首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The determination of local geoid models has traditionally been carried out on land and at sea using gravity anomaly and satellite altimetry data, while it will be aided by the data expected from satellite missions such as those from the Gravity field and steady-state ocean circulation explorer (GOCE). To assess the performance of heterogeneous data combination to local geoid determination, simulated data for the central Mediterranean Sea are analyzed. These data include marine and land gravity anomalies, altimetric sea surface heights, and GOCE observations processed with the space-wise approach. A spectral analysis of the aforementioned data shows their complementary character. GOCE data cover long wavelengths and account for the lack of such information from gravity anomalies. This is exploited for the estimation of local covariance function models, where it is seen that models computed with GOCE data and gravity anomaly empirical covariance functions perform better than models computed without GOCE data. The geoid is estimated by different data combinations and the results show that GOCE data improve the solutions for areas covered poorly with other data types, while also accounting for any long wavelength errors of the adopted reference model that exist even when the ground gravity data are dense. At sea, the altimetric data provide the dominant geoid information. However, the geoid accuracy is sensitive to orbit calibration errors and unmodeled sea surface topography (SST) effects. If such effects are present, the combination of GOCE and gravity anomaly data can improve the geoid accuracy. The present work also presents results from simulations for the recovery of the stationary SST, which show that the combination of geoid heights obtained from a spherical harmonic geopotential model derived from GOCE with satellite altimetry data can provide SST models with some centimeters of error. However, combining data from GOCE with gravity anomalies in a collocation approach can result in the estimation of a higher resolution geoid, more suitable for high resolution mean dynamic SST modeling. Such simulations can be performed toward the development and evaluation of SST recovery methods.  相似文献   

2.
 Multiple input/multiple output system theory (MIMOST) is briefly presented, and the application of the method to the quasi-stationary sea surface topography (QSST) estimation and the filtering of the input observations are discussed. The repeat character of satellite altimetry missions provides more than one sample of the measured sea surface height (SSH) field, and an approximation of the input signal and error power spectral densities can be determined using this successive information. A case study in the Labrador Sea is considered using SSHs from ERS1 phases C and G, ERS1-GM, ERS2 phase A and TOPEX/POSEIDON altimetric missions in combination with shipborne gravity anomalies. The time period of the observations in this study is from 1993 to 1998. Some comparisons between the techniques used for the power spectral density approximation are carried out and some remarks on the properties of the estimated QSST are presented. Received: 19 October 1999 / Accepted: 23 October 2000  相似文献   

3.
一个异常的台风海面风、浪结构的遥感分析   总被引:2,自引:0,他引:2  
齐义泉  施平  毛庆文 《遥感学报》1997,1(3):214-219
Geosat卫星高度计可广泛应用于如锋面,海面风,浪和高度等多方面的研究,但利用高度计资料分析台风的海面风,浪断面结构,因受卫星轨道,台风路径和高度计风速算法等多方面的制约,过去一直研究较少。该文以G3osat高度计1987年8月11日一上升轨道的风,浪资料为基础,研究分析了8708号台风影响下的海南风速和海浪断面分布特征。  相似文献   

4.
The European Space Agency’s Gravity field and steady-state ocean circulation explorer mission (GOCE) was launched on 17 March 2009. As the first of the Earth Explorer family of satellites within the Agency’s Living Planet Programme, it is aiming at a better understanding of the Earth system. The mission objective of GOCE is the determination of the Earth’s gravity field and geoid with high accuracy and maximum spatial resolution. The geoid, combined with the de facto mean ocean surface derived from twenty-odd years of satellite radar altimetry, yields the global dynamic ocean topography. It serves ocean circulation and ocean transport studies and sea level research. GOCE geoid heights allow the conversion of global positioning system (GPS) heights to high precision heights above sea level. Gravity anomalies and also gravity gradients from GOCE are used for gravity-to-density inversion and in particular for studies of the Earth’s lithosphere and upper mantle. GOCE is the first-ever satellite to carry a gravitational gradiometer, and in order to achieve its challenging mission objectives the satellite embarks a number of world-first technologies. In essence the spacecraft together with its sensors can be regarded as a spaceborne gravimeter. In this work, we describe the mission and the way it is operated and exploited in order to make available the best-possible measurements of the Earth gravity field. The main lessons learned from the first 19 months in orbit are also provided, in as far as they affect the quality of the science data products and therefore are of specific interest for GOCE data users.  相似文献   

