites coexistwith chlorite, forsterite, diopside, and calcite (due to smallamounts of CO2 in the gas phase) and, at lower temperatures,also with idocrase, hydrogrossularite, and aluminous serpentine.Decomposition of clintonite over a divariant temperature rangeoccurs above 830 ?C, 2 kb; clintonite-free subsolidus assemblagescomprising three or four solid phases are formed in the temperatureranges 890 ?–1120 ?C. The subsolidus assemblages can berepresented in a polyhedron defined by the corners forsterite,diopside, melilite, spinel, anorthite, corundum, and calciumdialuminate. Above 1120 ?C partial melting occurs. The upper thermal stability limits of three selected compositionshave been reversed in the P-T range 0.5–20 kb and 730–1050 ?C, respectively. Below some 4 kb breakdown is dueto the divariant reactions: (1)Ca(Mg2.25Al0.75)(Al2.75)(Si1.25O10)(OH)2 spinel+diopsidess+forsterite+clintonitess+vapor, (2)Ca(Mg2Al)(Al3SiO10)(OH)2 spinelx002B;melilitess+anorthite+clintonitess+vapor, (3)Ca(Mg1.75Al1.25)(Al3.25)(Si0.75O10)(OH)2 spinel+melilitess+corundum+clintonitess+vapor, At the terminations of the divariant temperature ranges (1)melilitess, (2) diopsidess, and (3) anorthite enter those assemblagesand clintonitess disappears completely. The reactions can berepresented by the following equations (1)log,H2O = 10.2879–8113/T+0.0856(P–1)/T, (2)log = 9.5852–7325/T+0.0794(P–1)/T, (3)log = 7.8358–5250/T+0.077(P–1)/T, with P expressed in bars and Tin ?K. Above 4 kb the upper thermalstability limit of clintonite is defined by incongruent melting,with grossularite participating at pressures above 9 kb. Thesecurves exhibit a very steep, probably even negative slope inthe P-T diagram. There is a close correspondence between natural clintonite-bearingassemblages and thosefound experimentally. The rarity of clintonitein nature is not due to special conditions of pressure and temperaturebut rather due to special bulk compositions of the rocks.  相似文献   

3.
Hydrothermal synthesis and investigations of stability relationsof Mg—Al pumpellyite were conducted using high-pressurecold-seal apparatus over the temperature range 250–600°C and 2–8 kb Pfluid. Mg—Al pumpellyite Ca4Al5MgSi6O21(OH)7was synthesized from partially crystalline gel mixtures of stoichiometriccomposition at 275–410 °C, 6–9 kb Pfluid, andruns of 7–90 days. Pure monomineralic synthetic Mg—Alpumpellyite has refractive index nß = 1.624 (2) andcell dimensions = 8.825 (8) Á, b = 5.875 (5) Á,c = 19.10 (1) Á, and ß = 97.39 (7)°. The high temperature assemblage of the equivalent bulk compositionconsists of clinozoisite, hydrogrossular/grossular, aluminousseptechlorite/chlorite, quartz, and H2O. Hydrogrossular wassynthesized in the presence of quartz at 8 kb from 400–500°C, and hydrogrossular + quartz are unstable with respectto grossular + H2O at 400 °C and 8 kb Pfluid. At 8 kb Pfluid,aluminous septechlorite forms at temperatures below 500 °Cwhereas aluminous 14 Á chlorite crystallizes at 500–600°C. The equilibrium relations of Mg—Al pumpellyite were determinedusing subequal mixtures of synthetic Mg—Al pumpellyiteand its high temperature assemblage. The reaction 9 Mg—Alpumpellyite = 9 clinozoisite + 6 grossular + 2 chlorite + 4quartz + 19 H2O occurs at temperatures of 390 °C at 8 kb,368 °C at 5 kb, and near 325 °C at 2 kb Pfluid. Thereversal data yield an approximate value of –3141 joules/mole°K for the standard entropy of formation for the syntheticMg—Al pumpellyite. The Schreinemakers' relations for pumpellyite, prehnite, clinozoisite,tremolite, grossular, and amesite in the presence of excessquartz and fluid were constructed in the pseudo-ternary systemCaO–Al2O3–MgO(SiO2–H2O). The results, togetherwith reconnaissance experiments on the reaction 4 Mg—Alpumpellyite + 2 quartz = 8 prehnite + aluminous septechlorite+ 2 H2O, locate the invariant point [TR] at approximately 5.7kb Pfluid and 375 °C. The results of the present study arenot compatible with previous experimental data on the invariantpoint [GR]. The P–T oriented phase relations are used to interpretsome natural parageneses developed in low-grade metabasalticrocks recrystallized under conditions of low co2. The high-temperaturestability relations of Mg—Al pumpellyite are useful todenote the onset of greenschist facies metamorphism in rocksof basaltic composition.  相似文献   

