首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Maule, Chile, (Mw 8.8) earthquake on 27 February 2010 triggered deformation events over a broad area, allowing investigation of stress redistribution within the upper crust following a mega-thrust subduction event. We explore the role that the Maule earthquake may have played in triggering shallow earthquakes in northwestern Argentina and Chile. We investigate observed ground deformation associated with the Mw 6.2 (GCMT) Salta (1450 km from the Maule hypocenter, 9 h after the Maule earthquake), Mw 5.8 Catamarca (1400 km; nine days), Mw 5.1 Mendoza (350 km; between one to five days) earthquakes, as well as eight additional earthquakes without an observed geodetic signal. We use seismic and Interferometric Synthetic Aperture Radar (InSAR) observations to characterize earthquake location, magnitude and focal mechanism, and characterize how the non-stationary, spatially correlated noise present in the geodetic imagery affects the accuracy of our parameter estimates. The focal mechanisms for the far-field Salta and Catamarca earthquakes are broadly consistent with regional late Cenozoic fault kinematics. We infer that dynamic stresses due to the passage of seismic waves associated with the Maule earthquake likely brought the Salta and Catamarca regions closer to failure but that the involved faults may have already been at a relatively advanced stage of their seismic cycle. The near-field Mendoza earthquake geometry is consistent with triggering related to positive static Coulomb stress changes due to the Maule earthquake but is also aligned with the South America-Nazca shortening direction. None of the earthquakes considered in this study require that the Maule earthquake reactivated faults in a sense that is inconsistent with their long-term behavior.  相似文献   

2.
On 4 July 2013, three catastrophic debris flows occurred in the Hougou, Majingzi, and Xiongjia gullies in Shimian county and produced debris dams and river blockages, resulting in serious casualties and huge economic loss. Though debris flows have been identified prior to the catastrophic events, their magnitudes and destructive power were far beyond early recognition and hazard assessment. Our primary objective for this study was to explore the formation mechanism and typical characteristics and to summarize the lessons learned from these disastrous events in order to avoid the repeat of such disasters in the future. Based on field investigation and imagery interpretation of remote sensing carried out following the catastrophic events, four conclusions were drawn: (1) The catastrophic debris flows were initiated from surface-water runoff, and the triggering factor was attributed to the local intensive rainfall with an hourly intensity of more than 46.7 mm. (2) Entrainment was the most important sediment-supplying method for the debris flow occurrence, and the source materials transported by debris flows from the three gullies were estimated to be about 97?×?104 m3 in volume altogether. (3) As surface-water runoff eroded and entrained hillslope and channel materials persistently, debris flows were characterized by intensive incision at upper or middle reaches and significant magnification effect in flow discharge and volume downstream. Corresponding peak discharge surveyed at the outlets of the Hougou, Majingzi, and Xiongjia gullies was estimated up to 751.0 m3/s, 870.1 m3/s, and 758.7 m3/s, respectively. (4) Debris flows that occurred from the three gullies all belonged to viscous ones and the bulk densities were calculated more than 1.80 g/cm3, indicating a huge carrying capacity and destructive impacting power. In addition, the lessons learned from the catastrophic events were summarized, including recognition and assessment on debris flow hazard and utilization of deposition fan. In this paper, prevention suggestions on debris flow prone valleys with high-vegetation coverage and low occurrence frequency were also put forward. The results of this study contribute to a better understanding on the initiation mechanism, dynamic characteristics, and disaster mitigation of debris flows initiated from intense rainfall and surface-water runoff in mountainous areas.  相似文献   

