首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— The Noblesville meteorite is a genomict, regolith breccia (H6 clasts in H4 matrix). Mössbauer analysis confirms that Noblesville is unusually fresh, not surprising in view of its recovery immediately after its fall. It resembles “normal” H4–6 chondrites in its chemical composition and induced thermoluminescence (TL) levels. Thus, at least in its contents of volatile trace elements, Noblesville differs from other H chondrite, class A regolith breccias. Noblesville's small pre-atmospheric mass and fall near Solar maximum and/or its peculiar orbit (with perihelion <0.8 AU as shown by natural TL intensity) may partly explain its levels of cosmogenic radionuclides. Its cosmic ray exposure age of ~ 44 Ma, is long, is equalled or exceeded by <3% of all H chondrites, and also differs from the 33 ± 3 Ma mean exposure age peak of other H chondrite regolith breccias. One whole-rock aliquot has a high, but not unmatched, 129Xe/132Xe of 1.88. While Noblesville is now among the chondritic regolithic breccias richest in solar gases, elemental ratios indicate some loss, especially of He, perhaps b; impacts in the regolith that heated individual grains. While general shock-loading levels in Noblesville did not exceed 4 GPa, individual clasts record shock levels of 5–10 GPa, doubtless acquired prior to lithification of the whole-rock meteoroid.  相似文献   

2.
Abstract— With the recent realization that some meteorites may come from Mars and the Moon, it is worthwhile to consider whether meteorites from Mercury could exist in our collections and, if so, whether they could be recognized. The current state of ignorance about Mercury both increases the potential scientific value of mercurian meteorites and aggravates the problem of identifying them. Here, we review evidence supporting the possibility of impact launch and subsequent orbital evolution that could deliver rocks from Mercury to Earth and suggest criteria that could help identify a mercurian meteorite. Mercurian rocks are probably differentiated igneous rocks or breccias or melt rocks derived therefrom. Solar nebula models suggest that they are probably low in volatiles and moderately enriched in Al, Ti, and Ca oxides. Mercurian surface rocks contain no more than 5% FeO and may contain plagioclase. A significant fraction may be volcanic. They may possess an unusual isotopic composition. Most pristine mercurian rocks should have solidification ages of ~3.7 to ~4.4 Ga, but younger impact-remelted materials are possible. Because we know more about the space environment of Mercury than we do about the planet itself, surface-exposed rocks would be easiest to identify as mercurian. The unique solar-to-galactic cosmic-ray damage track ratio expected in materials exposed near the Sun may be useful in identifying a rock from Mercury. Mercury's magnetic field stands off the solar wind, so that solar-wind implants in mercurian regolith breccias may be scarce or fractionated compared to lunar ones. Mercurian regolith breccias should contain more agglutinates (or their recrystallized derivatives) and impact vapor deposits than any other and should show a higher fraction of exogenic chondritic materials than analogous lunar breccias. No known meteorite group matches these criteria. A misclassified mercurian meteorite would most likely be found among the aubrites or the anorthositic lunar meteorites.  相似文献   