4.
LIOU  J. G. 《Journal of Petrology》1971,12(2):379-411
Hydrothermal investigation of the bulk composition CaO.Al2O3.4SiO2+excessH2O has been conducted using conventional techniques over thetemperature ranges 200–450 °C and 500–6000 barsPfluid. A number of reactions have been studied by employingmineral mixtures consisting of reactants and products in about9: 1 and 1: 9 ratios. The phase relations were deduced fromrelatively long experiments by observing which seeded assemblagedisappeared or decreased markedly in one of the paired run charges. Laumontite was synthesized in the laboratory, probably for thefirst time. Laumontite was grown from seeded wairakite to over99 per cent using a weak NaCl solution. The refractive indicesof the synthetic material are about = 1.504 and = 1.514. Theaverage unit cell dimensions are a0 = 14.761±0.005 Å;b0 = 13.077±0.005 Å; c0 = 7.561±0.003 Å;and ß = 112.02°±0.04°. Within the errorof measurement, the optical properties and cell parameters arein good agreement with those of natural laumontite. The equilibriumdehydration of laumontite involves two reactions: (1) laumontite= wairakite+2H2O, passing through about 230 °C at 0.5 kb,255±5 °C at 1 kb, 282±5 °C at 2 kb, 297±5°C at 3 kb and 325±5 °C at 6 kb; and (2) laumontite= lawsonite+2 quartz+2H2O, taking place at about 210 °Cat 3 kb and 275 °C at 3.2 kb. Above 300 °C, the equilibriumcurve for the solid-solid reaction (3) lawsonite+2 quartz =wairakite passes through 305 °C, 3.4 kb and 390 °C,4.4 kb. Equilibrium has been demonstrated unambiguously forthe above three reactions. The hydrothermal decomposition ofnatural laumontite above its own stability limit appears tobe a very slow process. Combined with previously published equilibria determined hydrothermallyfor wairakite, the phase relations are further investigatedby chemographic analysis interrelating the phases, laumontite,wairakite, lawsonite, anorthite, prehnite+kaolinite, and 2 pumpellyite+kaolinitein the system CaAl2Si2O8-SiO2-H2O. This synthesis allowed theconstruction of a semiquantitative petrogenetic grid applicableto natural parageneses and the delineation of the physical conditionsfor the various low-grade metamorphic facies in low µCO2environments. The similar stratigraphic zonations, consistentlyfound in a variety of environments, are recognized to be a functionof burial depth, geothermal gradient, and mineralogical andchemical composition of the parental rocks. Departures fromthe normal sequences are believed to be due to the combinationsof mineralogical variations, availability of H2O, differencesin the ratio µCO2/µH2O, and the rate of reaction.The possible P-T boundaries for diagenesis, the zeolite facies,the lawsonite-albite facies, the prehnite-pumpellyite facies,and the adjacent metamorphic facies are illustrated diagrammatically.  相似文献   

5.
Synthesis and Stability Relations of Epidote, Ca2Al2FeSi3O12 (OH)   总被引:2,自引:0,他引:2  
LIOU  J. G. 《Journal of Petrology》1973,14(3):381-413
Hydrothermal investigation of the bulk composition 2CaO·Al2O3·l/2Fe2O2·3SiO2+excessH2O (Ps 33 +excess H2O) has been conducted using conventionalapparatus and solid oxygen buffer techniques. Coarse-grainedepidotes (over 150 microns in some cases) were readily synthesizedfrom oxide mixtures with a 98 per cent yield as well as fromtheir high temperature equivalents at 600–700 °C and5 kb Pfluid and over a range of oxygen fugacities. Electronmicroprobe analyses show that maximum Fe+3 content of syntheticepidotes varies as a function of fo2. Epidote is most iron-rich(Ps 33 ± 2) at high (HM and CCO) oxygen buffers and becomesprogressively more aluminous (Ps 25 ± 3) with decreasingfo2 values and temperatures. Such variation is consistent withthe change of refractive indices and cell dimensions. The meanrefractive indices and cell dimensions for synthetic epidote(Ps 33) are N = 1.745 ± 0.005, N = l.786±0.005,a = 8.920±0.005 Å, b = 5.645±0.004 Å,c = 10.190 ű0.006 Å, and ß = 115°31'±4' and for epidote (Ps 25) are N = 1.735±0.005,N = 1.775±0.005, a = 8.891±0.005 Å, b =5.625±0.004 Å, c = 10.177±0.006 Å,and ß = 115° 30'±3'. Mössbauer spectraindicate synthetic epidotes are relatively disordered. Garnets of intermediate composition in the grossular-andraditeseries were synthesized and the cell dimensions and refractiveindices vary linearly with composition. With successive decreasein fo2, garnet synthesized on the Ps 33 bulk composition movestoward the grossular end member with simultaneously increasingalmandine component; concomitantly the hercynite component ofthe coexistent magnetite increases. The fo2-T-Pfluid relations were determined by employing mineralmixtures of synthetic epidote and its high temperature equivalentin subequal proportions. Equilibrium was demonstrated for thereactions (1) epidote (Ps 33) = anorthite+grandite+FeOx+quartz+ fluid, and (2) epidote (Ps 25) (+quartz) = garnet38+anorthite+magnetitc+fluid.With fo2 defined by the HM buffer, epidote (Ps 33) is stableup to 748 °C, 5 kb, 678 °C, 3 kb, and 635 °C, 2kb Pfluid. With fo2 defined by the NNO buffer, the epidote (Ps25) high temperature stability limit is reduced about 100 °Cat 5kb Pfluid. At slightly lower fo2, than defined by the QFMbuffer, epidote is not stable at any temperatures; the assemblagehedenbergite+anorthite+garnet38+fluid replaces epidote in thepresence of excess quartz. Combined with previously determined equilibria for prehnite,andradite, and hedenbergite, isobaric fo,-T relations were furtherinvestigated by chemographic analysis interrelating the phasesprehnite, epidote, grandite, hedenbergite, wollastonite, anorthite,and magnetite in the system CaO-Fe2O3-Al2O3-SiO2-H20. Such analysisallowed the construction of a semi-quantitative petrogeneticgrid applicable to natural parageneses in low µCO2 environments,and the delineation of the low temperature stability limit ofepidote as a function of fo2. Enlargement of the epidote stabilityrange toward both high and low temperatures with increasingfo2, is consistent with widespread occurrences of epidote inlow- and mediumgrade metamorphic rocks.  相似文献   