3.
We combine geological and geophysical data to develop a generalized model for the lithospheric evolution of the central Andean plateau between 18° and 20° S from Late Cretaceous to present. By integrating geophysical results of upper mantle structure, crustal thickness, and composition with recently published structural, stratigraphic, and thermochronologic data, we emphasize the importance of both the crust and upper mantle in the evolution of the central Andean plateau. Four key steps in the evolution of the Andean plateau are as follows. 1) Initiation of mountain building by 70 Ma suggested by the associated foreland basin depositional history. 2) Eastward jump of a narrow, early fold–thrust belt at 40 Ma through the eastward propagation of a 200–400-km-long basement thrust sheet. 3) Continued shortening within the Eastern Cordillera from 40 to 15 Ma, which thickened the crust and mantle and established the eastern boundary of the modern central Andean plateau. Removal of excess mantle through lithospheric delamination at the Eastern Cordillera–Altiplano boundary during the early Miocene appears necessary to accommodate underthrusting of the Brazilian shield. Replacement of mantle lithosphere by hot asthenosphere may have provided the heat source for a pulse of mafic volcanism in the Eastern Cordillera and Altiplano at 24–23 Ma, and further volcanism recorded by 12–7 Ma crustal ignimbrites. 4) After 20 Ma, deformation waned in the Eastern Cordillera and Interandean zone and began to be transferred into the Subandean zone. Long-term rates of shortening in the fold–thrust belt indicate that the average shortening rate has remained fairly constant (8–10 mm/year) through time with possible slowing (5–7 mm/year) in the last 15–20 myr. We suggest that Cenozoic deformation within the mantle lithosphere has been focused at the Eastern Cordillera–Altiplano boundary where the mantle most likely continues to be removed through piecemeal delamination.  相似文献   

4.
Guo  Xiaojun  Chen  Xingchang  Song  Guohu  Zhuang  Jianqi  Fan  Jianglin 《Natural Hazards》2021,106(3):2663-2687

Debris flows often occur in the mountainous watersheds of earthquake-affected areas, and in the Lushan earthquake area of southwestern China, they have become a significant hazard. In this study, the influencing factors and spatial distribution of debris flows were analyzed through a review of their occurrence history. Debris flows are mainly distributed in the northwestern part of the study area, which hosts the greatest density of active faults. The debris flows are generally formed by the ‘progressive bulking’ effect in channels, and deep incision, lateral erosion, and blockage breaking are common processes that amplify the magnitude of such debris flows. Rainfall thresholds for different types of debris flow were proposed to explain the spatial differences between debris-flow regions, and the temporal variations of those thresholds highlighted how the rainfall conditions required for the occurrence of debris flows have changed. Natural vegetation recovery, reduction in the availability of solid material, and artificial debris-flow control projects play important roles in raising the threshold of the rainfall conditions required for triggering debris flows.

  相似文献   

5.
One of the most far-reaching glacier-related hazards in the Tian Shan Mountains of Kyrgyzstan is glacial lake outburst floods (GLOFs) and related debris flows. An improved understanding of the formation and evolution of glacial lakes and debris flow susceptibility is therefore essential to assess and mitigate potential hazards and risks. Non-stationary glacier lakes may fill periodically and quickly; the potential for them to outburst increases as water volume may change dramatically over very short periods of time. After the outburst or drainage of a lake, the entire process may start again, and thus these non-stationary lakes are of particular importance in the region. In this work, the Teztor lake complex, located in Northern Kyrgyzstan, was selected for the analysis of outburst mechanisms of non-stationary glacial lakes, their formation, as well as the triggering of flows and development of debris flows and floods downstream of the lakes. The different Teztor lakes are filled with water periodically, and according to field observations, they tend to outburst every 9–10 years on average. The most important event in the area dates back to 1953, and another important event occurred on July 31, 2012. Other smaller outbursts have been recorded as well. Our study shows that the recent GLOF in 2012 was caused by a combination of intense precipitation during the days preceding the event and a rapid rise in air temperatures. Analyses of features in the entrainment and depositional zones point to a total debris flow volume of about 200,000 m3, with discharge ranging from 145 to 340 m3 s?1 and flow velocities between 5 and 7 m s?1. Results of this study are key for a better design of sound river corridor planning and for the assessment and mitigation of potential GLOF hazards and risks in the region.  相似文献   