3.
Abstract— Characteristics of the regolith of Cayley plains as sampled at the Apollo 16 lunar landing site are reviewed and new compositional data are presented for samples of <1 mm fines (“soils”) and 1–2 mm regolith particles. As a means of determining which of the many primary (igneous) and secondary (crystalline breccias) lithologic components that have been identified in the soil are volumetrically important and providing an estimate of their relative abundances, more than 3 × 106 combinations of components representing nearly every lithology that has been observed in the Apollo 16 regolith were systematically tested to determine which combinations best account for the composition of the soils. Conclusions drawn from the modeling include the following. At the site, mature soil from the Cayley plains consists of 64.5% ± 2.7% components representing “prebasin” materials: anorthosites, feldspathic breccias, and a small amount (2.6% ± 1.5% of total soil) of nonmare, mafic plutonic rocks, mostly gabbronorites. On average, these components are highly feldspathic, with average concentrations of 31–32% Al2O3 and 2–3% FeO and a molar Mg/(Mg + Fe) ratio of 0.68. The remaining 36% of the regolith is syn- and postbasin material: 28.8% ± 2.4% mafic impact-melt breccias (MIMBs, i.e., “LKFM” and “VHA basalts”) created at the time of basin formation, 6.0% ± 1.4% mare-derived material (impact and volcanic glass, crystalline basalt) with an average TiO2 concentration of 2.4%, and 1% postbasin meteoritic material. The MIMBs are the principal (80–90%) carrier of incompatible trace elements (rare earths, Th, etc.) and the carrier of about one-half of the siderophile elements and elements associated with mafic mineral phases (Fe, Mg, Mn, Cr, Sc). Most (71%) of the Fe in the present regolith derives from syn- and postbasin sources (MIMBs, mare-derived material, and meteorites). Thus, although the bulk composition of the Apollo 16 regolith is nominally that of noritic anorthosite, the noritic part (the MIMBs) and the anorthositic part (the prebasin components) are largely unrelated. There is compositional evidence that 3–4% of the soil is Th-rich material such as that occurring at the Apollo 14 site, and one fragment of this type was found among the small regolith particles studied here. If regolith such as that represented by the Apollo 16 ancient regolith breccias was a protolith of the present regolith, such regolith cannot exceed ~71% of the present regolith; the rest must be material added or redistributed since closure of the ancient regolith breccias. The postclosure material includes the mare-derived material and the Apollo-14-like component. Compositions of all mature surface soils from Apollo 16, even those collected 4 km apart on the Cayley plains, are very similar, which is in stark contrast to the wide compositional range of the lithologies of which the soil is composed. This uniformity indicates that the ratio of MIMBs to feldspathic prebasin components is not highly variable in the megaregolith over distances of a few kilometers, that there are no large, subsurface concentrations of “pure” mafic impact-melt breccia, and that the intimate mixing is inherent to the Cayley plains at a gross scale. Thus, the mixing of mafic impact-melt breccias and feldspathic prebasin components must have occurred during formation and deposition of the Cayley plains; such uniformity could not have been achieved by small postdeposition impacts into a stratified megaregolith. Using this conclusion as one constraint, and the known distribution of Th on the lunar surface as another, and the assumption that the Imbrium impact is primarily responsible for formation of the Cayley plains, arguments are presented that the Apollo 16 MIMBs derive from the Imbrium region, and, consequently, that one-fourth of the Apollo 16 regolith is primary Imbrium ejecta in the form of mafic impact-melt breccias.  相似文献   

4.
Abstract— Through analysis by instrumental neutron activation (INAA) of 789 individual lithic fragments from the 2 mm–4 mm grain-size fractions of five Apollo 17 soil samples (72443, 72503, 73243, 76283, and 76503) and petrographic examination of a subset, we have determined the diversity and proportions of rock types recorded within soils from the highland massifs. The distribution of rock types at the site, as recorded by lithic fragments in the soils, is an alternative to the distribution inferred from the limited number of large rock samples. The compositions and proportions of 2 mm–4 mm fragments provide a bridge between compositions of <1 mm fines, and types and proportions of rocks observed in large collected breccias and their clasts. The 2 mm–4 mm fraction of soil from South Massif, represented by an unbiased set of lithic fragments from station-2 samples 72443 and 72503, consists of 71% noritic impact-melt breccia, 7% incompatible-trace-element-(ITE)-poor highland rock types (mainly granulitic breccias), 19% agglutinates and regolith breccias, 1% high-Ti mare basalt, and 2% others (very-low-Ti (VLT) basalt, monzogabbro breccia, and metal). In contrast, the 2 mm–4 mm fraction of a soil from the North Massif, represented by an unbiased set of lithic fragments from station-6 sample 76503, has a greater proportion of ITE-poor highland rock types and mare-basalt fragments: it consists of 29% ITE-poor highland rock types (mainly granulitic breccias and troctolitic anorthosite), 25% impact-melt breccia, 13% high-Ti mare basalt, 31% agglutinates and regolith breccias, 1% orange glass and related breccia, and 1% others. Based on a comparison of mass-weighted mean compositions of the lithic fragments with compositions of soil fines from all Apollo 17 highland stations, differences between the station-2 and station-6 samples are representative of differences between available samples from the two massifs. From the distribution of different rock types and their compositions, we conclude the following: (1) North-Massif and South-Massif soil samples differ significantly in types and proportions of ITE-poor highland components and ITE-rich impact-melt-breccia components. These differences reflect crudely layered massifs and known local geology. The greater percentage of impact-melt breccia in the South-Massif light-mantle soil stems from derivation of the light mantle from the top of the massif, which apparently is richer in noritic impact-melt breccia than are lower parts of the massifs. (2) At station 2, the 2 mm–4 mm grain-size fraction is enriched in impact-melt breccias compared to the <1 mm fraction, suggesting that the <1 mm fraction within the light mantle has a greater proportion of lithologies such as granulitic breccias which are more prevalent lower in the massifs and which we infer to be older (pre-basin) highland components. (3) Soil from station 6, North Massif, contains magnesian troctolitic anorthosite, which is a component that is rare in station-2 South-Massif soils. (4) Compositional differences between poikilitic impact-melt breccias from the two massifs suggest broad-scale heterogeneity in impact-melt breccia interpreted by most investigators to be ejecta from the Serenitatis basin. We have found rock types not previously recognized or uncommon at the Apollo 17 site. These include (1) ITE-rich impact-melt breccias that are compositionally distinct from previously recognized “aphanitic” and “poikilitic” groups at Apollo 17; (2) regolith breccias that are free of mare components and poor in impact melt of the types associated with the main melt-breccia groups, and that, if those groups derive from the Serenitatis impact, may represent the pre-Serenitatis surface; (3) several VLT basalts, including an unusual very-high-K basaltic breccia; (4) orange-glass regolith breccias; (5) aphanitic-matrix melt breccias at station 6; (6) fragments of alkali-rich composition, including alkali anorthosite, and monzogabbro; (7) one fragment of 72275-type KREEP basalt from station 3; (8) seven lithic fragments of ferroan-anorthositic-suite rocks; and (9) a fragment of metal, possibly from an L chondrite. Some of these lithologies have been found only as lithic fragments in the soils and not among the large rock samples. In contrast, we have not found among the 2 mm–4 mm lithic fragments individual samples of certain lithologies that have been recognized as clasts in breccias (e.g., dunite and spinel troctolite). The diversity of lithologic information contained in the lithic fragments of these soils nearly equals that found among large rock samples, and most information bearing on petrographic relationships is maintained, even in such small samples. Given a small number of large samples for “petrologic ground truth,” small lithic fragments contained in soil “scoop” samples can provide the basis for interpreting the diversity of rock types and their proportions in remotely sensed geologic units. They should be considered essential targets for future automated sample-analysis and sample-return missions.  相似文献   