6.
Stability Relations of the Ferruginous Biotite, Annite   总被引:12,自引:0,他引:12  
Annite, KFe3AISi3O10(OH)2 a member of the iron biotites andthe ferrous analogue of phlogopite, has been synthesized andits phase relations have been determined as functions of temperature,fugacity of oxygen (fo2), and total pressure (PtotalPH2O+PH2).A method for controlling fo2at high total pressures is described,and data for the ‘oxygen buffers’ used are given.Buffers range from quartz+iron+fayalite assemblages (low fo2)to magnetite-hematite assemblages (high fo2). Optical propertiesand unit-cell dimensions of synthetic annites depend on theconditions of synthesis. By recalculating published analyses of natural iron-rich biotitesit can be shown that one cannot assume a constant hydrogen contentfor such biotites. Oxidation may have occurred by drying at115?C. Octahedral occupancy therefore cannot be calculated fromsuch data. Phase relations of annite are presented in 2,070 and 1,035 barsections. Depending on fo2-T values annite was found to decomposeto one of the following assemblages: hematite+ sanidine, magnetite+sanidine,fayalite+leucite+kalsilite, iron+sanidine. All decompositionsare dehydration and redox reactions and are sensitive to changesin fH20 and fo2 (or fH20 and fH2). At 2, 070 bars total pressureannite+magnetite+sanidine can coexist between 425?C and 825?C, depending upon the magnitude of fo2. In the presence of quartz the stability field of annite is morerestricted. Phase equilibria in the system KAlSiO4–SiO2–Fe–O2–H2have been summarized schematically. Wherever possible, thermodynamic extrapolations are made totest the internal consistency of the data. Enthalpies of formationare calculated for both annite and phlogopite. Ranges of fo2values in nature as well as mechanisms for changes in fo2 areinvestigated. It is useful to distinguish between assemblageswhich are internally buffered with respect to fo2changes andthose which are not buffered. The applications of individualreactions involving annite to specific geologic problems arediscussed with respect to igneous, metamorphic, and sedimentaryrocks.  相似文献   

7.
Liquidus relations in the four-component system Na2O–Al2O3–SiO2–F2O–1were studied at 0· 1 and 100 MPa to define the locationof fluoride–silicate liquid immiscibility and outlinedifferentiation paths of fluorine-bearing silicic magmas. Thefluoride–silicate liquid immiscibility spans the silica–albite–cryoliteand silica–topaz–cryolite ternaries and the haplogranite-cryolitebinary at greater than 960°C and 0· 1–100 MPa.With increasing Al2O3 in the system and increasing aluminum/alkalication ratio, the two-liquid gap contracts and migrates fromthe silica liquidus to the cryolite liquidus. The gap does notextend to subaluminous and peraluminous melt compositions. Forall alkali feldspar–quartz-bearing systems, the miscibilitygap remains located on the cryolite liquidus and is thus inaccessibleto differentiating granitic and rhyolitic melts. In peralkalinesystems, the magmatic differentiation is terminated at the albite–quartz–cryoliteeutectic at 770°C, 100 MPa, 5 wt % F and cation Al/Na =0· 75. The addition of topaz, however, significantlylowers melting temperatures and allows strong fluorine enrichmentin subaluminous compositions. At 100 MPa, the binary topaz–cryoliteeutectic is located at 770°C, 39 wt % F, cation Al/Na 0·95, and the ternary quartz–topaz–cryolite eutecticis found at 740°C, 32 wt % F, 30 wt % SiO2 and cation Al/Na 0· 95. Such location of both eutectics enables fractionationpaths of subaluminous quartz-saturated systems to produce fluorine-rich,SiO2-depleted and nepheline-normative residual liquids. KEY WORDS: silicate melt; granite; rhyolite; fluorine; liquid immiscibility  相似文献   