6.
El río San Juan, situado en la Provincia de San Juan (Argentina) cruza la Precordillera y otras unidades geológicas incluyendo la Depresión de Ullum y la Zona de La Laja, entre las latitudes 31°S y 32°S. El curso del río tiene un cierto caracter antecedente como puede deducirse por sus dos trazas perpendiculares unidas por otra casi paralela a las alineaciones estructurales principales. En la zona de la Precordillera, el valle del río San Juan muestra numerosos abanicos aluviales, situados en las zonas de confluencia entre el río principal y sus tributarios. Las superficies de los abanicos aluviales cuaternarios estan cortadas por una serie de escalones que consideramos como terrazas aluviales generadas por episodios repetitivos de agradación y degradación. El sector estudiado incluye una zona con una importante actividad sísmica reciente(La Laja), otra sin una importante actividad sísmica reciente (Precordillera), y una zona subsidente (Ullum) donde se formó un gran lago natural hace unos 6500 años. El antiguo río San Juan fue capturado por el valle de la Quebrada de Ullum mediante una incisión del orden de 25 m, que implicó una nueva adecuación del gradiente del río mediante los efectos de la erosión remontante. El gradiente del río San Juan muestra algunas irregularidades que, aunque no se presenten relacionadas directamente con las estructuras principales, estan relacionadas con la propia dinámica fluvial que acentúa la diferenciación litológica. La anchura del valle del río principal, la geometria y el gradiente de cada tributario, junto a las litologias del basamento y a las dimensiones de cada area fuente local, son los factores principales que controlan los procesos de la generación de las terrazas aluviales. En la zona de La Laja, donde la terraza mas alta soporta un nivel de travertino, la datación de los depósitos travertínicos proporciona datos como para suponer una tasa de incisión del orden de 0,9–1 mm/año, asociada a la actuación periódica de la falla de La Laja.
PDF (2344 K)
View More Related Articles
 
View Record in Scopus
doi:10.1016/j.jsames.2009.06.001    
Copyright © 2009 Elsevier Ltd All rights reserved.
Characterization of Quaternary faults by electric resistivity tomography in the Andean Precordillera of Western Argentina
Sabrina Y. Fazzitoa, , , Augusto E. Rapalinia, , José M. Cortésb, and Carla M. Terrizzanob,
aConsejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Geofísica Daniel Valencio (INGEODAV), Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, C1428EHA, Buenos Aires, ArgentinabConsejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Laboratorio de Neotectónica (LANEO), Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina  相似文献   

7.
Metamorphic gradients in burial metamorphosed vesicular lavas: Comparison of basalt and spilite in Cretaceous basic flows from central Chile     
Beatriz Levi  Luis Aguirre  Jan Olov Nyström 《Contributions to Mineralogy and Petrology》1982,80(1):49-58
Partial spilitization of a 9 km thick pile of flood basalts with highly vesicular flow tops gave rise to patterns of secondary mineralogy at different scales: (a) a local pattern of mineralogical variation from the almost unaltered bottom towards the altered top of each flow, and (b) an overall pattern, comparing flow tops throughout the pile, with changes in mineralogical composition within a sequence of metamorphic zones and facies. The local patterns mimic the trend of the overall pattern, but are of opposite direction and telescoped. Thus, a gradual ordering and Andepletion of the secondary albite and increases in the Fe*/Al ratio of epidote and pumpellyite upwards within individual flows are comparable in range to corresponding overall changes downwards throughout several kilometres. The mineralogical changes within the flows diminish in range towards the more altered deeper part of the pile.The local and overall patterns cannot be interpreted in terms of grade. They represent trends from metastable towards stable equilibrium, this latter only approached in the flow tops of the lower part of the pile. The patterns of secondary mineralogy were formed by an interplay of metamorphic gradients at different scales at any given time, and as burial proceeded. The overall pattern was caused by depth-controlled gradients: increasing P fluid, temperature and temperature-induced increase of reaction rates, and decreasing fO2 (downwards in the pile). The local patterns resulted from permeability-controlled gradients: increasing reaction rates, fO2 and contrast in chemical activity between different domains, and decreasing P fluid (upwards in each flow). The mineralogical observations reported in this paper fall into line if the overall temperature-induced increase of reaction rates and the local permeability-controlled rate factors played the leading role during burial metamorphism of the pile.  相似文献   

8.
A climatic trigger for catastrophic Pleistocene–Holocene debris flows in the Eastern Andean Cordillera of Colombia          下载免费PDF全文
N. HOYOS  O. MONSALVE  J. L. ANTINAO  H. GIRALDO  C. SILVA  G. OJEDA  G. BAYONA  J. ESCOBAR  C. MONTES 《第四纪科学杂志》2015,30(3):258-270
  相似文献   

