首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A landslide in stiff,intact clay   总被引:1,自引:0,他引:1  
A landslide in a stiff clay formation, interrupting the excavation of a tunnel for a major railway in Sicily, is reported. Limit equilibrium and FEM undrained and drained analyses of the slope before tunnel excavation agree in showing that the slope was stable with a relatively high factor of safety and the critical slip surface is located well above the tunnel. The undrained stability of the tunnel checked both via FEM and via standard analytical solutions for face stability is also verified. The FEM analyses of the slope have been repeated considering the excavation of the tunnel in undrained and drained conditions. The advancement of the tunnel face is simulated in a plane strain analysis by the Panet method. In undrained conditions, the system keeps stable. In drained conditions with a stress release factor of 50 %, the slope is on the verge of failing with a very low safety factor, while with a stress release factor of 80 %, it fails following a complex mechanism that matches the observed failure surface. These findings are discussed and some conclusions attempted.  相似文献   

2.
The geometry of several thrust-related folds in the Central Apennines of Italy results from a switch in deformation regime, from extension to contraction. This switch in tectonic regime occurred during the deposition of syn-orogenic sediments, and the emplacement and migration of the thrust belt–foredeep system towards the foreland in Neogene time. The styles of positive tectonic inversion result from normal faults that were steepened, rotated and truncated by thrusts, with local development of minor folds due to buttressing. Normal fault-controlled escarpments are also locally preserved in the forelimbs and backlimbs of thrust-related anticlines. The location and amplitudes of contractional structures across the belt reflects the distribution of pre-thrusting normal faults within precursor syn-orogenic basins, a result that may improve our understanding of the evolution of Apennine, as well as other thrust belt–foredeep systems.  相似文献   

3.
4.
Various types of progradation of Triassic carbonate platforms are described from the Dolomites of the Southern Alps. The internal and external geometric relationships are exposed in spectacular natural sections and, moreover, their scale (500–1000 m of thickness) is such that they can be compared with features found in seismic profiles. The different types of progradation are controlled by a number of factors which, normally, interact with each other. These factors include: rate of basinal sedimentation, rate of subsidence, width of the platform, depth of the surrounding basin and eustatic variations of sea-level. Progradation is not a continuous process but episodic. Moments of massive debris input, during which the platform advances, alternate with long periods of negligible progradation, during which basinal sediments accrete and onlap the toe of slope. Upper boundary relationships of the prograding platforms include offlap, toplap and erosional truncation. Lower boundary relationships are horizontal, climbing and descending progradations. A variety of phenomena and circumstances have caused the cessation of progradation of the Triassic platforms. They include volcanism, collapse of margins, drowning (rapid relative rise of sea-level), subaerial exposure (relative fall of sea-level) and, probably, a natural decay of the system. In the Triassic of the Dolomites, two main progradation models can be put forward: in the Ladinian model, progradation took place simultaneously with aggradation (relative rise of sea-level), whereas the characteristic feature of the Carnian model is toplap (relative stillstand of sea-level).  相似文献   

5.
SummaryGround Disturbance Associated with Shield Tunnelling, in Overconsolidated Stiff Clay The present paper attempts to describe the ground disturbance which occurs during a shield tunnelling, in an overconsolidated stiff clay. In particular, an effort has been made to find the possible main factors, which might affect the form and the magnitude of the detected ground movements.However, a correlation between the former factors and the actual performance of the clay was attempted, when it seemed possible and realizable. This was due to the fact that the overall process of tunnelling where the ground disturbance propagates in space, evolving in time is of some complexity like any multiparameter problem.Finally, by using the elasto-plastic approach, a simple analysis has been carriedout, on which the stress regime has been evaluated and properly connected with the tunnel advance.Ground deformations, predicted on that basis, were compared to the in-situ measurements making it easy to check the adopted concept.With 20 Figures  相似文献   