8.
Tourmaline has been synthesized hydrothermally at 200 MPa between 300 and 700 °C from oxide mixtures with Mg-Al ratios for the end members dravite NaMg3Al6(Si6O18)(BO3)3(OH)3(OH) and Mg-foitite &ding6F;(Mg2Al)Al6 (Si6O18)(BO3)3(OH)3(OH). Six different Na concentrations were investigated to determine the distribution of Na between tourmaline and fluid in the SiO2-saturated system Na2O-MgO-Al2O3-SiO2-B2O3-H2O-HCl. Synthetic tourmaline ranges from X-site vacant (&ding6F;) tourmaline (Mg-foitite) to nearly ideal dravite with Na=0.95 apfu. There are small, but significant, amounts of proton deficiency and negligible tetrahedral Al. Chemical variation is primarily caused by the substitutions Al&ding6F;Mg-1Na-1 and minor AlMg-1H-1. Varying amounts of Na and &ding6F; determine the Mg/Al ratios. Besides tourmaline and quartz, additional Mg-Al phases are chlorite and, at 700 °C, cordierite. Albite is also present at high Na concentrations in the bulk composition. The c dimension of the tourmaline crystals increases with Na in tourmaline. The amount of Na in the X-site depends strongly on the bulk concentration of Na in the system as well as on the temperature. These factors in turn control the phase assemblage and the composition of the fluid phase. For the assemblage tourmaline + quartz + chlorite/cordierite + fluid, a linear relationship exists between Na concentration in the fluid (quenched after the run) and tourmaline with temperature: T °C [ᆭ °C]=(Nafluid/Natur)앾.878-14.692 (r2=0.96). For the assemblage tourmaline + albite + quartz + fluid, it is: T °C [ᆣ °C]=(Nafluid/Natur)욝.813-6.231 (r2=0.95), where Nafluid is the concentration of Na+ in the final fluid (mol/l) and Natur is the number of Na cations in the X-site of tourmaline. The equations are valid in the temperature range of 500-715 °C. Our experiments demonstrate that the occupancy of the X-site in combination with the changing concentrations of Al and Mg can be used to monitor changes in the fluid composition in equilibrium with a growing tourmaline crystal. Currently, this relation can be applied qualitatively to natural tourmaline to explain zoning in Na- and Al/(Al+Mg).  相似文献   

9.
The central portion of the system MgO–Al2O3–SiO2has been studied with the aim of determining the range of solidsolution, as well as the stability limits of the various structuralstates of the ternary compound cordierite. The previously suggestedlimited solid solution between cordierite of the composition2MgO? 2Al2O3? 5SiO2 (2: 2: 5) and SiO2 is now believed to existonly metastably. Between 800? and 1,300? C the composition ofcordierite was found to be invariably 2MgO. 2Al2O3 5SiO2. Above1,300?C, however, there is evidence for the existence of limitedsolid solution in cordierite (2: 2: 5) toward a theoreticalcompound ‘Mg-beryl’ (3: 1: 6). The existence ofcordierite solid solution at liquidus temperatures has an importantbearing on the melting relations of many compositions withinthe system. Because of this solid solution the courses of crystallizationof melts consisting of normative cordierite (2: 2: 5) and smallamounts of MgSiO3, for example, have to follow parts of theboundary curve between the cordierite and spinel fields withthese two phases coprecipitating over a limited range of temperatures.The dividing line between compositions which complete theircrystallization at the ternary eutectic forsterite+protoenstatite+cordierite+liquid,1,364? ?3? C, and those which complete their crystallizationat the ternary eutectic protoenstatite +cordierite+tridymite+liquid,1, 355??3? C was formerly considered to be the join MgSiO3-cordierite(2: 2: 5). Because of solid solution in cordierite coexistingwith liquid this dividing line is displaced slightly in thedirection toward more siliceous bulk compositions. Furthermore,the temperature maximum along the boundary curve cordierite+protoenstatite+liquid cannot lie at the intersection of this boundary curvewith the join MgSiO3–2: 2: 5, but with the tie line MgSiO3-cordieritess.The position of this temperature maximum thus moves closer tothe ternary eutectic protoenstatite+cordierite+tridymite+liquid.Temperatures and compositions of some of the invariant pointsin the system have been redeter-mined.  相似文献   

10.
We document experiments on a natural metapelite in the range650–775°C, 6–14 kbar, 10 wt % of added water,and 700–850°C, 4–10 kbar, no added water. Staurolitesystematically formed in the fluid-present melting experimentsabove 675°C, but formed only sporadically in the fluid-absentmelting experiments. The analysis of textures, phase assemblages,and variation of phase composition and Fe–Mg partitioningwith P and T suggests that supersolidus staurolite formed at(near-) equilibrium during fluid-present melting reactions.The experimental results are used to work out the phase relationsin the system K2O–Na2O–FeO–MgO–Al2O3–SiO2–H2Oappropriate for initial melting of metapelites at the upperamphibolite facies. The PT grid developed predicts theexistence of a stable PT field for supersolidus staurolitethat should be encountered by aluminous Fe-rich metapelitesduring fluid-present melting at relatively low temperature andintermediate pressures (675–700°C, 6–10 kbarfor XH2O = 1, in the KNFMASH system), but not during fluid-absentmelting. The implications of these findings for the scarcityof staurolite in migmatites are discussed. KEY WORDS: metapelites; migmatites; partial melting; PT grid; staurolite  相似文献   