9.
Pliocene lahar deposits in the Coastal Cordillera of central Chile: Implications for uplift, avalanche deposits, and porphyry copper systems in the Main Andean Cordillera   总被引:1,自引:0,他引:1  
Alfonso Encinas  Victor Maksaev  Luisa Pinto  Jacobus P. Le Roux  Francisco Munizaga  Marcos Zentilli   《Journal of South American Earth Sciences》2006,20(4):369-381
Lahar deposits occur within a shallow marine sedimentary succession of the Pliocene La Cueva Formation in the Coastal Cordillera of central Chile (33°40′–34°15′S). Provenance studies of the abundant volcanic material in the lahar deposits suggest that they derive from denudation by mass wasting of Oligocene–Miocene volcanic rocks on the western slopes of the Main Andean Cordillera at the same latitude. Pliocene rock debris deposits preserved in the region of El Teniente (34°S) and scattered along the westernmost part of the Andes of central Chile indicate catastrophic erosive events related to the rapid uplift of the cordilleran block. This rock debris was deposited by avalanches and transformed further downslope into lahars by dilution with stream water. Lahars were channeled along the ancient drainage system that reached a shallow Pliocene sea at the site of the present Coastal Cordillera. The exceedingly rapid exhumation of active porphyry systems during the Early Pliocene in this part of the Andes may have played a role in affecting hydrothermal processes, brecciation, and diatreme formation at the porphyry systems of El Teniente and Río Blanco–Los Bronces.  相似文献   

10.
Structural consequences of cohesion in gravitational instabilities triggered by fluid overpressure: Analytical derivation and experimental testing     
《Journal of Structural Geology》2016
The critical taper theory of Coulomb wedges has been classically applied to compressive regimes (accretionary prisms/fold-and-thrust belts), and more recently to gravitational instabilities. Following the initial hypothesis of the theory, we provide an alternative expression of the exact solution for a non-cohesive wedge by considering the balance of forces applied to the external surfaces. Then, we use this approach to derive a solution for the case of cohesive wedges. We show that cohesion has conspicuous structural effects, including a minimum length required for sliding and the formation of listric faults. The stabilizing effect of cohesion is accentuated in the foremost thin domain of the wedge, defining a required Minimum Failure Length (MFL), and producing sliding of a rigid mass above the detachment. This MFL decreases with less cohesion, a smaller coefficient of internal friction, larger fluid overpressure ratio, and steeper upper and basal surfaces for the wedge. Listricity of the normal faults depends on the fluid overpressure magnitude within the wedge. For moderate fluid overpressure, normal faults are curved close to the surface, and become straight at depth. In contrast, where fluid overpressure exceeds a critical value corresponding to the fluid pressure required to destabilize the surface of a noncohesive wedge, the state of stress changes and rotates at depth. The faults are straight close to the surface and listric at depth, becoming parallel to the upper surface if the wedge is thick enough. We tested some of these structural effects of a cohesive wedge on gravitational instabilities using analogue models where cohesive material was subjected to pore-fluid pressure. The shape of the faults obtained in the models is consistent with the predictions of the theory.  相似文献   

11.
Chemical,isotopic and mineralogical characteristics of volcanogenic epithermal fluorite deposits on the Permo-Mesozoic foreland of the Andean volcanic arc in Patagonia (Argentina)     
《Chemie der Erde / Geochemistry》2016,76(2):275-297
Epithermal deposits mined for fluorite in Patagonia, Argentina, are closely related to late Triassic through Jurassic magmatic activity which brought about felsic to intermediate magmatic rocks. The fluorite mineralization in the Patagonian epithermal system resulted from gaseous F-and CO2-enriched magmas which lead to an explosive phreatomagmatic volcanism, when getting in contact with groundwater near the surface. As a result of these hydrothermal processes, rapid cooling took place in the epithermal mineralization. Changes in the viscosity along with the cooling down of mineralizing fluids caused mottled mineral colors blurring the boundaries between the stages and ore textures.The fluids accountable for the main constituents fluorite, quartz, barite and silica were operative over a vertical extension of roughly 600 m. Their temperature of formation dropped from 379 °C through 64 °C, while the pH decreased from the heat center towards the paleosurface under oxidizing conditions. This steep temperature gradient conducive to the telescoping of mineral associations into each other was accompanied by a rapid loss in CO2, and a mixing of meteoric and magmatic fluids. Even the boundary between the hypogene and supergene alteration cannot be drawn precisely within the assemblage of Mn oxides, which bridge the gap between hypogene and supergen mineralization. The physical-chemical parameters of the fluids, particularly, the redox conditions did not allow sulfides to be preserved. A classification of the epithermal system as to its degree of sulfidation is based on K-feldspar and kaolinite which are present in significant amounts, whereas APS (aluminum-phosphate-sulfate) minerals are absent. Therefore a categorization as an epithermal fluorite deposit of low- to intermediate sulfidation is justified, because the only mineral of economic interest in the system is fluorite.The data obtained during this joint study render the Patagonian fluorite district a reference type of fluorite in an epithermal system of low- to intermediate sulfidation which are widespread in Argentina, e.g., Sierras Pampeanas, and evolved on part of the stable craton, called Gondwana and which grade into epithermal Au, Ag, In, Pb and Zn deposits.  相似文献   