6.
Schlieren are trains of platy or blocky minerals, typically the ferromagnesian minerals and accessory phases, that occur in granites and melt‐rich migmatites, such as diatexites. They have been considered as: (1) unmelted residue from xenoliths or the source region; (2) mineral accumulations formed during magma flow; (3) compositional layering; and (4) sites of melt loss. In order to help identify schlieren‐forming processes in the diatexites at St Malo, differences in the size, shape, orientation, distribution and composition of the biotite from schlieren and from their hosts have been investigated. Small biotite grains are much less abundant in the schlieren than in their hosts. Schlieren biotite grains are generally larger, have greater aspect ratios and have, except in hosts with low (< 10%) biotite contents, a much stronger shape preferred orientation than host biotite. The compositional ranges of host and schlieren biotite are similar, but schlieren biotite defines tighter, sharper peaks on composition‐frequency plots. Hosts show magmatic textures such as imbricated (tiled), unstrained plagioclase. Some schlieren show only magmatic textures (tiled biotite, no crystal‐plastic strain features), but many have textures indicating submagmatic and subsolidus deformation (e.g. kinked grains) and these schlieren show the most extensive evidence for recrystallization. Magmas at St Malo initially contained a significant fraction of residual biotite and plagioclase crystals; smaller biotite grains were separated from the larger plagioclase crystals during magma flow. Since plagioclase was also the major, early crystallizing phase, the plagioclase‐rich domains developed rapidly and reached the rigid percolation threshold first, forcing further magma flow to be concentrated into narrowing melt‐rich zones where the biotite had accumulated, hence increasing shear strain and the degree of shape preferred orientation in these domains. Schlieren formed in these domains as a result of grain contacts and tiling in the grain inertia‐regime. Final amalgamation of the biotite aggregates into schlieren involved volume loss as melt trapped between grains was expelled after the rigid percolation threshold was reached in the biotite‐rich layers.  相似文献   

7.
Attewell, P.B. and Farmer, I.W., 1974. Ground disturbance caused by shield tunnelling in a stiff, overconsolidated clay. Eng. Geol., 8: 361–381.

Some of the factors affecting ground deformation around shield tunnelling excavations in stiff clays are considered. There is particular reference throughout the paper to an analysis and interpretation of measured ground deformation around a 4.146-m diameter, hand-excavated, shield-driven tunnel at a nominal axis depth of 29.3 m in the overconsolidated London Clay. The maximum surface settlement was found, by precise levelling, to be 6.1 mm but the shape of the transverse surface settlement profile conformed to a normal probability curve only up to the time of shield passage. Of the contributory ground losses at the tunnel, yield of the clay at the tunnel face appears to dominate to the extent of generating up to 50% of the eventual surface settlement. Measurement evidence suggests a rate of yield at the face that is 2 to 3 times the radial yield over the shield and implies that up to about one-fifth of the surface settlement could be attributed to radial yield into the grouted sections of the erected tunnel lining.  相似文献   


8.
The Upper Jurassic (Tithonian) plattenkalk successions in the Solnhofen/Eichstätt area consist of alternations of thin‐bedded, laminated, fine‐grained, very pure limestones (so‐called ‘flinz beds’) and softer interlayers with slightly lower carbonate contents that are also laminated and show a foliaceous weathering appearance (‘fäule beds’). These successions are world famous for their exceptionally well‐preserved fossils. In contrast to the well‐studied wealth of fossils, little is known about the origin and diagenesis of the host rock. The reason for this discrepancy might lay in the monotonous appearance of these fine‐grained mudstones that require electron microscopical examination. Study of samples from the Solnhofen–Eichstädt area implies that flinz and fäule beds have undergone differential diagenesis. The ultrastructure of the flinz beds is characterized by interlocking microspar crystals, whereas the fäule beds show smaller and less interlocking crystals. The ratios of diagenetically inert trace elements lack clear differences between the two interlayered lithologies. While most authors agree that the flinz–fäule rhythm reflects rhythmically changing environmental conditions, primary rhythms can be taken as proven only where statistically significant differences in diagenetically resistant proxies are found. The absence of clear primary differences between flinz and fäule beds, however, leaves the question of primary differences unsolved. It is concluded that diagenesis has had a strong influence on the genesis of the lithological rhythm, and that any primary rhythm underlying the diagenetically mature rhythm is less clear than generally assumed.  相似文献   

