首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A fully time-dependent mathematical model, SUPIM, of the Earth’s plasmasphere is used in this investigation. The model solves coupled time-dependent equations of continuity, momentum and energy balance for the O+, H+, He+, N+2, O+2, NO+ ions and electrons; in the present study, the geomagnetic field is represented by an axial-centred dipole. Calculation of vibrationally excited nitrogen molecules, which has been incorporated into the model, is presented here. The enhanced model is then used to investigate the behaviour of vibrationally excited nitrogen molecules with F10.7 and solar EUV flux, during summer, winter and equinox conditions. The presence of vibrational nitrogen causes a reduction in the electron content. The diurnal peak in electron content increases linearly up to a certain value of F10.7, and above this value increases at a lesser rate, in agreement with previous observations and modelling work. The value of F10.7 at which this change in gradient occurs is reduced by the presence of vibrational nitrogen. Vibrational nitrogen is most effective at F-region altitudes during summer daytime conditions when a reduction in the electron density is seen. A lesser effect is seen at equinox, and in winter the effect is negligible. The summer reduction in electron density due to vibrational nitrogen therefore reinforces the seasonal anomaly.  相似文献   

2.
In this paper the formulation of the problem and preliminary numerical computation results of the thermosphere-ionosphere-protonosphere system parameters are discussed.The model constructed describes time-dependent distributions of the multicomponent near-earth space plasma parameters by means of numerical integration of the appropriate three-dimensional plasma hydrodynamic equations. In the thermospheric block of the model, global distribution of neutral gas temperature and N2, O2, O concentrations, as well as three-dimensional circulation of the neutral gas are calculated in the range of height from 80 km to 520 km. In the ionospheric section of the model, global time-dependent distribution of ion and electron temperatures, as well as molecular and atomic O+, H+ ion concentrations are calculated. Global two-dimensional distribution of electric potential is calculated taking into account computed thermosphere and ionosphere parameters.The inputs needed for our global model are the solar EUV spectrum; the auroral precipitation pattern; the distribution of the field-aligned currents and the model of the geomagnetic field.Preliminary results are obtained without regard to electromagnetic plasma drift for the solar minimum, low geomagnetic activity and spring equinox conditions. Global distributions of the calculated parameters in the magnetic dipole latitude-longitude frame are presented for 1200 UT. In the summary ignored processes and future direction are discussed.  相似文献   

3.
本文基于2002年至2010年的GRACE卫星的观测密度统计分析南北极点的热层大气密度的世界时(即磁地方时)变化.研究发现:在9—11月份地球处于行星际磁场为背向太阳的扇区内(背向扇区)时,南极点热层密度在约17∶00 UT(13∶30 MLT)达到最大值,比日平均值高约22%;而在6—8月份,当地球处于行星际磁场为面向太阳的扇区内(面向扇区)时,北极点热层密度在06∶00 UT(12∶30 MLT)达到最大值,比日平均值高约13%.南极点的磁纬是-74°,其在15∶30 UT处于磁地方时正午,恰与极尖区位置重合.北极点在5∶30 UT处于磁地方时正午,此时北极点与极尖区位置最靠近.因此,极点热层大气密度的磁地方时变化可能是其周期性靠近极尖区的结果.南北极点热层密度的磁地方时变化分别在背向和面向扇区内更明显,这可能与行星际磁场By分量对南北半球密度的不同影响有关.统计结果还表明,极点热层大气密度的磁地方时变化在冬季半球内不明显.这可能是由于在冬季半球,沉降于极尖区的粒子相比夏季半球少、沉降高度低,因而能量沉降所引起的热层上部的密度增强较小.  相似文献   