5.
Our survey of type 4–6 ordinary chondrites indicates that gas-poor, melt-rock and/or exotic clast-bearing fragmental breccias constitute 5%, 22% and 23%, respectively, of H, L and LL chondrites. These abundances contrast with the percentages of solar-gas-rich regolith breccias among ordinary chondrites: H (14%), L (3%) and LL (8%) (Crabb and Schultz, 1981). Petrologic study of several melt-rock-clast-bearing fragmental breccias indicates that some acquired their clasts prior to breccia metamorphism and others acquired them after metamorphism of host material. In general, the melt-rock clasts in gas-poor H chondrite fragmental breccias were acquired after breccia metamorphism and were probably formed by impacts into boulders or exposed outcrops of H4-6 material in the H chondrite parent body regolith. In contrast, most of the melt-rock clasts in gas-poor L and LL fragmental breccias were acquired prior to breccia metamorphism. The low abundance of regolith breccias among L chondrites and evidence that at least two-thirds of the L chondrites suffered a major shock event 0.5 Gyr ago, suggest that the L parent body may have been disrupted by a major collision at that time and that the remaining parent body fragments were too small to develop substantial regoliths (e.g., Heymann, 1967; Crabb and Schultz, 1981). Such a disruption would have exposed a large amount of L chondrite bedrock, some of which would consist of fragmental breccias that acquired melt-rock clasts very early in solar system history, prior to metamorphism. The exposed bedrock would serve as a potential target for sporadic meteoroid impacts to produce a few fragmental breccias with unmetamorphosed melt-rock clasts. The high proportion of genomict brecciated LL chondrites reflects a complex collisional history, probably including several episodes of parent body disruption and gravitational reassembly. Differences in the abundances of different kinds of breccias among the ordinary chondrite groups are probably due to the stochastic nature of major asteroidal collisions.  相似文献   

6.
Abstract— We report the noble gas isotopic abundances of five dimict breccias and one cataclastic anorthosite that were collected at the Apollo 16 landing site. Orbital and surface photographs indicate that rays from South Ray crater, an almost 1 km wide young crater in the Cayley plains, extend several kilometers from their source into the area that was sampled by the Apollo 16 mission. Previous studies have shown that South Ray crater formed 2 Ma ago and that a large number of rocks might originate from this cratering event. On the basis of cosmic-ray produced nuclei, we find that the six rocks investigated in this work yield the same lunar surface exposure age. Using literature data, we recalculate the exposure ages of additional 16 rocks with suspected South Ray crater origin and obtain an average exposure age of 2.01 ± 0.10 Ma. In particular, all nine dimict breccias (a type of rock essentially restricted to the Apollo 16 area consisting of anorthosite and breccia phases) dated until now yield an average ejection age of 2.06 ± 0.17 Ma. We conclude that they must originate from the Cayley formation or from bedrock underlying the Cayley plain. We determined the gas retention ages for the dimict breccias based on the 40K-40Ar and U,Th-136Xe dating methods: rock 64425 yields a 40K-40Ar age of 3.96 Ga and rock 61016 a U,Th-136Xe age of 3.97 Ga. These results, together with 39Ar-40Ar ages obtained by other workers for rocks 64535 (3.98 Ga) and 64536 (3.97 Ga), show that the dimict breccias formed 3.97 Ga ago.  相似文献   