11.
Chromium as Cr3+ substitutes for octahedrally coordinated Alin upper-mantle minerals, thereby reducing the activity of Al2O3in the system and hence the concentration of Al2O3 in partialmelts. The effect of Cr2O3 on melt compositions multiply saturatedwith the spinel lherzolite phase assemblage has been quantifiedin the system CaO–MgO–Al2O3–SiO2–Cr2O3at 1·1 GPa as a function of 100 Cr/(Cr + Al) in the spinel(Cr#sp). The decrease of Al2O3 in the melt with increasing Cr#spis accompanied by increasing MgO and SiO2, whereas CaO remainsalmost constant. Consequently, the CaO/Al2O3 ratio of the meltincreases with Cr#sp, and the melt becomes richer in normativediopside, hypersthene and quartz. The effect may explain certainmantle melts with unusually high CaO/Al2O3 ratios. The concentrationof Cr2O3 in the melt remains low even at high Cr#sp, which meansthat the strong effect of Cr2O3 on partial melting equilibriais not readily apparent from its concentration in the melt itself.The existence of a highly refractory major component such asCr2O3 nullifies simplified conclusions from the ‘inverseapproach’ in the experimental study of basalt petrogenesis,as there is insufficient information in the composition of thepartial melt to reconstruct the conditions of melting. KEY WORDS: basalt petrogenesis; partial melting; reversal experiment; spinel lherzolite; system CMAS–Cr2O3; CaO/Al2O3 of melt; effect of Cr2O3  相似文献   

12.
Water solubility in orthopyroxene   总被引:7,自引:0,他引:7  
The solubility of water in pure enstatite was measured on samples synthesized at 1,100 °C and pressures to 100 kbar. Enstatite crystals were grown under water-saturated conditions from a stoichiometric mixture of high-purity SiO2 and Mg(OH)2. Water contents were calculated from polarized FTIR spectra measured on oriented single crystals. The water solubility in orthoenstatite increases with pressure to 867ᆷ ppm H2O by weight at 75 kbar. At 100 kbar, in the stability field of high-clinoenstatite, a water solubility of 714ᆷ ppm was observed. The water solubility in enstatite at 1,100 °C can be described by the equation cH2O=AfH2O exp(-P(V/RT), where fH2O is water fugacity, A=0.0204 ppm/bar and (V=12.3 cm3/mol. The infrared spectra of the hydrous enstatite crystals show a sharp, intense band at 3,363 cm-1 and a broad, weaker band at 3,064 cm-1. Both bands are strongly polarized parallel c. Most likely, pairs of protons attached to non-bridging oxygen atoms substitute for Mg2+. In order to investigate the effect of chemical impurities on water solubility in enstatite, an additional series of experiments was carried out with gels doped with Al, B, or Li as starting material. Whereas, the presence of Li and B had no detectable effect on water solubility, the addition of about 1 wt% Al2O3 increased water solubility in enstatite from 199 to 1,100 ppm at 1,100°C and 15 kbar. In the infrared spectra of these aluminous samples, additional bands occur in the range from 3,450 to 3,650 cm-1. Similar bands are also observed in natural, aluminous orthopyroxenes and are most likely caused by protons coupled with Al according to the substitution of Al3++H+ for Si4+. A series of hydrous annealing experiments on a natural, gem-quality aluminous enstatite from Tanzania yielded water solubilities generally consistent with the results from the synthetic model systems. The results presented here imply that pure enstatite has a similar storage capacity for water as olivine; however, aluminous orthopyroxenes in the mantle may dissolve much larger amounts of water comparable with the entire mass of the present hydrosphere. Moreover, the mechanism of aluminum substitution in orthopyroxenes, i.e., the distribution of Al between tetrahedral and octahedral sites, may be a potential probe of water fugacity.  相似文献   