5.
由于卫星导航信号强度弱易被干扰,可以通过人为手段(如GPS的SA)播发欺骗信息,使海上船只的导航信号容易被干扰、蒙蔽和控制。通过对星基导航完好性监测方法的探讨,介绍了通过建立一个卫星导航系统信息源完好性监测数据库,并利用地球同步卫星,将监测结果实时地传输到监控中心,来建立一套可靠性高、实时性强的海上卫星导航信息源完好性监测系统,解决我国海上特殊用户星基导航可靠性保障的问题。  相似文献   

6.
研究了将陆地重力似大地水准面与GPS水;住似大地水准面拟合的处理方法推广到海洋的问题.首先从理论上证明了当存在海面地形.则海洋大地水准面与似大地水准面不重合.导出了在海洋上大地水;住面差距与高程异常之间差值的公式.由此给出了求定平均海面相对于区域高程基准的正常高以及测高似大地水准面的计算公式。由于测高平均海面与GPS大地高有相近的精度.提出了将海洋重力似大地水准面与区域测高似大地水准面拟合的处理方法.并利用当前最新的海面地形模型和测高平均海面模型做了数值估计。  相似文献   

7.
海洋卫星测高在全球和区域大地水准面建模、全球海洋重力场反演、海底地形探测、海平面变化监测、构造板块运动研究等大地测量领域至关重要。本文概述了海洋微波测高卫星的简要发展历程,重点梳理了卫星测高在全球海洋重力场和全球海底地形建模方面取得的丰硕成果,对比分析了主流的海洋重力场和海底地形模型;介绍了合成孔径雷达高度计、Ka频段雷达高度计、合成孔径雷达干涉仪3种先进微波测高技术,并分析了其各自的优缺点,表明它们将在未来若干年呈并驱发展趋势;较为系统地阐述了海洋卫星测高的另一新型技术,即GNSS反射信号测量技术的研究动态,给出了GNSS-R(GNSS reflectometry)类(试验)卫星的发展脉络和发展前景。卫星测高的发展趋势之一是多颗测高卫星的组网观测,本文概括了曾经提出的和拟议中的若干组网测高计划,扼要介绍了由我国提出并正在实施的双星跟飞测高模式;最后指出了卫星测高发展的几个主要关注点,包括双星跟飞测高和SWOT(surface water ocean topography)任务的2维海面高(差)测量、卫星测高反演海底地形与高级地形激光高度计观测数据及遥感卫星图像的结合、星载GNSS-R厘米级海面高的载波相位测量、人工智能技术在卫星测高中的潜在应用等。  相似文献   

8.
Mean sea surface heights and residual radial orbit errors are estimated simultaneously in a single global crossover adjustment of multiple cycles of satellite altimetry data. The rank defect inherent in the estimation problem is explicitly identified and treated in various ways to give solutions that minimise (in norm) either orbit errors or mean sea surface heights. The rank defect gives rise to geographically correlated orbit error, consisting of those components of the orbit error or those components of the map of sea surface heights which fall within the nullspace of the estimation problem and which cannot be distinguished as orbit error or ocean signal. We show that, in the case of Topex/Poseidon data, the geographically correlated error consists largely of long-wavelength and long-period sea surface fluctuations, which in the past has often been assigned as orbit error. Received 11 September 1995; Accepted 2 September 1996  相似文献   