7.
This study determines the ages of 191 discrete lunar regolith samples from the Apollo, Luna, and meteorite collections. Model closure ages (for lithified breccias) and appearance ages (for unconsolidated soils) are calculated using the trapped 40Ar and 36Ar abundances of each sample, determined from published Ar data. Model closure ages of regolith breccias span ~3.9 to 0.01 Ga and appearance ages of soils range from ~3.6 to 0.03 Ga; 169 of these ages are published here for the first time, while 22 are recalculated ages. The regolith breccias with the oldest closure ages originate from the ancient highlands and oldest mare surfaces sampled by the Apollo missions. Soils generally have similar ages to each other, regardless of location and collection depth, with most model ages <2.0 Ga. Together, the soils and regolith breccias represent a record of regolith processes over the past 3.9 Ga. The data illustrate that individual landing sites can provide a diversity of ages, which has implications for planning future missions. Differences in maturity between older and younger regolith samples may reflect a change in collisional regimes over time. We note, too, that the closure ages published here are critical data needed for selecting temporally appropriate regolith samples used to decipher the diversity of impactors hitting the lunar surface over time and how the Sun has changed in time.  相似文献   

8.
Abstract Two types of texturally and compositionally similar breccias that consist largely of fragmental debris from meteorite impacts occur at the Apollo 16 lunar site: Feldspathic fragmental breccias (FFBs) and ancient regolith breccias (ARBs). Both types of breccia are composed of a suite of mostly feldspathic components derived from the early crust of the Moon and mafic impact-melt breccias produced during the time of basin formation. The ARBs also contain components, such as agglutinates and glass spherules, indicating that the material of which they are composed occurred at the surface of the Moon as fine-grained regolith prior to lithification of the breccias. These components are absent from the FFBs, suggesting that the FFBs might be the protolith of the ARBs. However, several compositional differences exist between the two types of breccia, making any simple genetic relationship implausible. First, clasts of mafic impact-melt breccia occurring in the FFBs are of a different composition than those in the ARBs. Also the feldspathic “prebasin” components of the FFBs have a lower average Mg/Fe ratio than the corresponding components of the ARBs; the average composition of the plagioclase in the FFBs is more sodic than that of the ARBs; and there are differences in relative abundances of rare earth elements. The two breccia types also have different provenances: the FFBs occur primarily in ejecta from North Ray crater and presumably derive from the Descartes Formation, while the ARBs are restricted to the Cayley plains. Together these observations suggest that although some type of fragmental breccia may have been a precursor to the ARBs, the FFBs of North Ray crater are not a significant component of the ARBs and, by inference, the Cayley plains. The average compositions of the prebasin components of the two types of fragmental breccia are generally similar to the composition of the feldspathic lunar meteorites. With 30–31% Al2O3, however, they are slightly richer in plagioclase than the most feldspathic lunar meteorites (~29% Al2O3), implying that the crust of the early central nearside of the Moon contained a higher abundance of highly feldspathic anorthosite than typical lunar highlands, as inferred from the lunar meteorites. The ancient regolith breccias, as well as the current surface regolith of the Cayley plains, are more mafic than (1) prebasin regoliths in the Central Highlands and (2) regions of highlands presently distant from nearside basins because they contain a high abundance (~30%) of mafic impact-melt breccias produced during the time of basin formation that is absent from other regoliths.  相似文献   

9.
This study presents the petrography, mineralogy, and bulk composition of lunar regolith breccia meteorite Northwest Africa (NWA) 7948. We identify a range of lunar lithologies including basaltic clasts (very low-titanium and low-titanium basalts), feldspathic lithologies (ferroan anorthosite, magnesian-suite rock, and alkali suite), granulites, impact melt breccias (including crystalline impact melt breccias, clast-bearing impact melt breccias, and glassy melt breccias), as well as regolith components (volcanic glass and impact glass). A compositionally unusual metal-rich clast was also identified, which may represent an impact melt lithology sourced from a unique Mg-suite parent rock. NWA 7948 has a mingled bulk rock composition (Al2O3 = 21.6 wt% and FeO = 9.4 wt%) and relatively low concentrations of incompatible trace elements (e.g., Th = 1.07 ppm and Sm = 2.99 ppm) compared with Apollo regolith breccias. Comparing the bulk composition of the meteorite with remotely sensed geochemical data sets suggests that the sample was derived from a region of the lunar surface distal from the nearside Th-rich Procellarum KREEP Terrane. Our investigations suggest that it may have been ejected from a nearside highlands-mare boundary (e.g., around Mare Crisium or Orientale) or a cryptomare region (e.g., Schickard-Schiller or Mare smythii) or a farside highlands-mare boundary (e.g., Mare Australe, Apollo basin in the South Pole–Aitken basin). The distinctive mineralogical and geochemical features of NWA 7948 suggest that the meteorite may represent lunar material that has not been reported before, and indicate that the lunar highlands exhibit wide geological diversity.  相似文献   