13.
Equilibria involving acmite, albite, nepheline, quartz, anda liquid phase constitute the petrologically important partof the system Na2O–Al2O3–Fe2O2–SiO2, and theunivariant and invariant relations provide useful analogiesfor a wide variety of alkaline igneous rocks. These relationsare dominated by the incongruent melting behaviour of acmite,which does not appear on the liquidus of the join acmite-nepheline-silica;instead, a broad field of hematite is present and acmite crystallizesonly from liquids containing potential sodium silicate. Consequently,the oversaturated and undersaturated eutectics, correspondingto granitic and nepheline syenitic liquids, are rich in sodiumsilicate and distinct from those found in Petrogeny's Residuasystem: the temperatures of the eutectics are 7285C and 7155C, respectively. Survival of peralkaline granite in the aluminouscontinental crust can be explained by the strongly peralkalinecomposition of the oversaturated eutectic. Magma of this typemay be the primitive granite of the non-orogenic zones. Theubiquitous alkali metasomatism around alkaline complexes canalso be interpreted in terms of residual liquids enriched inalkali silicates. Transition from undersaturated to oversaturatedliquids is possible by fractionation of hematite and a new processfor achieving the reverse transition has been found. This dependson the substitution of Fe3 for Al3 in feldspar and suggestsa more important role for syenite in any scheme of petrogenesis. Each of the two eutectics is linked to a corresponding peritecticat which hematite reacts to give acmite. The liquid at the undersaturated,quaternary reaction point is of ijolitic type, providing thefirst intimation that ijolite may represent a low-melting fractionin nature. The system Na2O–Al2O3–Fe2O3–SiO2thus constitutes the peralkaline residua system and on thisbasis a coherent picture of stable continental magmatism canbe constructed. Ijolite is seen as the low-melting fractionfrom a range of peralkaline compositions and from rocks suchas melilite basalt, while the frequently associated carbonatiteis considered to be the volatile-rich, fugitive material fromthe mantle. Such a relationship is consistent with the dualassociation of carbonatite with either ijolite or kimberliteunder different tectonic conditions. The more common syenite,nepheline syenite, and alkaline granite of the non-orogenicregions are regarded as low-melting fractions from basalticmaterials in the deep crust. Most of this activity, involvingmagmas of residual type, could thus be explained in terms ofpartial melting in the deep crust and upper mantle. A possiblemechanism for this would be arching of the rigid continentalcrust, the consequent relief of lithostatic load giving riseto melting, and the concentration of fugitive constituents,in the underlying zones.  相似文献   

14.
Subsolidus and liquidus phase relations along the join MgSiO3—CaMgSi2O6have been determined from the results of dry and hydrothermalruns. Two-pyroxene mixtures which crystallize within the solvusin dry runs form cryptoperthites, and X-ray methods must beused to determine their compositions and locate the boundariesof the solvus. Mg-rich and Ca-rich pyroxenes can, however, bedistinguished in well-crystallized hydrothermal runs by opticaltechniques. The results obtained indicate that solid solution along thisjoin is more restricted than was found by Atlas (1952). Thesolvus intersects the solidus over a composition interval of42 wt per cent. Additional data on the rhombic enstatite protoenstatiteinversion are consistent with Atlas's value of 985??10?C. Thisinversion has proved to be very sensitive to pressure, and thedT/dP slope of the transition is 84??10?/kb. The crystallization of natural pyroxenes from basaltic magmasis reviewed in the light of the experimental data. The solidsolution shown by Fe-poor pyroxene pairs from layered intrusionssuch as the Skaergaard is remarkably restricted. The temperatureof crystallization of these pyroxenes as deduced from the solvuson the join MgSiO3—CaMgSi2O6 is about 1000? C. In makingthis estimate it is assumed that any subsolidus exsolution hasnot proceeded beyond the stage of lamellae formation. This temperatureis below the dry solidus of basalt, and the result indicatesthat either the solid solution shown by these natural pyroxenesis influenced by impurities such as Al or Fe', or the meltinginterval of the magmas which formed the intrusions was loweredby a substantial vapor pressure of H2O. It is suggested that pyroxenes which have crystallized fromextrusive basalts and which have compositions that plot in thecentral portion of the pyroxene quadrilateral are metastablesolid solutions formed by quick cooling. Available informationis not sufficient to clarify the relationship between pigeoniteand the various polymorphs of MgSiO3. It is probable, however,that there is a first-order inversion between pigeonite andprotoenstatite, and possible phase relations between these formsin the system MgSiO3—FeSiO3 are discussed.  相似文献   

15.
Seeded, solid-media piston-cylinder runs of unusually long duration up to 31 days indicate growth or persistence of synthetic gedrite of the composition □Mg6Al[AlSi7O22](OH)2(=6:1:7), prepared from the purest chemicals available, at 10 kbar water pressure and 800 °C. Conversely, breakdown was observed at 11 kbar and 850 °C to aluminous enstatite, Al2SiO5, and a melt of the composition MgO·Al2O3·8SiO2. Thus, pure gedrite free of iron, sodium, and calcium is likely to have only a small PT stability field in the MASH system, estimated as 10 ± 1 kbar, 800 ± 20 °C, even though metastable growth of gedrite can be observed over a larger PT range. A second starting material with the anhydrous composition 5MgO · 2Al2O3 · 6SiO2 also yielded gedrite of the composition 6:1:7, together with more aluminous phases such as kyanite, corundum or sapphirine, thus suggesting that the end-member gedrite defined as □Mg5Al2[Al2Si6O22](OH)2(=5:2:6) by the IMA Commission on New Minerals and Mineral Names probably does not exist. With the use of this second starting material, which contains FeNaCa impurities, growth of 6:1:7-gedrite was observed over a still wider PT-range. Seeded runs indicate that the true stability field of such slightly impure 6:1:7-gedrites may also be larger than that of the pure MASH phase and extend at least to 15 kbar, 800 °C. There is, thus, a remarkable stabilization effect on the orthoamphibole structure by impurities amounting only to a total of less than one weight percent of oxides in the starting material. The gedrites synthesized are structurally well ordered amphiboles nearly free of chain multiplicity faults, as revealed by HRTEM. The X-ray diffraction work on the gedrites synthesized yielded the smallest cell volume yet reported for this phase. The small stability field of the pure MASH gedrite is intersected by the upper pressure stability limit of hydrous cordierite for excess-H2O conditions, thus leading to complicated phase relations for both gedrite and cordierite involving the additional phases aluminous enstatite, talc, quartz, Al2SiO5, melt and perhaps boron-free kornerupine. Received: 29 July 1998 / Accepted: 7 January 1999  相似文献   