9.
We present a geoid solution for the Weddell Sea and adjacent continental Antarctic regions. There, a refined geoid is of interest, especially for oceanographic and glaciological applications. For example, to investigate the Weddell Gyre as a part of the Antarctic Circumpolar Current and, thus, of the global ocean circulation, the mean dynamic topography (MDT) is needed. These days, the marine gravity field can be inferred with high and homogeneous resolution from altimetric height profiles of the mean sea surface. However, in areas permanently covered by sea ice as well as in coastal regions, satellite altimetry features deficiencies. Focussing on the Weddell Sea, these aspects are investigated in detail. In these areas, ground-based data that have not been used for geoid computation so far provide additional information in comparison with the existing high-resolution global gravity field models such as EGM2008. The geoid computation is based on the remove–compute–restore approach making use of least-squares collocation. The residual geoid with respect to a release 4 GOCE model adds up to two meters and more in the near-coastal and continental areas of the Weddell Sea region, also in comparison with EGM2008. Consequently, the thus refined geoid serves to compute new estimates of the regional MDT and geostrophic currents.  相似文献   

10.
Altimetry with GNSS-R interferometry: first proof of concept experiment   总被引:1,自引:0,他引:1  
The Global Navigation Satellite System Reflectometry (GNSS-R) concept was conceived as a means to densify radar altimeter measurements of the sea surface. Until now, the GNSS-R concept relied on open access to GNSS transmitted codes. Recently, it has been proposed that the ranging capability of the technique for ocean altimetric applications can be improved by using all the signals transmitted in the bandwidth allocated to GNSS, which includes open access as well as encrypted signals. The main objective of this study is to provide experimental proof of this enhancement through a 2-day experiment on the Zeeland Bridge (The Netherlands). In the experiment, we used a custom built GNSS-R system, composed of high gain GPS antennas, calibration subsystem, and an FPGA-based signal processor which implemented the new concepts, an X-band radar altimeter and a local geodetic network. The results obtained indicate that the new approach produces a significant improvement in GNSS-R altimetric performance.  相似文献   

11.
卫星海洋水色遥感信息特征量的研究   总被引:9,自引:0,他引:9  
首先从卫星海洋水色遥感机理出发,提出了水色遥感信息的两个特征量──归一化反照率(Albedo)和辐射信噪比(SNR)。其次,针对中国“九五”期间计划发射的海洋水色卫星的轨道参数和安装在卫星上的水色扫描仪(COCTS)水色通道为对象,上中国海区为遥感目标,通过两个特征量的模拟计算结果,进行了大洋和沿岸两类不同水体信息特征量的比较。最后,研究了信息特征量的时间和空间响应。研究的结果为中国计划发射的海洋水色卫星图像质量预测和应用潜力的评估提供了一定的科学依据。  相似文献   

12.
Phytoplankton size classes (hereafter, PSCs) were derived from satellite ocean color data using a present phytoplankton abundance-based optical algorithm in the northern Bering and southern Chukchi Seas to characterize the spatial and seasonal variations of the different PSC and investigate the contributions of small phytoplankton to the total phytoplankton biomass. The comparison results showed that the phytoplankton abundance-based method approach could reasonably classify the three PSCs (pico-, nano-, and micro phytoplankton). The satellite maps of the dominant PSCs were derived using long-term satellite ocean color data. The general spatial distribution showed that the large (micro-) phytoplankton were dominant in the coastal waters and the west side of the Bering strait, while the small size (nano- or pico-) phytoplankton were dominant in the open ocean waters. Nano- and microphytoplankton were dominant in May and October in most of the study area, while pico-phytoplankton were dominant in the summer months in the open ocean waters. The annual variation in small phytoplankton dominance had a strong positive relationship with the annual mean sea surface temperature (SST), which is consistent with the increasing dominance of small phytoplankton biomass as water temperature increases. Microphytoplankton have an apparent increasing trend in the southeastern Chukchi Sea but slightly decreasing trends in Chirikov and St. Lawrence Island Polynya (SLIP). In contrast, there were increasing trends in picophytoplankton in Chirikov and SLIP, which seems to be related to increasing annual SST. It is crucial to monitor changes in dominant groups of phytoplankton community in the Bering and Chukchi Seas as important biological hotspots responding to the recent changes in environmental conditions.  相似文献   