10.
If chondrules were exposed to cosmic rays prior to meteorite compaction, they should retain an excess of cosmogenic noble gases. Beyersdorf‐Kuis et al. (2015) showed that such excesses can be detected provided that the chemical composition of each individual chondrule is precisely known. However, their study was limited to a few samples as they had to be irradiated in a nuclear reactor for instrumental neutron activation analysis. We developed a novel analytical protocol that combines the measurements of He and Ne isotopic concentrations with a fast method to correct for differences in chemical composition using micro X‐ray computed tomography. Our main idea is to combine noble gas, nuclear track, and petrography data for numerous chondrules to understand the precompaction exposure history of the chondrite parent bodies. Here, we report our results for a total of 77 chondrules and four matrix samples from NWA 8276 (L3.00), NWA 8007 (L3.2), and Bjurböle (L/LL4). All chondrules from the same meteorite have within uncertainty identical 21Ne exposure ages, and all chondrules from Bjurböle have within uncertainty identical 3He exposure ages. However, most chondrules from NWA 8276 and a few from NWA 8007 show small but resolvable differences in 3He exposure age that we attribute to matrix contamination and/or gas loss. The finding that none of the chondrules has noble gas excesses is consistent with the uniform track density found for each meteorite. We conclude that the studied chondrules did not experience a precompaction exposure longer than a few Ma assuming present‐day flux of galactic cosmic rays. A majority of chondrules from L and LL chondrites thus rapidly accreted and/or was efficiently shielded from cosmic rays in the solar nebula.  相似文献   

11.
Abstract— –Sayh al Uhaymir (SaU) 169 is a composite lunar meteorite from Oman that consists of polymict regolith breccia (8.44 ppm Th), adhering to impact‐melt breccia (IMB; 32.7 ppm Th). In this contribution we consider the regolith breccia portion of SaU 169, and demonstrate that it is composed of two generations representing two formation stages, labeled II and III. The regolith breccia also contains the following clasts: Ti‐poor to Ti‐rich basalts, gabbros to granulites, and incorporated regolith breccias. The average SaU 169 regolith breccia bulk composition lies within the range of Apollo 12 and 14 soil and regolith breccias, with the closest correspondence being with that of Apollo 14, but Sc contents indicate a higher portion of mare basalts. This is supported by relations between Sm‐Al2O3, FeO‐Cr2O3‐TiO2, Sm/Eu and Th‐K2O. The composition can best be modeled as a mixture of high‐K KREEP, mare basalt and norite/troctolite, consistent with the rareness of anorthositic rocks. The largest KREEP breccia clast in the regolith is identical in its chemical composition and total REE content to the incompatible trace‐element (ITE)‐ rich high‐K KREEP rocks of the Apollo 14 landing site, pointing to a similar source. In contrast to Apollo 14 soil, SaU 169 IMB and SaU 169 KREEP breccia clast, the SaU 169 regolith is not depleted in K/Th, indicating a low contribution of high‐Th IMB such as the SaU 169 main lithology in the regolith. The data presented here indicate the SaU 169 regolith breccia is from the lunar front side, and has a strong Procellarum KREEP Terrane signature.  相似文献   

