首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We use the Millennium Simulation, a large, high-resolution N -body simulation of the evolution of structure in a Λ cold dark matter cosmology, to study the properties and fate of substructures within a large sample of dark matter haloes. We find that the subhalo mass function departs significantly from a power law at the high-mass end. We also find that the radial and angular distributions of substructures depend on subhalo mass. In particular, high-mass subhaloes tend to be less radially concentrated and to have angular distributions closer to the direction perpendicular to the spin of the host halo than their less massive counterparts. We find that mergers between subhaloes occur. These tend to be between substructures that were already dynamically associated before accretion into the main halo. For subhaloes larger than 0.001 times the mass of the host halo, it is more likely that the subhalo will merge with the central or main subhalo than with another subhalo larger than itself. For lower masses, subhalo–subhalo mergers become equally likely to mergers with the main subhalo. Our results have implications for the variation of galaxy properties with environment and for the treatment of mergers in galaxy formation models.  相似文献   

2.
We use very large cosmological N -body simulations to obtain accurate predictions for the two-point correlations and power spectra of mass-limited samples of galaxy clusters. We consider two currently popular cold dark matter (CDM) cosmogonies, a critical density model ( τ CDM) and a flat low density model with a cosmological constant (ΛCDM). Our simulations each use 109 particles to follow the mass distribution within cubes of side 2  h −1 Gpc ( τ CDM) and 3  h −1 Gpc (ΛCDM) with a force resolution better than 10−4 of the cube side. We investigate how the predicted cluster correlations increase for samples of increasing mass and decreasing abundance. Very similar behaviour is found in the two cases. The correlation length increases from     for samples with mean separation     to     for samples with     The lower value here corresponds to τ CDM and the upper to ΛCDM. The power spectra of these cluster samples are accurately parallel to those of the mass over more than a decade in scale. Both correlation lengths and power spectrum biases can be predicted to better than 10 per cent using the simple model of Sheth, Mo & Tormen. This prediction requires only the linear mass power spectrum and has no adjustable parameters. We compare our predictions with published results for the automated plate measurement (APM) cluster sample. The observed variation of correlation length with richness agrees well with the models, particularly for ΛCDM. The observed power spectrum (for a cluster sample of mean separation     ) lies significantly above the predictions of both models.  相似文献   

3.
In the standard model of cosmic structure formation, dark matter haloes form by gravitational instability. The process is hierarchical: smaller systems collapse earlier, and later merge to form larger haloes. The galaxy clusters, hosted by the largest dark matter haloes, are at the top of this hierarchy and representing the largest as well as the last structures formed in the Universe, while the smaller and first haloes are those Earth-sized dark subhaloes that have been both predicted by theoretical considerations and found in numerical simulations, though there do not exist any observational hints of their existence. The probability that a halo of mass m at redshift z will be part of a larger halo of mass M at the present time can be described in the frame of the extended Press & Schecter theory making use of the progenitor (conditional) mass function. Using the progenitor mass function, we calculate analytically, at redshift zero, the distribution of subhaloes in mass, formation epoch and rarity of the peak of the density field at the formation epoch. That is done for a Milky Way size system, assuming both a spherical and an ellipsoidal collapse model. Our calculation assumes that small progenitors do not lose mass due to dynamical processes after entering the parent halo, and that they do not interact with other subhaloes. For a Λ cold dark matter power spectrum, we obtain a subhalo mass function  d n /d m   proportional to   m −α  with a model-independent  α∼ 2  . Assuming that the dark matter is a weakly interacting massive particle, the inferred distributions are used to test the feasibility of an indirect detection in the γ-ray energy band of such a population of subhaloes with a Gamma-ray Large Area Space Telescope like satellite.  相似文献   

4.
We present a comparison of the statistical properties of dark matter halo merger trees extracted from the Millennium Simulation with Extended Press–Schechter (EPS) formalism and the related galform Monte Carlo method for generating ensembles of merger trees. The volume, mass resolution and output frequency make the Millennium Simulation a unique resource for the study of the hierarchical growth of structure. We construct the merger trees of present-day friends-of-friends groups and calculate a variety of statistics that quantify the masses of their progenitors as a function of redshift, accretion rates, and the redshift distribution of their most recent major merger. We also look in the forward direction and quantify the present-day mass distribution of haloes into which high-redshift progenitors of a specific mass become incorporated. We find that the EPS formalism and its Monte Carlo extension capture the qualitative behaviour of all these statistics, but as redshift increases they systematically underestimate the masses of the most massive progenitors. This shortcoming is worst for the Monte Carlo algorithm. We present a fitting function to a scaled version of the progenitor mass distribution and show how it can be used to make more accurate predictions of both progenitor and final halo mass distributions.  相似文献   