12.
The properties of convective storms in central Mexico: A radar and lightning approach     
S. Novo  G.B. Raga 《Atmósfera》2013,26(4):461-472
Radar data from Cerro Catedral (a peak close to Mexico City) were used to investigate the properties of convective storms over central Mexico, a region with complex orography. The spatial distribution shows a preference for storms to form and move to the west of radar, over a narrow band of high terrain. However, the storms with the higher volumes and echo-top heights tend to be located southwestward over lower terrain. Each radar feature was matched with the number of cloud-to-ground (CG) lightning produced inside it, as retrieved from the World Wide Lightning Location Network dataset. The storms in which lightning was detected, with an average of more than six lightning bolts, clearly outperform in size and intensity the group of storms in which lightning was not detected, and tend to lie over lower terrain. The sample of over 98 000 identified cells was divided into four elevation groups to look for elevation trends in the mean properties, as reported for other Mexican regions. While the number of storms per unit area increases with terrain height, the average values for properties related to both size (area, volume, echo-top height) and intensity (maximum reflectivity, number of CG bolts, height of maximum reflectivity, maximum height of 30 dBZ echo) decrease. These results could be related to the possible shallower warm-cloud depths over the higher elevations. The diurnal cycles of convection and lightning north of the radar show a nearly typical continental regime of precipitation in that zone, with maxima at 18:00 LT in both variables. However, south of the radar, a maximum in lightning activity occurs during late night and early morning, which is linked with the deeper nocturnal convection over the lower terrain in that zone.  相似文献   

13.
Debris flows caused by failure of fill slopes: early detection,warning, and loss prevention   总被引:1,自引:1,他引:1  
Thomas K. Collins 《Landslides》2008,5(1):107-120
This paper describes early detection, warning, and loss prevention for debris flows originating as failures of fill slopes. Worldwide, fill slopes constructed on steep terrain for roads, hillside residential developments, timber harvest landings, etc., are an increasing source of debris-flow hazards. Some fill failures that generate debris flows are the final stage of incremental failures that provide warning signs of instability in the months or years before the debris flow. Mapping and analysis of minor features, such as cracks and small scarps, on paved or unpaved surfaces of fills can identify incipient and impending fill failures that are major debris-flow hazards. Potential debris-flow paths can be mapped and risk assessments conducted. Loss prevention or reduction can be achieved by (1) prioritized maintenance, (2) prioritized repair, (3) monitoring, (4) warnings for emergency officials and the public, and (5) risk avoidance or reduction in land-use planning, zoning, cooperation between jurisdictions, and project development.  相似文献   