12.
Abstract— Mafic, Th-rich impact-melt breccias, most of which are identified with the composition known as low-K Fra Mauro (LKFM), are the most common rock type in the nonmare regoliths of the Apollo lunar landing sites. The origin of mafic impact-melt breccias bears on many lunar problems: the nature of the late meteoroid bombardment (cataclysm); the spatial distribution of KREEP, both near the surface and at depth; the ages of the major basins; and the composition of the early crust of the nearside lunar highlands. Thus, it is crucial that the origin of mafic impact-melt breccias be accurately understood. Because of both intra- and intersite differences in compositions of mafic impact-melt breccia samples, apparent differences in crystallization age, and differences in siderophile-element ratios, previous studies have argued that either (1) most mafic impact-melt breccias are the products of several large craters local to the site at which they were found but that some are of basin origin or that (2) they are all from the Imbrium (Apollos 14 and 15), Nectaris (Apollo 16), and Serenitatis (Apollo 17) basins. Here, we reconsider the hypothesis that virtually all of the Th-rich, mafic impact-melt breccias from the Apollo missions are products of the Imbrium impact. Ejecta deposit modeling based on modern crater scaling indicates that the Imbrium event produced ejecta deposits that average hundreds of meters thick or more at all Apollo highland sites, which is thicker than some previous estimates. Substantial amounts of Imbrium ejecta should have been sampled at every Apollo highland site. We suggest that the mafic impact-melt breccias may be the principal form of those ejecta. The Imbrium projectile impacted into Th-rich material that we regard as part of a unique, mafic, lunar geochemical province we call the High-Th Oval Region. Based on the surface distribution of Th, only basins within the High-Th Oval Region excavated Th-rich material; the Th concentrations of the highlands as observed by the Apollo orbiting γ-ray experiments are consistent with the estimates from ejecta modeling. Of the younger basin-forming impacts, only Imbrium was large enough to produce the copious amount of melt required by the ubiquitous presence of mafic impact-melt breccias in the Apollo-sampled regolith. The High-Th Oval Region still may have been molten or hot at shallow depths ~4 Ga ago when the Imbrium projectile struck. We reason that compositional heterogeneity of ejected melt breccia is to be expected under these circumstances. We argue that siderophile-element “fingerprints” of mafic impact-melt breccias are not inconsistent with production of all common types by a single projectile. We suggest that the narrow range of ages of 3.7–4.0 Ga for all successfully dated mafic impact-melt breccias may reflect a single event whose age is difficult to measure precisely, rather than a number of discrete impact events closely spaced in time, such that reported age variations among mafic impact-melt breccias reflect the ability to measure 40Ar/39Ar ages with greater precision than the accuracy with which measured portions of mafic impact-melt breccias have recorded the time of their formation.  相似文献   

13.
Abstract— We have analyzed a suite of lunar regolith breccias in order to assess how well space weathering products can be preserved through the lithification process and therefore whether or not it is appropriate to search for space weathering products in asteroidal regolith breccia meteorites. It was found that space weathering products, vapor/sputter deposited nanophase‐iron‐bearing rims in particular, are easily identified in even heavily shocked/compacted lunar regolith breccias. Such rims, if created on asteroids, should thus be preserved in asteroidal regolith breccia meteorites. Two additional rim types, glass rims and vesicular rims, identified in regolith breccias, are also described. These rims are common in lunar regolith breccias but rare to absent in lunar soils, which suggests that they are created in the breccia‐forming process itself. While not “space weathering products” in the strictest sense, these additional rims give us insight into the regolith breccia formation process. The presence or absence of glass and/or vesicular rims in asteroidal regolith breccias will likewise tell us about environmental conditions on the surface of the asteroid body on which the breccia was created.  相似文献   

14.
Meteorites ejected from the surface of the Moon as a result of impact events are an important source of lunar material in addition to Apollo and Luna samples. Here, we report bulk element composition, mineral chemistry, age, and petrography of Miller Range (MIL) 090036 and 090070 lunar meteorites. MIL 090036 and 090070 are both anorthositic regolith breccias consisting of mineral fragments and lithic clasts in a glassy matrix. They are not paired and represent sampling of two distinct regions of the lunar crust that have protoliths similar to ferroan anorthosites. 40Ar‐39Ar chronology performed on two subsplits of MIL 090070,33 (a pale clast impact melt and a dark glassy melt component) shows that the sample underwent two main degassing events, one at ~3.88 Ga and another at ~3.65 Ga. The cosmic ray exposure data obtained from MIL 090070 are consistent with a short (~8–9 Ma) exposure close to the lunar surface. Bulk‐rock FeO, TiO2, and Th concentrations in both samples were compared with 2‐degree Lunar Prospector Gamma Ray Spectrometer (LP‐GRS) data sets to determine areas of the lunar surface where the regolith matches the abundances observed on the sample. We find that MIL 090036 bulk rock is compositionally most similar to regolith surrounding the Procellarum KREEP Terrane, whereas MIL 090070 best matches regolith in the feldspathic highlands terrane on the lunar farside. Our results suggest that some areas of the lunar farside crust are composed of ferroan anorthosite, and that the samples shed light on the evolution and impact bombardment history of the ancient lunar highlands.  相似文献   