4.
The USU time-dependent ionospheric model (TDIM) simulated the northern (winter) and southern (summer) ionospheres as they responded to the changing solar wind and geomagnetic activity on 14 January 1988. This period began with moderately disturbed conditions, but as the IMF turned northward, the geomagnetic activity decreased. By 1400 UT, the IMF By component became strongly negative with Bz near zero; and eventually Bz turned southward. This began a period of intense activity as a magnetic storm developed. The magnetospheric electric field and auroral electron precipitation drivers for these simulations were obtained from the Naval Research Laboratories (NRL) Magnetohydrodynamic (MHD) magnetospheric simulation for this event.The F-region ionospheric simulations contrast the summer–winter hemispheres. Then, the difference in how the two hemispheres respond to the geomagnetic storm is related to the differences in magnetospheric energy deposition in the two hemispheres. This also emphasizes the role played by the E-region in the magnetosphere–ionosphere (M–I) coupling and subsequent lack of conjugacy in the two hemispheres. The F-region’s response to the changing geomagnetic conditions also demonstrates a striking lack of conjugacy. This manifests itself in a well-defined ionospheric morphology in the summer hemisphere and a highly irregular morphology in the winter hemisphere. These differences are found to be associated with the differences in the magnetospheric electric field input.  相似文献   

5.
The data of the DMSP F7 spacecraft are used for studying the influence of the geomagnetic dipole tilt angle on the latitudinal position of auroral precipitation boundaries in the nighttime (2100–2400 MLT) and daytime (0900–1200 MLT) sectors. It is shown that, in the nighttime sector, the high-latitude zone of soft diffuse precipitation (SDP) and the boundary of the polar cap (PC) at all levels of geomagnetic activity are located at higher and lower latitudes relative to the equinox period in winter and summer, respectively. The position of boundaries of the diffuse auroral precipitation zone (DAZ) located equatorward from the auroral oval does not depend on the season. In the daytime sector, the inverse picture is observed: the SDP precipitation zone takes the most low-latitude and high-latitude positions in the winter and summer periods, respectively. The total value of the displacements from winter to summer of both the nighttime and daytime boundaries of the PC is ∼2.5°. A diurnal wave in the latitudinal position of the nighttime precipitation boundaries is detected. The wave is most pronounced in the periods of the winter and fall seasons, is much weaker in the spring period, and is almost absent in summer. The diurnal variations of the position of the boundaries are quasi-sinusoidal oscillations with the latitude maximum and minimum at 0300–0500 and 1700–2100 UT, respectively. The total value of the diurnal displacement of the boundaries is ∼2.5° of latitude. The results obtained show that, undergoing seasonal and diurnal variations, the polar cap is shifted as a whole in the direction opposite to the changes in the tilt angle of the geomagnetic dipole. The seasonal displacements of the polar cap and its diurnal variations in the winter period occur without any substantial changes in its area.  相似文献   

6.
Ion composition measurements on board the ACTIVE satellite during the recovery phase of a strong geomagnetic storm of 10–12 April 1990 revealed extremely high concentrations (up to 103 cm−3) of the NO+, O+2, N+2 molecular ions in the topside F2-region of the European high-latitude zone. Concentrations of O+, N+, He+, H+ light ions were slightly decreased relative to prestorm quite conditions. Theoretical calculations were used to analyze the observed variations in ion concentration. Increased neutral temperature and [O2], [N2] are shown to be the main reasons for the observed ion concentration variations.  相似文献   

7.
The coupled thermosphere-ionosphere-plasmasphere model CTIP is used to study the global three-dimensional circulation and its effect on neutral composition in the midlatitude F-layer. At equinox, the vertical air motion is basically up by day, down by night, and the atomic oxygen/molecular nitrogen [O/N2] concentration ratio is symmetrical about the equator. At solstice there is a summer-to-winter flow of air, with downwelling at subauroral latitudes in winter that produces regions of large [O/N2] ratio. Because the thermospheric circulation is influenced by the high-latitude energy inputs, which are related to the geometry of the Earth’s magnetic field, the latitude of the downwelling regions varies with longitude. The downwelling regions give rise to large F2-layer electron densities when they are sunlit, but not when they are in darkness, with implications for the distribution of seasonal and semiannual variations of the F2-layer. It is also found that the vertical distributions of O and N2 may depart appreciably from diffusive equilibrium at heights up to about 160 km, especially in the summer hemisphere where there is strong upwelling.  相似文献   