16.
The effects of small amounts of H2O (<4 wt % in the melt)on the multiply saturated partial melting of spinel lherzolitein the system CaO–MgO–Al2O3–SiO2 ±Na2O ± CO2 have been determined at 1·1 GPa inthe piston-cylinder apparatus. Electron microprobe analysisand Fourier transform infrared spectroscopy were used to analysethe experimental products. The effects of H2O are to decreasethe melting temperature by 45°C per wt % H2O in the melt,to increase the Al2O3 of the melts, decrease MgO and CaO, andleave SiO2 approximately constant, with melts changing fromolivine- to quartz-normative. The effects of CO2 are insignificantat zero H2O, but become noticeable as H2O increases, tendingto counteract the H2O. The interaction between H2O and CO2 causesthe solubility of CO2 at vapour saturation to increase withincreasing H2O, for small amounts of H2O. Neglect of the influenceof CO2 in some previous studies on the hydrous partial meltingof natural peridotite may explain apparent inconsistencies betweenthe results. The effect of small amounts of H2O on multiplysaturated melt compositions at 1·1 GPa is similar tothat of K2O, i.e. increasing H2O or K2O leads to quartz-normativecompositions, but increasing Na2O produces an almost oppositetrend, towards nepheline-normative compositions. KEY WORDS: H2O; CO2; FTIR; hydrous partial melting; mantle melting; spinel lherzolite; system CaO–MgO–Al2O3–SiO2 ± H2O ± CO2 ± Na2O  相似文献   

17.
We investigated phase equilibria in the six-component systemNa2O–K2O–Al2O3–SiO2–F2O–1–H2Oat 100 MPa to characterize differentiation paths of naturalfluorine-bearing granitic and rhyolitic magmas. Topaz and cryoliteare stable saturating solid phases in calcium-poor systems.At 100 MPa the maximum solidus depression and fluorine solubilityin evolving silicic melts are controlled by the eutectics haplogranite–cryolite–H2Oat 640°C and 4 wt % F, and haplogranite–topaz–H2Oat 640°C and 2 wt % F. Topaz and cryolite form a binaryperalkaline eutectic at 660°C, 100 MPa and fluid saturation.The low-temperature nature of this invariant point causes displacementof multiphase eutectics with quartz and alkali feldspar towardsthe topaz–cryolite join and enables the silicate liquidusand cotectic surfaces to extend to very high fluorine concentrations(more than 30 wt % F) for weakly peraluminous and subaluminouscompositions. The differentiation of fluorine-bearing magmasfollows two distinct paths of fluorine behavior, depending onwhether additional minerals buffer the alkali/alumina ratioin the melt. In systems with micas or aluminosilicates thatbuffer the activity of alumina, magmatic crystallization willreach either topaz or cryolite saturation and the system solidifiesat low fluorine concentration. In leucogranitic suites precipitatingquartz and feldspar only, the liquid line of descent will reachtopaz or cryolite but fluorine will continue to increase untilthe quaternary eutectic with two fluorine-bearing solid phasesis reached at 540°C, 100 MPa and aqueous-fluid saturation.The maximum water solubility in the haplogranitic melts increaseswith the fluorine content and reaches 12· 5 ±0· 5 wt % H2O at the quartz–cryolite–topazeutectic composition. A continuous transition between hydrousfluorosilicate melts and solute-rich aqueous fluids is not documentedby this study. Our experimental results are applicable to leucocraticfluorosilicic magmas. In multicomponent systems, however, thepresence of calcium may severely limit enrichment of fluorineby crystallization of fluorite. KEY WORDS: granite; rhyolite; topaz; cryolite; magmatic differentiation  相似文献   