15.
Abstract— Lunar meteorite QUE 93069 found in Antarctica is a mature, anorthitic regolith breccia with highland affinities that was ejected from the Moon <0.3 Ma ago. The frequency distribution of mineral and lithic clasts gives information about the nature of the regolith and subregolith basement near the ejection site as well as about the abundances of rock types shocked to different degrees prior to the breccia formation. Thin section QUE 93069,37 consists of 67.5 vol% fine-grained (<~130 μm) constituents and 32.5 vol% mineral and lithic clasts and an impact melt vein. The most abundant types of these clasts are intragranularly recrystallized anorthosites and plagioclases (together 26.3 vol%) and feldspathic fine-grained to microporphyritic crystalline melt breccias (21.9 vol%). Mafic crystalline melt breccias are extremely rare (1.3 vol%). Granulitic lithologies are 10.4 vol%, recrystallized feldspathic melt breccias are 15.0 vol%, and glasses are 3.5 vol%. The impact melt vein cutting across the entire thin section was probably formed subsequent to the lithification process of the bulk rock at pressures below 20 GPa, because the bulk rock never experienced a higher peak shock pressure. Lunar meteorite QUE 93069 has a higher abundance of clear glass, occurring within melt spherules, glassy fragments, and an impact melt vein than lunar meteorites ALHA81005, Y-791197, Y-82192/3, Y-86032, or MAC 88104/5. The high abundance of melt spherules indicates that this lunar meteorite contains the highest content of typical regolith components. Mafic crystalline melt breccias are much rarer in QUE 93069 than in all other lunar highland regolith breccias. The extremely low abundance of mafic components may constrain possible areas of the Moon, from which the breccia was derived. The source area of QUE 93069 must be a highland terrain lacking significant mafic impact melts or mare components.  相似文献   

16.
Abstract– Neon was measured in 39 individual olivine (or olivine‐rich) grains separated from individual chondrules from Dhajala, Bjurböle, Chainpur, Murchison, and Parsa chondrites with spallation‐produced 21Ne the result of interaction of energetic particle irradiation. The apparent 21Ne cosmic ray exposure (CRE) ages of most grains are similar to those of the matrix with the exception of three grains from Dhajala and single grains from Bjurböle and Chainpur, which show excesses, reflecting exposure to energetic particles prior to final compaction of the object. Among these five grains, one from chondrule BJ2A5 of Bjurböle shows an apparent excess exposure age of approximately 20 Ma and the other four from Dhajala and Chainpur have apparent excesses, described as an “age,” from 2 to 17 Ma. The precompaction irradiation effects of grains from chondrules do not appear to be different from the effects seen in olivine grains extracted from the matrix of CM chondrites. As was the case for the matrix grains, there appears to be insufficient time for this precompaction irradiation by the contemporary particle sources. The apparent variations within single chondrules appear to constrain precompaction irradiation effects to irradiation by lower energy solar particles, rather than galactic cosmic rays, supporting the conclusion derived from the precompaction irradiation effects in CM matrix grains, but for totally different reasons. This observation is consistent with Chandra X‐Ray Observatory data for young low‐mass stars, which suggest that our own Sun may have been 105 times more active in an early naked T‐Tauri phase ( Feigelson et al. 2002 ).  相似文献   

17.
Abstract— Previous studies of Apollo 17 double-drive tube 79001/2 showed that portions of this lunar regolith segment have some unusual properties, such as very high Is/FeO values (Monis et al., 1989) and N contents (Stone and Clayton, 1989). To understand the geologic significance of these features in this core, we determined the grain-size distribution and modal abundance of the petrographic constituents for samples from 12 different depths of the core. Also, we measured the elemental and isotopic compositions of noble gases in the coarse-grained (150–250 μm) and fine-grained (<20 μm) sample fractions from four depths of this core. The agglutinate abundance and 36Ar contents show depth-related variations similar to those observed for Is/FeO and N in this core. Samples from the top (~0.5 cm depth) and the bottom (~45 cm depth) of the drive tube are related to Apollo 17 submature soils with about 250–300 Ma galactic cosmic-ray (GCR) exposure age. But the soil at the top of the drive tube received additional surface irradiation for ~2 Ma after deposition at Van Serg. The samples at intermediate depths (i.e., ~7 cm (upper zone) and ~20 cm (lower zone) of the 79001/2 core) show features characteristic of mixtures of Apollo 17 mature soils and finely comminuted regolith breccias having about 600–800 Ma GCR exposure age. The mixing ratios between the coarse and fine fractions of the intermediate-depth samples are similar to each other. Though the mixing ratios for the samples from the top and the bottom of the core are also similar to each other, they differ significantly from the ratios at intermediate depths. The results presented here are consistent with the two-component Van Serg core model proposed by Stone and Clayton (1989) and McKay et al. (1988).  相似文献   