13.
威德尔海异常是西南极沿海地区在夏季出现的电离层异常现象。本文用西南极地区的GPS跟踪站数据和测高卫星Jason-2数据,分别提取了陆地和海洋地区大范围的电离层TEC参数。GPS反演结果的优势是获取测站上空高精度的TEC时间序列,测高反演的结果整体与GPS的结果精度相当,虽然测高的时间分辨率较低,但其优势是获取海洋广大区域的TEC值。两种观测手段的研究区域互补,可以充分观测威德尔海异常在西南极的变化特征,从空间上来看,威德尔海异常出现在以别林斯高晋海为中心的广大区域,而威德尔海异常也是覆盖了西南极的别林斯高晋海、威德尔海以及可达80°S的西南极陆地区域。从时间上来看,出现时段在每年的10月底到次年3月初,夜晚电子密度增加,白天电子密度降低,随着太阳活动的增强,其异常程度也变大。  相似文献   

14.
We can presently construct two independent time series of sea level, each at a precision of a few centimeters, from Geosat (1985–1988) and TOPEX/Poseidon (1992–1995) collinear altimetry. Both are based on precise satellite orbits computed using a common geopotential model, JGM-2 (Nerem et al. 1994). We have attempted to connect these series using Geosat-T/P crossover differences in order to assess long-term ocean changes between these missions. Unfortunately, the observed result are large-scale sea level differences which appear to be due to a combination of geodetic and geopotential error sources. The most significant geodetic component seems to be a coordinate system bias for Geosat sea level (relative to T/P) of −7 to −9 cm in the y-axis (towards the Eastern Pacific). The Geosat-T/P sea height differences at crossovers (with JGM-2 orbits) probably also contain stationary geopotential-orbit error of about the same magnitude which also distort any oceanographic interpretation of the observed changes. We also found JGM-3 Geosat orbits have not resolved the datum errors evident from the JGM-2 Geosat -T/P results. We conclude that the direct altimetric approach to accurate determination of sea level change using Geosat and T/P data still depends on further improvement in the Geosat orbits, including definition of the geocenter. Received: 11 March 1996; Accepted: 19 September 1996  相似文献   

15.
Filtering and signal processing techniques have been widely used in the processing of satellite gravity observations to reduce measurement noise and correlation errors. The parameters and types of filters used depend on the statistical and spectral properties of the signal under investigation. Filtering is usually applied in a non-real-time environment. The present work focuses on the implementation of an adaptive filtering technique to process satellite gravity gradiometry data for gravity field modeling. Adaptive filtering algorithms are commonly used in communication systems, noise and echo cancellation, and biomedical applications. Two independent studies have been performed to introduce adaptive signal processing techniques and test the performance of the least mean-squared (LMS) adaptive algorithm for filtering satellite measurements obtained by the gravity field and steady-state ocean circulation explorer (GOCE) mission. In the first study, a Monte Carlo simulation is performed in order to gain insights about the implementation of the LMS algorithm on data with spectral behavior close to that of real GOCE data. In the second study, the LMS algorithm is implemented on real GOCE data. Experiments are also performed to determine suitable filtering parameters. Only the four accurate components of the full GOCE gravity gradient tensor of the disturbing potential are used. The characteristics of the filtered gravity gradients are examined in the time and spectral domain. The obtained filtered GOCE gravity gradients show an agreement of 63–84 mEötvös (depending on the gravity gradient component), in terms of RMS error, when compared to the gravity gradients derived from the EGM2008 geopotential model. Spectral-domain analysis of the filtered gradients shows that the adaptive filters slightly suppress frequencies in the bandwidth of approximately 10–30 mHz. The limitations of the adaptive LMS algorithm are also discussed. The tested filtering algorithm can be connected to and employed in the first computational steps of the space-wise approach, where a time-wise Wiener filter is applied at the first stage of GOCE gravity gradient filtering. The results of this work can be extended to using other adaptive filtering algorithms, such as the recursive least-squares and recursive least-squares lattice filters.  相似文献   