8.
A mathematical model of the middle and high latitude ionosphere   总被引:5,自引:0,他引:5  
  相似文献   

9.
Using the data of Moscow station for 1975–1985, the seasonal features in the dependence of the spread-F probability P near midnight on the levels of solar and geomagnetic activity have been analyzed. It has been found that the P dependence on solar activity is most substantial in winter and fall, the P dependence on geomagnetic activity is maximal during equinoxes, and the P dependence on solar activity prevails in summer but is much weaker than in winter and fall. Based on the qualitative analysis of the known mechanisms of the midlatitude spread-F, the regression equation, which shows the P dependence on the solar activity level and thermospheric parameters (temperature and density) at a fixed average level of geomagnetic activity, has been obtained. In this equation the character of the seasonal changes in P is determined by the thermospheric parameters, the relative contribution of which depends on solar activity. The found dependence of the character of the P seasonal variations on the solar activity level has been interpreted based on this equation.  相似文献   

10.
The seasonal effects in the thermosphere and ionosphere responses to the precipitating electron flux and field-aligned current variations, of the order of an hour in duration, in the summer and winter cusp regions have been investigated using the global numerical model of the Earths upper atmosphere. Two variants of the calculations have been performed both for the IMF By < 0. In the first variant, the model input data for the summer and winter precipitating fluxes and field-aligned currents have been taken as geomagnetically symmetric and equal to those used earlier in the calculations for the equinoctial conditions. It has been found that both ionospheric and thermospheric disturbances are more intensive in the winter cusp region due to the lower conductivity of the winter polar cap ionosphere and correspondingly larger electric field variations leading to the larger Joule heating effects in the ion and neutral gas temperature, ion drag effects in the thermospheric winds and ion drift effects in the F2-region electron concentration. In the second variant, the calculations have been performed for the events of 28–29 January, 1992 when precipitations were weaker but the magnetospheric convection was stronger than in the first variant. Geomagnetically asymmetric input data for the summer and winter precipitating fluxes and field-aligned currents have been taken from the patterns derived by combining data obtained from the satellite, radar and ground magnetometer observations for these events. Calculated patterns of the ionospheric convection and thermospheric circulation have been compared with observations and it has been established that calculated patterns of the ionospheric convection for both winter and summer hemispheres are in a good agreement with the observations. Calculated patterns of the thermospheric circulation are in a good agreement with the average circulation for the Southern (summer) Hemisphere obtained from DE-2 data for IMF By < 0 but for the Northern (winter) Hemisphere there is a disagreement at high latitudes in the afternoon sector of the cusp region. At the same time, the model results for this sector agree with other DE-2 data and with the ground-based FPI data. All ionospheric and thermospheric disturbances in the second variant of the calculations are more intensive in the winter cusp region in comparison with the summer one and this seasonal difference is larger than in the first variant of the calculations, especially in the electron density and all temperature variations. The means that the seasonal effects in the cusp region are stronger in the thermospheric and ionospheric responses to the FAC variations than to the precipitation disturbances.  相似文献   

11.
R. I. Crickmore 《Annales Geophysicae》1994,12(10-11):1101-1113
Thermospheric winds on a total of 237 nights have been studied for the effects due to geomagnetic activity, solar flux, and season. The observations have been made from 1988 to 1992 by a Fabry-Perot interferometer (FPI) operating at Halley (75.5°S, 26.6°W), Antarctica. This is the first statistical study of thermospheric winds near the southern auroral zone. The main factor affecting the wind velocities is the geomagnetic activity. Increases in activity cause an increase in the maximum equatorward wind, and cause the zonal wind in the evening to become more westward. Smaller changes in the mean wind occur with variations in season and solar flux. The small variation with solar flux is more akin to the situation found at mid-latitudes than at high latitudes. Since the geomagnetic latitude of Halley is only 61°, it suggests that the variability of the wind with solar flux may depend more on geomagnetic than geographic latitude. These observations are in good agreement with the empirical Horizontal Wind Model (HWM90). However, comparisons with predictions of the Vector Spherical Harmonic Model (VSH) show that for low geomagnetic activity the predicted phases of the two components of the wind closely resemble the observations but the modelled amplitudes are too small by a factor of two. At high geomagnetic activity the major differences are that modelled zonal velocity is too westward in the evening and too eastward after 04 UT. The modelled ion densities at the F-region peak are a factor of up to 9 too large, whilst the predicted mean value and diurnal variation of the altitude of the peak are significantly lower than those observed. It is suggested that these differences result from the ion loss rate being too low, and an inaccurate model of the magnetic field.  相似文献   