18.
The compositions of multiply saturated partial melts are valuablefor the thermodynamic information that they contain, but aredifficult to determine experimentally because they exist onlyover a narrow temperature range at a given pressure. Here wetry a new approach for determining the composition of the partialmelt in equilibrium with olivine, orthopyroxene, clinopyroxeneand spinel (Ol + Opx + Cpx + Sp + Melt) in the system CaO–MgO–Al2O3–SiO2(CMAS) at 1·1 GPa: various amounts of K2O are added tothe system, and the resulting melt compositions and temperatureare extrapolated to zero K2O. The ‘sandwich’ experimentalmethod was used to minimize problems caused by quench modification,and Opx and Cpx were previously synthesized at conditions nearthose of the melting experiments to ensure they had appropriatecompositions. Results were then checked by reversal crystallizationexperiments. The results are in good agreement with previouswork, and establish the anhydrous solidus in CMAS to be at 1320± 10°C at 1·1 GPa. The effect of K2O is todepress the solidus by 5·8°C/wt %, while the meltcomposition becomes increasingly enriched in SiO2, being quartz-normativeabove 4 wt % K2O. Compared with Na2O, K2O has a stronger effectin depressing the solidus and modifying melt compositions. Theisobaric invariant point in the system CMAS–K2O at whichOl + Opx + Cpx + Sp + Melt is joined by sanidine (San) is at1240 ± 10°C. During the course of the study severalother isobaric invariant points were identified and their crystaland melt compositions determined in unreversed experiments:Opx + Cpx + Sp + An + Melt in the system CMAS at 1315 ±10°C; in CMAS–K2O, Opx + Cpx + Sp + An + San + Meltat 1230 ± 10°C and Opx + Sp + An + San + Sapph +Melt at 1230 ± 10°C, where An is anorthite and Sapphis sapphirine. Coexisting San plus An in three experiments helpdefine the An–San solvus at 1230–1250°C. KEY WORDS: feldspar solvus; igneous sapphirine; mantle solidus; partial melting; systems CMAS and CMAS–K2O  相似文献   

19.
The hornblende garbenschist horizon of the Lower Schieferhulleseries (LSH) in the SW Tauern Window, Austria, contains theassemblage hornblende + kyanite + staurolite + garnet + biotite+ epidote + plagioclase + ankerite + quartz + rutile + ilmenite,with either chlorite or paragonite present in all samples. Theseassemblages are divariant in the system SiO2-Al2O3-TiO2-Fe2O3-MgO-FeO-MnO-CaO-Na2O-K2O-H2O-CO2.Garnet-biotite geothermometry yields temperatures of final equilibrationof {small tilde}550 °C, and garnet-plagioclase-kyanite-quartzgeobarometry indicates pressures of 6–8 kb for the matrixassemblage and 9–10 kb for plagioclase inclusions in garnet.Quantitative modelling of zoned garnet, hornblende, and plagioclaseindicates growth and equilibration along a decompression pathfrom {small tilde}530 °C, 10 kb to {small tilde}550 °C,7 kb. Fluid inclusion data constrain the uplift path to havepassed through a point at {small tilde} 375 °C, 1.5 kb. These data permit the construction of a relatively completeP-T loop for metamorphism associated with the Alpine orogeniccycle in the LSH of the SW Tauern Window. The maximum pressureconditions ({small tilde}10 kb at 530 °C) recorded alongthis loop are considerably higher than previous estimates of5–7 kb for the region. Simple overthrust models developedfor the Tauern Window cannot account for pressures of this magnitude;a more likely scenario involves partial subduction of the rocksto a depth of {small tilde}35 km, followed by prolonged heatingin response to decay of the subduction isotherms. Initial upliftappears to have been rapid and occurred along a nearly isothermalpath. Significant cooling did not occur until the rocks werewithin {small tilde}5 km of the surface. Detailed tectonic modelsfor the evolution of the Tauern Window must be able to accountfor the quantitative features of the P-T loop.  相似文献   

20.
The stability of chloritoid, FeAl2SiO6H2O, was investigatedat fluid pressures less than 10 kb. At oxygen fugacities definedby the Ni-NiO buffer, chloritoid reacts to Fe-cordierite andhercynite spinel at 550 and 575 °C at 1 and 2 kb fluid pressure.At pressures between 2.5 and 3.5 kb the assemblage aluminousferro-anthophyllite, staurolite and hercynite spinel appears.The breakdown of chloritoid to this assemblage takes place at625, 650, and 675 °C at 5.5, 7.0, and 8.7 kb, respectively.The aluminous ferro-anthophyllite assemblage is stable onlyover 50 °C, reacting with increasing temperature to almandine,staurolite, and hercynite spinel. Under the QFM buffer, thesame equilibria are displaced to higher temperatures and thealuminous ferro-anthophyllite bearing field is further restrictedwith respect to temperature. The 7 Å chamosite assemblage,previously considered to be the metastable equivalent of chloritoidat low pressures, is shown to be unstable and chloritoid canbe synthesized at pressures as low as 1 kb. An analysis of the equilibria and related experimental datapermits the construction of a schematic P-T grid which outlinesthe stability limits of several important mineral assemblagesin this system. Although the experimental and natural systemsare not strictly analogous, there is an excellent degree ofcorrespondence between the defined upper limit of chloritoidstability and previous estimates of the facies boundaries itserves to define.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号