9.
Plane-strain shear zones between rigid walls which do not rotate but which converge and move laterally relative to each other are here-in referred to as convergent shear zones. Analysis of the deformation in convergent shear zones indicates the existence of two flow apophyses, one parallel to the shear zone wall and the other inclined to the wall. Modeling of the development of fabrics in convergent shear zones indicates the occurrence of stable orientations in which S and C′ do not rotate and are oppositely inclined to the shear-zone boundary. The stable C′ orientation is parallel to the inclined flow apophysis and also is parallel to the approach velocity vector of the opposing walls of the shear zone. If it can be demonstrated from field relationships that the walls of a shear zone were rigid and remained parallel, then the occurrence of a flow apophysis inclined in the direction of shear is diagnostic of convergent shear. S and C′ fabrics in the Ridge Road and Gundy Creek shear zones of the southern Appalachian Piedmont are interpreted to indicate a convergent shear regime with an approach velocity vector oriented ~ 10–13 ° clockwise from the strike of the zones.  相似文献   

10.
11.
Rhyolite eruptions in Iceland mostly take place at long-lived central volcanoes, examples of which are found associated with each of the present-day rift-zone ice caps. Subglacial eruptions at Kerlingarfjöll central volcano produced rhyolite tuyas that are notable for their exposures of early-erupted pyroclastic material. Observations from a number of these edifices are synthesised into a general model for explosive rhyolite tuya formation. Eruptions begin with violent phreatomagmatic explosions that generate massive tuff (mT), but the influence of water quickly declines, leading to the formation of massive lapilli-tuffs (mLT) containing magmatically-fragmented vesicular pumice and ash. These are deposited rapidly near the vent, probably by moist pyroclastic density currents, confined by ice but not within a meltwater lake. The explosive-effusive transition is controlled by the ascent rate and gas content of the magma. An unusual obsidian-rich massive lapilli-tuff lithofacies (omLT) is identified and interpreted as pyroclastic material that was intruded into gas-fluidised deposits at the explosive-effusive transition. The effusive phase of eruption involves the emplacement of intrusions and lava caps. Intrusions of lava into the early-erupted phreatomagmatic deposits are characterised by peperitic margins and the formation of hyaloclastite. Intrusions into stratigraphically higher levels of the pyroclastic material show more limited interaction with the host tephra and have microcrystalline cores. Large lava bodies with columnar-jointed margins cap the tuyas and have intrusive basal contacts with the tephras. The main influence of the ice is to confine the rhyolite eruptive products to immediately above the vent region. This is in contrast to subglacial basaltic tuya-forming eruptions, which are characterised by the formation of meltwater lakes, phreatomagmatic fragmentation and subaqueous deposition. The lack of meltwater storage may reduce the potential for large jökulhlaups.  相似文献   

12.
上海市浅部数层硬土的沉积环境、时代及划分对比   总被引:1,自引:0,他引:1  
上海市陆域东部滨海平原区埋深三、五十米以上及西部湖沼平原区埋深二十多米以上分布有数层“硬土”,现在可以确定,均属于晚更新世晚期的陆相沉积。  相似文献   

13.
In this paper a method is proposed to evaluate the seismicity level of an area in a given historical period, based on records of seismic events, source characteristics and intensity attenuation with distance. Also considered is the seismic activity recorded in southern Italy during the 10th and 11th centuries, seismic records being obtained from all available sources. To determine the level of seismicity, a key role is played by source characteristics, i.e. recording modalities and activity periods of recording centers. In addition, models of intensity attenuation with distance allow the assessment of the size of the area under investigation. This paper identifies the areas, in the 10th and 11th centuries, where major earthquakes (M 6.5) did not occur during periods of silence of sources, as well as those where such events cannot be excluded. For each area, different levels of probability were determined by applying the Cox linear logistic model to historical seismic data. The completeness analysis, in terms of area and time-span coverage, is a valuable tool to assess seismicity in seismogenetic areas. The reproducibility of the model for lower magnitude earthquakes (M < 6.5) is reliable.  相似文献   