12.
Common programme observations by the EISCAT UHF radar revealed an extended interval, post geomagnetic local noon on 03 April 1992, during which the F-region ion velocity orthogonal to the geomagnetic field was significantly enhanced, to values exceeding 2 km s−1 corresponding to a perpendicular electric field of some 100 mV m−1. Observations from this interval are used to illustrate a method by which estimates of the E-region ion-neutral collision frequency may be derived in the presence of enhanced electric field. From both the rotation of the ion velocity vector and the reduction in the ion velocity magnitude relative to that in the F-region, independent estimates of the normalised ion-neutral collision frequency are made at the UHF E-region tristatic altitudes; the derived values are, in general, lower than model predictions. Although initial calculations assume a stationary neutral atmosphere, first-order estimates of the E-region neutral wind are subsequently employed to calculate revised estimates of the normalised ion-neutral collision frequency; these neutral winds are derived by attributing the difference between predicted and observed enhancements in field-parallel ion temperature to thermospheric motion. The inclusion of neutral winds, which are themselves not inconsiderable, appears to have only a limited effect on the normalised collision frequencies derived.  相似文献   

13.
The Global Coupled Ionosphere–Thermosphere-Electrodynamics Model developed at Institute of Geology and Geophysics, Chinese Academy of Sciences (GCITEM-IGGCAS), is introduced in this paper. This new model self-consistently calculates the time-dependent three-dimensional (3-D) structures of the main thermospheric and ionospheric parameters in the height range from 90 to 600 km, including neutral number density of major species O2, N2, and O and minor species N(2D), N(4S), NO, He and Ar; ion number densities of O+ ,O2+, N2+, NO+, N+ and electron; neutral, electron and ion temperature; and neutral wind vectors. The mid- and low-latitude electric fields can also be self-consistently calculated. GCITEM-IGGCAS is a full 3-D code with 5° latitude by 7.5° longitude cells in a spherical geographical coordinate system, which bases on an altitude grid. We show two simulations in this paper: a March Equinox one and a June Solstice one, and compare their simulation results to MSIS00 and IRI2000 empirical model. GCITEM-IGGCAS can reproduce the main features of the thermosphere and ionosphere in both cases.  相似文献   

14.
Since the auroral ionosphere provides an important energy sink for the magnetosphere, ionosphere-thermosphere coupling must be investigated when considering the energy budget of the ionosphere-magnetosphere coupling. We present the first Scandinavian ground-based study of high-latitude F-region ion-neutral frictional heating where ion velocity and temperature are measured by the EISCAT incoherent scatter radar as well as neutral wind and temperature being measured simultaneously by a Fabry-Perot interferometer. A geomagnetically active period (Kp = 7- - 5-) and quiet period (Kp = 0+ - 0) were studied. Neglecting the neutral wind can result in errors of frictonal heating estimates of 60% or more in the F-layer. About 96% of the local ion temperature enhancement over the neutral temperature is accounted for by ion-neutral frictional heating.  相似文献   

15.
16.
We apply a model-assisted technique to construct the topside electron density profile based on Digisonde measurements. This technique uses the Topside Sounder Model (TSM), which provides the plasma scale height, O+-H+ transition height, and their ratio Rt = H T /h T , derived from topside sounder data of Alouette and ISIS satellites. The Topside Sounder Model Profiler (TSMP) incorporates TSM and uses the model quantities as anchor points for the construction of topside density profiles. TSMP provides its model ratios with transition height and plasmaspheric scale height. The analysis carried out indicates that Digisonde derived F-region topside scale height Hm is systematically lower than one derived from topside sounder profiles. To construct topside profiles by using Hm, a correction factor of around 3 is needed to multiply the neutral scale height in the α-Chapman formula. It was found that the plasmaspheric scale height strongly depends on latitude and its ratio with the F-region scale height expresses large day-to-day variability.  相似文献   