14.
Geomorphological markers of faulting and neotectonic activity along the western Andean margin,northern Chile     
Laurence Audin  Grard Herail  Rodrigo Riquelme  Jos Darrozes  Joseph Martinod  Eric Font 《第四纪科学杂志》2003,18(8):681-694
In the Atacama Desert, northern Chile, some ephemeral channels are developed in the Plio‐Quaternary alluvial sequence that caps the Neogene Atacama Gravels Formation. Geomorphological studies and high‐resolution digital elevation data (GPS) along a structural transect in the Central Depression are used to document modern growth history of subtle folding and faulting in the fore‐arc region. Outcrop data of the most recent deposits are combined with observations of warped and faulted late Quaternary pediments, alluvial fans and terrace surfaces to propose unsuspected neotectonic processes on the western flank of the Domeyko Cordillera. Neotectonic process recognition is here based largely upon the interpretation of alluvial landforms, drainage organisation and evolution as the intermittent river network shows systematic patterns of course deflections, successive incisions or deposition processes as it encounters the fault scarps or folds in the superficial deposits. This area presents both N–S‐trending active vertical faults in the topographically higher pampas, and N–S‐trending active folding in the lower pampas. These faults seem to accommodate E–W extension and compression that could be related to uplift of the western Andean margin within a compressive context. Uplift may have taken place unevenly over the past few million years after the deposition of the superficial alluvial surfaces that cap the Neogene Atacama Gravels. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
Late Quaternary paleoenvironments and paleoclimatic conditions in the distal Andean piedmont, southern Mendoza, Argentina     
Alfonsina Tripaldi  Marcelo A. Zárate  George A. Brook  Guo-Qiang Li 《Quaternary Research》2011,76(2):253-263
The Andean piedmont of Mendoza is a semiarid region covered by extensive and partially vegetated dune fields consisting of mostly inactive aeolian landforms of diverse size and morphology. This paper is focused on the San Rafael plain (SRP) environment, situated in the distal Andean piedmont of Mendoza (34° 30′S), and reports the sedimentology and OSL chronology of two representative exposures of late Quaternary deposits, including their paleoenvironmental and paleoclimatic significance. Eleven facies, including channel, floodplain, fluvio–aeolian interaction, and reworked pyroclastic and aeolian deposits, were described and grouped into two facies associations (FA1 and FA2). FA1 was formed by unconfined sheet flows, minor channelized streams and fluvial–aeolian interaction processes. FA2 was interpreted as aeolian dune and sand-sheet deposits. OSL chronology from the SRP sedimentary record indicates that between ca. 58–39 ka and ca. 36–24 ka (MIS 3), aggradation was governed by ephemeral fluvial processes (FA1) under generally semiarid conditions. During MIS 2, the last glacial maximum (ca. 24–12 ka), a major climatic shift to more arid conditions is documented by significant aeolian activity (FA2) that became the dominant sedimentation process north of the Diamante–Atuel fluvial system. The inferred paleoenvironmental conditions from the SRP sections are in broad agreement with regional evidence.  相似文献   

16.
Holocene initiation and expansion of the southern margins of northern peatlands triggered by the East Asian summer monsoon recession     
《地学前缘(英文版)》2023,14(2):101526
Northern peatlands represent one of the largest biospheric carbon reservoirs in the world. Their southern margins act as new carbon reservoirs, which can greatly influence the global carbon dynamics. However, the Holocene initiation, expansion and climate sensitivity of these peatlands remain intensely debated. Here we used a compilation of basal peat ages across six isolated peatlands at the southern margins of northern peatlands to address these issues. We found that the earliest initiation event of these peatlands occurred after the Younger Dryas (YD, 12,800–11,700 years ago) period. The second initiation event and rapid expansion occurred since 5 ka cal. BP. The recession of East Asian summer monsoon (EASM) during the YD period and at around 5 ka cal. BP likely played a major role in controlling the initiation and expansion of these peatlands. The rapid expansion of these peatlands possibly contributed to the significant increases in atmospheric methane concentrations during the late Holocene because of the minerotrophic fens status and rapid expansion of them. These ecological processes are different from northern peatlands, indicating the special carbon sink and source implications of these peatlands in the global carbon cycle.  相似文献   

17.
Catastrophic debris flows triggered by a 14 August 2010 rainfall at the epicenter of the Wenchuan earthquake   总被引:3,自引:1,他引:3  
Chuan Tang  Jing Zhu  Jun Ding  Xiaofei F. Cui  Lei Chen  Jianshi S. Zhang 《Landslides》2011,8(4):485-497
The Wenchuan earthquake of May 12, 2008 produced large amounts of loose material (landslide debris) that are still present on the steep slopes and in the gullies. This loose material creates an important hazard as strong rainfall can cause the development of devastating debris flows that will endanger the resettled population and destroy the result of reconstruction efforts. On 14 August 2010, a total of 21 debris flows were triggered by heavy rainfall around the town of Yingxue, located near the epicenter of the Wenchuan earthquake. One of these debris flows produced a debris dam, which then changed the course of the river and resulted in the flooding of the newly reconstructed Yinxue town. Prior to this catastrophic event, debris flow hazard had been recognized in the region, but its potential for such widespread and devastating impacts was not fully appreciated. Our primary objective for this study was to analyze the characteristics of the triggering rainfall and the sediment supply conditions leading to this event. Our field observations show that even small debris flow catchment areas have caused widespread sediment deposition on the existing fans. It is concluded that the whole of the area shaken by the Wenchuan earthquake is more susceptible to debris flows, initiated by localized heavy rainfall, than had been assumed earlier. The results of this study contribute to a better understanding of the conditions leading to catastrophic debris flow events in the earthquake-hit area. This is essential for the implementation of proper early warning, prevention, and mitigation measures as well as a better land use planning in this area.  相似文献   