5.
6.
7.
A model of the gravitationally evolved dark matter distribution, in the Eulerian space, is developed. It is a simple extension of the excursion set model that is commonly used to estimate the mass function of collapsed dark matter haloes. In addition to describing the evolution of the Eulerian space distribution of the haloes, the model allows one to describe the evolution of the dark matter itself. It can also be used to describe density profiles, on scales larger than the virial radius of these haloes, and to quantify the way in which matter flows in and out of Eulerian cells. When the initial Lagrangian space distribution is white noise Gaussian, the model suggests that the Inverse Gaussian distribution should provide a reasonably good approximation to the evolved Eulerian density field, in agreement with numerical simulations. Application of this model to clustering from more general Gaussian initial conditions is discussed at the end.  相似文献   

8.
Using high-resolution cosmological N -body simulations, we investigate the survival of dark matter satellites falling into larger haloes. Satellites preserve their identity for some time after merging. We compute their loss of mass, energy and angular momentum as they are dissolved by dynamical friction, tidal forces and collisions with other satellites. We also analyse the evolution of their internal structure. Satellites with less than a few per cent of the mass of the main halo may survive for several billion years, whereas larger satellites rapidly sink into the centre of the main halo potential well and lose their identity. Penetrating encounters between satellites are frequent and may lead to significant mass loss and disruption. Only a minor fraction of cluster mass (10–15 per cent on average) is bound to substructure at most redshifts of interest. We discuss the application of these results to the survival and extent of dark matter haloes associated with galaxies in clusters, and to their interactions. We find that a minor fraction of galaxy-size dark matter haloes are disrupted by redshift z  = 0. The fraction of satellites undergoing close encounters is similar to the observed fraction of interacting or merging galaxies in clusters at moderate redshift.  相似文献   

9.
We explore the dependence of the central logarithmic slope of dark matter halo density profiles α on the spectral index n of the linear matter power spectrum P ( k ) using cosmological N -body simulations of scale-free models [i.e. P ( k ) ∝ k n ]. These simulations are based on a set of clear, reproducible and physically motivated criteria that fix the appropriate starting and stopping times for runs, and allow one to compare haloes across models with different spectral indices and mass resolutions. For each of our simulations we identify samples of well-resolved haloes in dynamical equilibrium and we analyse their mass profiles. By parametrizing the mass profile using a 'generalized' Navarro, Frenk & White profile in which the central logarithmic slope α is allowed to vary while preserving the r −3 asymptotic form at large radii, we obtain preferred central slopes for haloes in each of our models. There is a strong correlation between α and n , such that α becomes shallower as n becomes steeper. However, if we normalize our mass profiles by r −2, the radius at which the logarithmic slope of the density profile is −2, we find that these differences are no longer present. This is apparent if we plot the maximum slope     as a function of r / r −2– we find that the profiles are similar for haloes forming in different n models. This reflects the importance of concentration, and reveals that the concentrations of haloes forming in steep- n cosmologies tend to be smaller than those of haloes forming in shallow- n cosmologies. We conclude that there is no evidence for convergence to a unique central asymptotic slope, at least on the scales that we can resolve.  相似文献   

10.
11.
If the dark matter particle is a neutralino, then the first structures to form are cuspy cold dark matter (CDM) haloes collapsing after redshifts   z ≈ 100  in the mass range  10−6–10−3 M  . We carry out a detailed study of the survival of these microhaloes in the Galaxy as they experience tidal encounters with stars, molecular clouds, and other dark matter substructures. We test the validity of analytic impulsive heating calculations using high-resolution N -body simulations. A major limitation of analytic estimates is that mean energy inputs are compared to mean binding energies, instead of the actual mass lost from the system. This energy criterion leads to an overestimate of the stripped mass and an underestimate of the disruption time-scale, since CDM haloes are strongly bound in their inner parts. We show that a significant fraction of material from CDM microhaloes can be unbound by encounters with Galactic substructure and stars; however, the cuspy central regions remain relatively intact. Furthermore, the microhaloes near the solar radius are those which collapse significantly earlier than average and will suffer very little mass-loss. Thus, we expect a fraction of surviving bound microhaloes, a smooth component with narrow features in phase space, which may be uncovered by direct detection experiments, as well as numerous surviving cuspy cores with proper motions of arcminutes per year, which can be detected indirectly via their annihilation into gamma-rays.  相似文献   