17.
Near-earth plasma parameters were calculated using a global numerical self-consistent and time-dependent model of the thermosphere, ionosphere and protonosphere (GSM TIP). The model results are compared with experimental data of different origin, mainly EISCAT measurements and simultaneous satellite data (Ne and ion composition). Model runs with varying inputs of auroral FAC distributions, temperature of vibrationally excited nitrogen and photoelectron energy escape fluxes are used to make adjustments to the observations. The satellite data are obtained onboard Active and its subsatellite Magion –2 when they passed nearby the EISCAT station around 0325 and 1540 UT on 31 July 1990 at a height of about 2000 and 2200 km, respectively. A strong geomagnetic disturbance was observed two days before the period under study. Numerical calculations were performed with consideration of vibrationally excited nitrogen molecules for high solar-activity conditions. The results show good agreement between the incoherent-scatter radar measurements (Ne, Te, Ti) and model calculations, taking into account the excited molecular nitrogen reaction rates. The comparison of model results of the thermospheric neutral wind shows finally a good agreement with the HWM93 empirical wind model.  相似文献   

18.
The equipment and methodical characteristics of determining the vertical component of the ionospheric plasma motion velocity Vz based on an incoherent scatter radar of Institute of Ionosphere, National Academy of Sciences and Ministry of Education and Science of Ukraine (Kharkiv), which is the only radar of such type in Central Europe, are described. Based on the radar data, the patterns of altitude and diurnal variations in Vz near the maximum of solar cycle 24 for the typical geophysical conditions (around the summer and winter solstices, the spring and fall equinoxes) at low geomagnetic activity and the specifics of these changes during ionospheric storms are presented. The results of modeling of the dynamic processes in ionospheric plasma under the conditions of the undisturbed ionosphere, including the determination of altitudetime variations in the thermospheric wind velocity, are presented. It has been established that this velocity can significantly differ from the thermospheric wind velocity calculated by the known empirical global models. This difference is likely related to the regional features of thermospheric wind that are not shown in the global models.  相似文献   

19.
A numerical model has been developed which is capable of simulating all phases of the life cycle of metallic ions, and results are described and interpreted herein for the typical case of Fe+ ions. This cycle begins with the initial deposition of metallics through meteor ablation and sputtering, followed by conversion of neutral Fe atoms to ions through photoionization and charge exchange with ambient ions. Global transport arising from daytime electric fields and poleward/downward diffusion along geomagnetic field lines, localized transport and layer formation through descending convergent nulls in the thermospheric wind field, and finally annihilation by chemical neutralization and compound formation are treated. The model thus sheds new light on the interdependencies of the physical and chemical processes affecting atmospheric metallics. Model output analysis confirms the dominant role of both global and local transport to the ions life cycle, showing that upward forcing from the equatorial electric field is critical to global movement, and that diurnal and semidiurnal tidal winds are responsible for the formation of dense ion layers in the 90–250 km height region. It is demonstrated that the assumed combination of sources, chemical sinks, and transport mechanisms actually produces F-region densities and E-region layer densities similar to those observed. The model also shows that zonal and meridional winds and electric fields each play distinct roles in local transport, whereas the ion distribution is relatively insensitive to reasonable variations in meteoric deposition and chemical reaction rates.  相似文献   

20.
Annual and seasonal variations in the low-latitude topside ionosphere are investigated using observations made by the Hinotori satellite and the Sheffield University Plasmasphere Ionosphere Model (SUPIM). The observed electron densities at 600 km altitude show a strong annual anomaly at all longitudes. The average electron densities of conjugate latitudes within the latitude range ±25° are higher at the December solstice than at the June solstice by about 100% during daytime and 30% during night-time. Model calculations show that the annual variations in the neutral gas densities play important roles. The model values obtained from calculations with inputs for the neutral densities obtained from MSIS86 reproduce the general behaviour of the observed annual anomaly. However, the differences in the modelled electron densities at the two solstices are only about 30% of that seen in the observed values. The model calculations suggest that while the differences between the solstice values of neutral wind, resulting from the coupling of the neutral gas and plasma, may also make a significant contribution to the daytime annual anomaly, the E × B drift velocity may slightly weaken the annual anomaly during daytime and strengthen the anomaly during the post-sunset period. It is suggested that energy sources, other than those arising from the 6% difference in the solar EUV fluxes at the two solstices due to the change in the Sun-Earth distance, may contribute to the annual anomaly. Observations show strong seasonal variations at the solstices, with the electron density at 600 km altitude being higher in the summer hemisphere than in the winter hemisphere, contrary to the behaviour in NmF2. Model calculations confirm that the seasonal behaviour results from effects caused by transequatorial component of the neutral wind in the direction summer hemisphere to winter hemisphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号