16.
Retracking considerations in spaceborne GNSS-R altimetry   总被引:1,自引:0,他引:1  
The European Space Agency Passive Reflectometry and Interferometry System In-orbit Demonstrator (IoD) aims to perform mesoscale altimetric observations by measuring the Global Navigation Satellite System (GNSS) opportunity signals reflected over the sea surface. Altimetry based on GNSS reflectometry (GNSS-R) is significantly affected by satellite motion, since it requires relatively long integration times to reduce noise. We present the impact of the satellite motion on the GNSS-R observables and the need to retrack the waveforms. By using a detailed GNSS-R space mission simulator, the change of delay difference between the direct and the reflected signals during the incoherent averaging of the waveform has been investigated. Their effects on the waveform shape and the altimetric performance are presented comparing the aligned and non-aligned waveforms. Results show that the performance of spaceborne GNSS-R altimeter is seriously degraded without a proper alignment of the waveform samples.  相似文献   

17.
CBERS-1 PSF估计与图像复原   总被引:13,自引:3,他引:13  
分析了遥感图像获取过程中导致图像退化模糊的原因。讨论了一种借助图像中的特定线状目标信息(如桥梁、堤坝等),采用经验拟合的方式提取图像获取、传输过程中的点扩散函数,并利用该点扩散函数结合频域维纳滤波器求解去图像模糊的空域反卷积算子。将该方法应用于中巴资源卫星一号(CBERS-1)图像,图像质量得到明显的提高,收到了较好的复原效果。  相似文献   

18.
大洋环流对海洋学、大地测量学以及地球物理学等学科具有重要意义.介绍了利用卫星测高确定海面地形和大洋环流的原理与方法,利用6年的TOPEX测高数据计算了平均稳态海面地形模型,并将其与EGM96、CSR以及Levitus(1982)海面地形模型进行了比较,在此基础上对平均大洋环流模式进行了初步的研究.  相似文献   

19.
ABSTRACT

Surface roughness of sea ice is primary information for understanding sea ice dynamics and air–ice–ocean interactions. Synthetic aperture radar (SAR) is a powerful tool for investigating sea ice surface roughness owing to the high sensitivity of its signal to surface structures. In this study, we explored the surface roughness signatures of the summer Arctic snow-covered first-year sea ice in X-band dual-polarimetric SAR in terms of the root mean square (RMS) height. Two ice campaigns were conducted for the first-year sea ice with dry snow cover in the marginal ice zone of the Chukchi Sea in August 2017 and August 2018, from which high-resolution (4 cm) digital surface models (DSMs) of the sea ice were derived with the help of a terrestrial laser scanner to obtain the in situ RMS height. X-band dual-polarimetric (HH and VV) SAR data (3 m spatial resolution) were obtained for the 2017 campaign, at a high incidence angle (49.5°) of TerraSAR-X, and for the 2018 campaign, at a mid-incidence angle (36.1°) of TanDEM-X 1–2 days after the acquisition of the DSMs. The sea ice drifted during the time between the SAR and DSM acquisitions. As it is difficult to directly co-register the DSM to SAR owing to the difference in spatial resolution, the two datasets were geometrically matched using unmanned aerial vehicle (4 cm resolution) and helicopter-borne (30 cm resolution) photographs acquired as part of the ice campaigns. A total of five dual-polarimetric SAR features―backscattering coefficients at HH and VV polarizations, co-polarization ratio, co-polarization phase difference, and co-polarization correlation coefficient ―were computed from the dual-polarimetric SAR data and compared to the RMS height of the sea ice, which showed macroscale surface roughness. All the SAR features obtained at the high incidence angle were statistically weakly correlated with the RMS height of the sea ice, possibly influenced by the low backscattering close to the noise level that is attributed to the high incidence angle. The SAR features at the mid-incidence angle showed a statistically significant correlation with the RMS height of the sea ice, with Spearman’s correlation coefficient being higher than 0.7, except for the co-polarization ratio. Among the intensity-based and polarimetry-based SAR features, HH-polarized backscattering and co-polarization phase difference were analyzed to be the most sensitive to the macroscale RMS height of the sea ice. Our results show that the X-band dual-polarimetric SAR at mid-incidence angle exhibits potential for estimation of the macroscale surface roughness of the first-year sea ice with dry snow cover in summer.  相似文献   

20.
介绍了卫星测高数据处理的基本方法,分析研究了卫星测高的主要误差,提出了Jason-1的数据编辑准则,并用其测高数据确定了全球平均海面高,与CLS01模型进行了比较分析.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号