12.
We present a new Monte Carlo algorithm to generate merger trees describing the formation history of dark matter haloes. The algorithm is a modification of the algorithm of Cole et al. used in the galform semi-analytic galaxy formation model. As such, it is based on the Extended Press–Schechter theory and so should be applicable to hierarchical models with a wide range of power spectra and cosmological models. It is tuned to be in accurate agreement with the conditional mass functions found in the analysis of merger trees extracted from the Λ cold dark matter Millennium N -body simulation. We present a comparison of its predictions not only with these conditional mass functions, but also with additional statistics of the Millennium Simulation halo merger histories. In all cases, we find it to be in good agreement with the Millennium Simulation and thus it should prove to be a very useful tool for semi-analytic models of galaxy formation and for modelling hierarchical structure formation in general. We have made our merger tree generation code and code to navigate the trees available at http://star-www.dur.ac.uk/~cole/merger_trees .  相似文献   

13.
14.
15.
We use an extremely large volume  (2.4  h −3 Gpc3)  , high-resolution N -body simulation to measure the higher order clustering of dark matter haloes as a function of mass and internal structure. As a result of the large simulation volume and the use of a novel 'cross-moment' counts-in-cells technique which suppresses discreteness noise, we are able to measure the clustering of haloes corresponding to rarer peaks than was possible in previous studies; the rarest haloes for which we measure the variance are 100 times more clustered than the dark matter. We are able to extract, for the first time, halo bias parameters from linear up to fourth order. For all orders measured, we find that the bias parameters are a strong function of mass for haloes more massive than the characteristic mass   M *  . Currently, no theoretical model is able to reproduce this mass dependence closely. We find that the bias parameters also depend on the internal structure of the halo up to fourth order. For haloes more massive than   M *  , we find that the more concentrated haloes are more weakly clustered than the less concentrated ones. We see no dependence of clustering on concentration for haloes with masses   M < M *  ; this is contrary to the trend reported in the literature when segregating haloes by their formation time. Our results are insensitive to whether haloes are labelled by the total mass returned by the friends-of-friends group finder or by the mass of the most massive substructure. This implies that our conclusions are not an artefact of the particular choice of group finding algorithm. Our results will provide important input to theoretical models of galaxy clustering.  相似文献   

16.
N -body simulations predict that cold dark matter (CDM) halo-assembly occurs in two phases: (i) a fast-accretion phase with a rapidly deepening potential well; and (ii) a slow-accretion phase characterized by a gentle addition of mass to the outer halo with little change in the inner potential well. We demonstrate, using one-dimensional simulations, that this two-phase accretion leads to CDM haloes of the Navarro, Frenk & White (NFW) form and provides physical insight into the properties of the mass-accretion history that influence the final profile. Assuming that the velocities of CDM particles are effectively isotropized by fluctuations in the gravitational potential during the fast-accretion phase, we show that gravitational collapse in this phase leads to an inner profile  ρ( r ) ∝ r −1  . Slow accretion on to an established potential well leads to an outer profile with  ρ( r ) ∝ r −3  . The concentration of a halo is determined by the fraction of mass that is accreted during the fast-accretion phase. Using an ensemble of realistic mass-accretion histories, we show that the model predictions of the dependence of halo concentration on halo formation time and, hence, the dependence of halo concentration on halo mass, and the distribution of halo concentrations all match those found in cosmological N -body simulations. Using a simple analytic model that captures much of the important physics, we show that the inner   r −1  profile of CDM haloes is a natural result of hierarchical mass assembly with an initial phase of rapid accretion.  相似文献   

17.
18.
19.
We use the extended Press–Schechter formalism to investigate the rate at which cold dark matter haloes accrete mass. We discuss the shortcomings of previous methods that have been used to compute the mass accretion histories of dark matter haloes, and present an improved method based on the N -branch merger tree algorithm of Somerville & Kolatt. We show that this method no longer suffers from inconsistencies in halo formation times, and compare its predictions with high-resolution N -body simulations. Although the overall agreement is reasonable, there are slight inconsistencies which are most easily interpreted as a reflection of ellipsoidal collapse (as opposed to spherical collapse assumed in the Press–Schechter formalism). We show that the average mass accretion histories follow a simple, universal profile, and we present a simple recipe for computing the two scale-parameters which is applicable to a wide range of halo masses and cosmologies. Together with the universal profiles for the density and angular momentum distributions of cold dark matter haloes, these universal mass accretion histories provide a simple but accurate framework for modelling the structure and formation of dark matter haloes. In particular, they can be used as a backbone for modelling various aspects of galaxy formation where one is not interested in the detailed effects of merging. As an example we use the universal mass accretion history to compute the rate at which dark matter haloes accrete mass, which we compare with the cosmic star formation history of the Universe.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号