共查询到20条相似文献,搜索用时 13 毫秒
1.
2.
3.
Maarten V. de Hoop Robert D. van der Hilst Peng Shen 《Geophysical Journal International》2006,167(3):1332-1352
4.
5.
In this study, we test the adequacy of 2-D sensitivity kernels for fundamental-mode Rayleigh waves based on the single-scattering (Born) approximation to account for the effects of heterogeneous structure on the wavefield in a regional surface wave study. The calculated phase and amplitude data using the 2-D sensitivity kernels are compared to phase and amplitude data obtained from seismic waveforms synthesized by the pseudo-spectral method for plane Rayleigh waves propagating through heterogeneous structure. We find that the kernels can accurately predict the perturbation of the wavefield even when the size of anomaly is larger than one wavelength. The only exception is a systematic bias in the amplitude within the anomaly itself due to a site response.
An inversion method of surface wave tomography based on the sensitivity kernels is developed and applied to synthesized data obtained from a numerical simulation modelling Rayleigh wave propagation over checkerboard structure. By comparing recovered images to input structure, we illustrate that the method can almost completely recover anomalies within an array of stations when the size of the anomalies is larger than or close to one wavelength of the surface waves. Surface wave amplitude contains important information about Earth structure and should be inverted together with phase data in surface wave tomography. 相似文献
An inversion method of surface wave tomography based on the sensitivity kernels is developed and applied to synthesized data obtained from a numerical simulation modelling Rayleigh wave propagation over checkerboard structure. By comparing recovered images to input structure, we illustrate that the method can almost completely recover anomalies within an array of stations when the size of the anomalies is larger than or close to one wavelength of the surface waves. Surface wave amplitude contains important information about Earth structure and should be inverted together with phase data in surface wave tomography. 相似文献
6.
Banana-doughnut kernels and mantle tomography 总被引:2,自引:0,他引:2
7.
Finite-frequency sensitivity kernels for head waves 总被引:2,自引:0,他引:2
Head waves are extremely important in determining the structure of the predominantly layered Earth. While several recent studies have shown the diffractive nature and the 3-D Fréchet kernels of finite-frequency turning waves, analogues of head waves in a continuous velocity structure, the finite-frequency effects and sensitivity kernels of head waves are yet to be carefully examined. We present the results of a numerical study focusing on the finite-frequency effects of head waves. Our model has a low-velocity layer over a high-velocity half-space and a cylindrical-shaped velocity perturbation placed beneath the interface at different locations. A 3-D finite-difference method is used to calculate synthetic waveforms. Traveltime and amplitude anomalies are measured by the cross-correlation of synthetic seismograms from models with and without the velocity perturbation and are compared to the 3-D sensitivity kernels constructed from full waveform simulations. The results show that the head wave arrival-time and amplitude are influenced by the velocity structure surrounding the ray path in a pattern that is consistent with the Fresnel zones. Unlike the 'banana–doughnut' traveltime sensitivity kernels of turning waves, the traveltime sensitivity of the head wave along the ray path below the interface is weak, but non-zero. Below the ray path, the traveltime sensitivity reaches the maximum (absolute value) at a depth that depends on the wavelength and propagation distance. The sensitivity kernels vary with the vertical velocity gradient in the lower layer, but the variation is relatively small at short propagation distances when the vertical velocity gradient is within the range of the commonly accepted values. Finally, the depression or shoaling of the interface results in increased or decreased sensitivities, respectively, beneath the interface topography. 相似文献
8.
Finite-frequency traveltime tomography of San Francisco Bay region crustal velocity structure 总被引:1,自引:0,他引:1
F. F. Pollitz 《Geophysical Journal International》2007,171(2):630-656
Seismic velocity structure of the San Francisco Bay region crust is derived using measurements of finite-frequency traveltimes. A total of 57 801 relative traveltimes are measured by cross-correlation over the frequency range 0.5–1.5 Hz. From these are derived 4862 'summary' traveltimes, which are used to derive 3-D P -wave velocity structure over a 341 × 140 km2 area from the surface to 25 km depth. The seismic tomography is based on sensitivity kernels calculated on a spherically symmetric reference model. Robust elements of the derived P -wave velocity structure are: a pronounced velocity contrast across the San Andreas fault in the south Bay region (west side faster); a moderate velocity contrast across the Hayward fault (west side faster); moderately low velocity crust around the Quien Sabe volcanic field and the Sacramento River delta; very low velocity crust around Lake Berryessa. These features are generally explicable with surface rock types being extrapolated to depth ∼10 km in the upper crust. Generally high mid-lower crust velocity and high inferred Poisson's ratio suggest a mafic lower crust. 相似文献
9.
10.
E. Mochizuki 《Geophysical Journal International》1995,123(1):297-300
The ray path of a P -wave is specified in terms of the ray parameter and three Euler angles. the P -wave traveltime depends only on the ray parameter for a spherically symmetric earth. If we introduce an aspherical perturbation, including general ani-sotropy, the dependence on Euler angles can be expanded in terms of the rotation matrix for a fixed ray parameter. If the perturbation is isotropic, the expansion coefficients satisfy certain relations which may be used to obtain definite evidence for anisotropy rather than isotropic lateral heterogeneity. 相似文献
11.
12.
13.
F. A. Dahlen 《Geophysical Journal International》2005,162(2):525-540
14.
Sensitivity kernels for finite-frequency surface waves 总被引:1,自引:1,他引:1
15.
This paper presents a non-linear algorithmic approach for seismic traveltime. It is based on large-scale optimization using non-linear least-squares and trust-region methods. These methods provide a natural way to stabilize algorithms based on Newton's iteration for non-linear minimization. They also correspond to an alternative (and often more efficient) view of the Levenberg-Marquardt method. Numerical experience on synthetic data and on real borehole-to-borehole problems are presented. In particular, results produced by the new algorithm are compared with those of Ivansson (1985) for the Kråkemåla experiment. 相似文献
16.
17.
18.
19.
20.