18.
Wenzhe Fa  Mark A. Wieczorek 《Icarus》2012,218(2):771-787
The inversion of regolith thickness over the nearside hemisphere of the Moon from newly acquired Earth-based 70-cm Arecibo radar data is investigated using a quantitative radar scattering model. The radar scattering model takes into account scattering from both the lunar surface and buried rocks in the lunar regolith, and three parameters are critically important in predicting the radar backscattering coefficient: the dielectric constant of the lunar regolith, the surface roughness, and the size and abundance of subsurface rocks. The measured dielectric properties of the Apollo regolith samples at 450 MHz are re-analyzed, and an improved relation among the complex dielectric constant, bulk density and regolith composition is obtained. The complex dielectric constant of the lunar regolith is estimated globally from this relation using the regolith composition derived from Lunar Prospector gamma-ray spectrometer data. To constrain the lunar surface roughness and abundance of subsurface rocks from radar data, nine regions are selected as calibration sites where the regolith thickness has been estimated using independent analysis techniques. For these sites, scattering from the lunar surface and buried rocks cannot be perfectly distinguished, and a tradeoff relationship exists between the size and abundance of buried rocks and surface roughness. Using these tradeoff relations as guidelines for globally representative parameters, the regolith thickness of four regions over the lunar nearside is inverted, and the inversion uncertainties caused by calibration errors of the radar data and model input parameters are analyzed. The regolith thickness of the maria is generally smaller than that of highlands, and older surfaces have thicker regolith thicknesses. Our approach cannot be applied to regions where the surface roughness is very high, such as with young rocky craters and regions in the highly rugged highlands.  相似文献   

19.
Abstract— CM chondrites are regolith breccias consisting of lithic clasts embedded in a fine‐grained clastic matrix. The majority of these lithic clasts belongs to a texturally well‐defined rock type (primary rock) that can be described as an agglomerate of chondrules and other coarse‐grained components, most of which are surrounded by fine‐grained rims (dust mantles). Metzler et al. (1992) explain these textures as the result of accretionary processes in the solar nebula, while an alternative model explains them to be the result of regolith processes on the parent body (Sears et al. 1993). The main intention of the present study is to discern between both models by investigating the occurrence, frequency, spatial distribution, and textural setting of preirradiated (track‐rich) olivines in CM chondrites. Track‐rich olivines were studied in situ in six polished thin sections from 4 different CM chondrites (Cold Bokkeveld, Mighei, Murchison, Nogoya) by optical and scanning electron microscopy (SEM). It was found that their occurrence is restricted to the clastic matrix of these meteorites. The primary rock seems to have formed in an environment shielded from cosmic radiation, since fragments of this rock are free of track‐rich grains and solar noble gases. This finding supports the solar nebula model for the formation of dust mantles around chondrules and other coarse‐grained components, and points against a regolith origin. In Cold Bokkeveld, a small breccia‐in‐breccia clast was found, which has been irradiated as an entity within the uppermost millimeters to meters of its parent body for at least about 3 Ma. This clast seems to represent a compacted subsurface layer that was later excavated by impact and admixed to the host breccia. Furthermore, the results of this study may affect the interpretation of compaction ages obtained by fission track methods, since these ages may be mixtures of different contact ages between finegrained, U‐rich dust and U‐poor olivines. In some cases, they may date the formation of dust mantles in the solar nebula, while in other cases the lithification of the host breccias may be dated.  相似文献   

20.
We analyzed He and Ne in chromite grains from the regolith breccia Ghubara (L5), to compare it with He and Ne in sediment‐dispersed extraterrestrial chromite (SEC) grains from mid‐Ordovician sediments. These SEC grains arrived on Earth as micrometeorites in the aftermath of the L chondrite parent body (LCPB) breakup event, 470 Ma ago. A significant fraction of them show prolonged exposure to galactic cosmic rays for up to several 10 Ma. The majority of the cosmogenic noble gases in these grains were probably acquired in the regolith of the LCPB (Meier et al. 2010 ). Ghubara, an L chondritic regolith breccia with an Ar‐Ar shock age of 470 Ma, is a sample of that regolith. We find cosmic‐ray exposure ages of up to several 10 Ma in some Ghubara chromite grains, confirming for the first time that individual chromite grains with such high exposure ages indeed existed in the LCPB regolith, and that the >10 Ma cosmic‐ray exposure ages found in recent micrometeorites are thus not necessarily indicative of an origin in the Kuiper Belt. Some Ghubara chromite grains show much lower concentrations of cosmogenic He and Ne, indicating that the 4π (last‐stage) exposure age of the Ghubara meteoroid lasted only 4–6 Ma. This exposure age is considerably shorter than the 15–20 Ma suggested before from bulk analyses, indicating that bulk samples have seen regolith pre‐exposure as well. The shorter last‐stage exposure age probably links Ghubara to a small peak of 40Ar‐poor L5 chondrites of the same exposure age. Furthermore, and quite unexpectedly, we find a Ne component similar to presolar Ne‐HL in the chromite grains, perhaps indicating that some presolar Ne can be preserved even in meteorites of petrologic type 5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号