14.
15.
The origin of fine‐grained dolomite in peritidal rocks has been the subject of much debate recently and evidence is presented here for a microbial origin of this dolomite type in the Norian Dolomia Principale of northern Calabria (southern Italy). Microbial carbonates there consist of stromatolites, thrombolites, and aphanitic dolomites. High‐relief thrombolites and stromatolites characterize sub‐tidal facies, and low‐relief and planar stromatolites, with local oncoids, typify the inter‐supratidal facies. Skeletal remains are very rare in the latter, whereas a relatively rich biota of skeletal cyanophycea, red algae and foraminifera is present in the sub‐tidal facies. Some 75% of the succession consists of fabric‐preserving dolomite, especially within the microbial facies, whereas the rest is composed of coarse dolomite with little fabric preservation. Three end‐members of dolomite replacement fabric are distinguished: type 1 and type 2, fabric retentive, with crystal size <5 and 5–60 μm, respectively; and type 3, fabric destructive, with larger crystals, from 60 to several hundred microns. In addition, there are dolomite cements, precipitated in the central parts of primary cavities during later diagenesis. Microbialite textures in stromatolites are generally composed of thin, dark micritic laminae of type 1 dolomite, alternating with thicker lighter‐coloured laminae of the coarser type 2 dolomite. Thrombolites are composed of dark, micritic clotted fabrics with peloids, composed of type 1 dolomite, surrounded by coarser type 2 dolomite. Marine fibrous cement crusts are also present, now composed of type 2 dolomite. Scanning electron microscope observations of the organic‐rich micritic laminae and clots of the inter‐supratidal microbialites reveal the presence of spherical structures which are interpreted as mineralized bacterial remains. These probably derived from the fossilization of micron‐sized coccoid bacteria and spheroidal–ovoidal nanometre‐scale dwarf‐type bacterial forms. Furthermore, there are traces of degraded organic matter, probably also of bacterial origin. The microbial dolomites were precipitated in a hypersaline environment, most likely through evaporative dolomitization, as suggested by the excess Ca in the dolomites, the small crystal size, and the positive δ18O values. The occurrence of fossilized bacteria and organic matter in the fabric‐preserving dolomite of the microbialites could indicate an involvement of bacteria and organic matter degradation in the precipitation of syn‐sedimentary dolomite.  相似文献   

16.
A facies classification of sedimentary rocks is presented for the Upper Permian Inta Formation of the southern Pechora Coal Basin. A correlation has been revealed between clay mineral assemblages and certain facies types of lacustrine sediments.  相似文献   

17.
The taphonomy of trace fossils and their substrates remains an understudied facet of sedimentary geology. Contrary to common prejudice, trace fossils are not invariably preserved in situ, but may be exhumed and reworked following lithification. The trace fossils most commonly found ex situ are borings in mobile shelly substrates. Two notable, but contrasting, examples of post-mortem transport of borings are described from the Maastrichtian (Upper Cretaceous) of southern Limburg, the Netherlands. A long, unusually straight and complete calcareous tube assigned to Teredolites longissimus Kelly and Bromley is an organically secreted internal mould, produced by a teredinid or pholadid bivalve boring in wood and lining their tube. Strictly, this is part of the body fossil of the producing bivalve, but it is also an organically generated internal mould of the boring. A flint steinkern of a right valve of Crassatella bosquetiana d’Orbigny preserves a suite of silicified borings. Caulostrepsis taeniola Clarke is a U-shaped boring with a vane connecting the parallel limbs. Talpina isp. is a slender, simple, branched tunnel. Most unexpected, Spirichnus spiralis Fürsich et al. is a spiral ‘worm’ boring hitherto only known from the Upper Jurassic. This stratigraphic gap is likely an artefact; only mouldic preservation of the bored substrate would expose the distinctive Spirichnus boring. These ichnofossils are united in their occurrence in unusual preservational systems.  相似文献   

18.
Neoformed minerals in shallow fault rocks are increasingly recognized as key to the behavior of faults in the elasto-frictional regime, but neither the conditions nor the processes which wall-rock is transformed into clay minerals are well understood. Yet, understanding of these mineral transformations is required to predict the mechanical and seismogenic behavior of faults. We therefore present a systematic study of clay gouge mineralogy from 30 outcrops of 17 low-angle normal faults (LANF's) in the American Cordillera to demonstrate the range and type of clay transformations in natural fault gouges. The sampled faults juxtapose a wide and representative range of wall rock types, including sedimentary, metamorphic and igneous rocks under shallow-crustal conditions. Clay mineral transformations were observed in all but one of 28 faults; one fault contains only mechanically derived clay-rich gouge, which formed entirely by cataclasis.Clay mineral transformations observed in gouges show four general patterns: 1) growth of authigenic 1Md illite, either by transformation of fragmental 2M1 illite or muscovite, or growth after the dissolution of K-feldspar. Illitization of fragmental illite–smectite is observed in LANF gouges, but is less common than reported from faults with sedimentary wall rocks; 2) ‘retrograde diagenesis’ of an early mechanically derived chlorite-rich gouge to authigenic chlorite–smectite and saponite (Mg-rich tri-octahedral smectite); 3) reaction of mechanically derived chlorite-rich gouges with Mg-rich fluids at low temperatures (50–150 °C) to produce localized lenses of one of two assemblages: sepiolite + saponite + talc + lizardite or palygorskite +/− chlorite +/− quartz; and 4) growth of authigenic di-octahedral smectite from alteration of acidic volcanic wall rocks. These transformation groups are consistent with patterns observed in fault rocks elsewhere. The main controls for the type of neoformed clay in gouge appear to be wall-rock chemistry and fluid chemistry, and temperatures in the range of 60–180 °C.  相似文献   