18.
Recent catastrophic debris flows in Chile: Geological hazard,climatic relationships and human response     
《Quaternary International》2006,142(1):83-95
Debris flows are an important type of geological hazard in Chile, affecting cities, towns and rural areas throughout the country despite the variation in climate regimes. In this summary paper, recent debris flows in the cities of Antofagasta and Santiago, in northern and central Chile, and in a rural area near Lake Ranco in central-southern Chile in 1991, 1993 and 2004, respectively, are reviewed. Triggering factors for flow occurrence are identified and different approaches to debris flow hazard assessment and the effects of debris flows on people and the environment are discussed. Furthermore, the relationships between debris flow occurrence and climatic anomalies such as El Niño episodes are analysed. A clear pattern of debris flow generation associated with El Niño events is found for Antofagasta and Santiago. The risk related to debris flows in Chile is of increasing importance because of the continuous expansion of cities to hazardous areas such as alluvial fans. The results show that hazard assessment based on several factors is essential for the implementation of proper prevention and mitigation measures for future debris flow events in the country.  相似文献   

19.
Puna (Argentina) and northern Chile Ordovician basic magmatism: A contribution to the tectonic setting     
B. Coira  M. Koukharsky  S. Ribeiro Guevara  C.E. Cisterna 《Journal of South American Earth Sciences》2009,27(1):24-35
Geochemical characteristics of Ordovician basic volcanic rocks help to define the evolving tectonic setting of the Argentine Puna and northern Chile. Four spatially distinct magmatic groups are defined on geological, petrographical, geochemical and isotopic bases, each associated with particular geodynamic environments.The Tremadoc western group of subalkaline low K tholeiites with arc and modified MORB like signatures represent early stages of a back-arc basin, where spreading was incipient.The Arenig western group, medium K calc-alkaline basalts to andesites have volcanic arc in transition to back-arc signatures.The Tremadoc subalkaline basalts of the eastern group have REE patterns similar to E-MORB and at the same time weak subduction characteristics suggesting a rather mature supra-subduction zone (SSZ) basin. In contrast, the Late Tremadocian-Arenig basalts of the same group have intra-plate signatures, interpreted as magmas that ascended along pull apart regions associated with a transtensional regime.The geochemical patterns were applied to correlate basic sequences of doubtful geological setting. So, basalts from Chile were related to the Tremadocian western group, where they represent a slightly more mature stage of spreading of the basin. Basic rocks from Pocitos and part of Calalaste represent pre-Ordovician records of a back-arc system similar to that of the Tremadoc western group. Clearly similar arc patterns to those of the Arenig western group allow extending the arc environment to the southern Puna. The Tremadocian basalts from the eastern group were related to metabasites from the southern Puna, as part of a back-arc environment at that time.  相似文献   

20.
Arsenic and fluoride in a loess aquifer in the central area of Argentina   总被引:3,自引:0,他引:3  
M.?L.?GomezEmail author  M.?T.?Blarasin  D.?E.?Martínez 《Environmental Geology》2009,57(1):143-155
The objective of this study is to analyze the geochemical conditions associated with the presence of arsenic (As) and fluoride (F) in the phreatic aquifer of Coronel Moldes, in the central sector of the Argentine Chacopampean plain. The studied aquifer is composed of silty sand sediments of aeolian origin, typically loess-like sediments. The geochemical composition of water varies from sodium bicarbonate to sodium sulfate-chloride water. As contents range from low concentrations, below detection level, to 250 μg/l. High values of F (up to 12 mg/l) were recorded. A high As–F correlation was found (R 2 = 0.84). The pH varied from 7.31 to 8.85 and the nitrates reached concentrations up to 200 mg/l, indicating an oxidant environment. The highest values of As and F agreed with sodium bicarbonate waters as well as with the highest values of pH recorded. There was a high correlation between As and F as well as between As and the Na/Ca ratio. The composition and texture of loess, low permeability and hydraulic gradients together with the geochemical features of sodium bicarbonate waters are proper conditions for the mobilization of As and F in groundwater in the central area of Argentina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号