19.
The relative proportions of gravel sized particles of different lithology in rudaceous sedimentary rocks are generally determined in the field by clast counting. Clast counts are usually carried out qualitatively in order to assess sedimentary provenance. However, a review of the statistical aspects of clast counting suggests that this technique also can be applied quantitatively, and to investigate a variety of other objectives during basin analysis. Geographical and stratigraphical changes in the relative proportions of clasts can be quantified statistically and used to characterize sediment dispersal patterns in space and time, respectively. Statistical comparisons between clast assemblages can be used as a tool to match up rock units. This approach may help to constrain tectonic or suspect-terrane models, or to document sediment recycling. Both counting and sampling errors contribute to the total probable error of a clast count. Sampling error results from the uneven distribution of clasts in outcrop, perhaps caused by selective sorting. Counting error arises from a count of some number less than the total number of clasts in the population. Sampling and counting errors can be minimized by counting in closely spaced subsets, and by counting a total of at least 400 clasts, respectively. Thus, a useful procedure is to count four closely spaced subsets of 100 each, and combine the results for a total of 400. Point counting should not be used because differences in particle size produce biased results. A better method is to count all clasts above some minimum size within a specified area of outcrop. Analysis of upper Palaeogene non-marine conglomerates composing part of the Sespe Formation in California, using confidence intervals, hypothesis testing, analysis of variance, ratio analysis and varietal studies, demonstrates that useful statistics can be derived by counting clasts.  相似文献   

20.
Summary ¶The Campanian Plain is an 80×30km region of southern Italy, bordered by the Apennine Chain, that has experienced subsidence during the Quaternary. This region, volcanologically active in the last 600ka, has been identified as the Campanian Volcanic Zone (CVZ). The products of three periods of trachytic ignimbrite volcanism (289–246ka, 157ka and 106ka) have been identified in the Apennine area in the last 300ka. These deposits probably represent distal ash flow units of ignimbrite eruptions which occurred throughout the CVZ. The resulting deposits are interstratified with marine sediments indicating that periods of repeated volcano-tectonic emergence and subsidence may have occurred in the past. The eruption, defined as the Campanian Ignimbrite (CI), with the largest volume (310km3), occurred in the CVZ 39ka ago. The products of the CI eruption consist of two units (unit-1 and unit-2) formed from a single compositionally zoned magma body. Slightly different in composition, three trachytic melts constitute the two units. Unit-1 type A is an acid trachyte, type B is a trachyte and type C of unit-2 is a mafic trachyte.The CI, vented from pre-existing neotectonic faults, formed during the Apennine uplift. Initially the venting of volatile-rich type A magma deposited the products to the N–NE of the CVZ. During the eruption, the Acerra graben already affected by a NE–SW fault system, was transected by E–W faults, forming a cross-graben that extended to the gulf of Naples. E–W faults were then further dislocated by NE–SW transcurrent movements. This additional collapse significantly influenced the deposition of the B-type magma of unit-1, and the C-type magma of unit-2 toward the E–SE and S, in the Bay of Naples. The pumice fall deposit underlying the CI deposits, until now thought to be associated with the CI eruption, is not a strict transition from plinian to CI-forming activity. It is derived instead from an independent source probably located near the Naples area. This initial volcanic activity is assumed to be a precursor to the CI trachytic eruptions, which vented along regional faults.Received October 23, 2002; revised version accepted July 29, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号