首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on the Indian and Chinese precipitation data and the NCEP-NCAR reanalysis circulation data, the relationship between the Indian summer monsoon (ISM) onset and the Meiyu over the Yangtze River Valley has been discussed by the methods of correlation analysis and composite analysis. The results show that the date of ISM onset over Kerala in the southwestern coast of the Indian Peninsula is about two weeks earlier than the beginning of the Meiyu over the Yangtze River Valley. After the outbreak of ISM, the teleconnection mode sets up from the western coast of India via the Bay of Bengal (BOB) to the Yangtze River Valley and southern Japan. It is different both in time and space from the telecon- nection mode which is from the northwest of India via the Tibetan Plateau to northern China. The for- mer mode is defined as the "south" teleconnection of the Asian summer monsoon, forming in the pe- riod of ISM onset; while the latter mode is called the "north" teleconnection, mainly occurring in the Asian monsoon culminant period. During the process of the "south" teleconnection’s formation, the Asian monsoon circulation has experienced a series of important changes: ISM onset, the northward movement of the south Asia high (SAH), the onset vortex occurrence, the eastward extension of the stronger tropical westerly belt, and the northeastward jump of the western Pacific subtropical high (WPSH), etc. Consequently, since ISM sets up over Kerala, the whole Asian continent is covered by the upper SAH after about two weeks, while in the mid- and lower troposphere, a strong wind belt forms from the Arabian Sea via the southern India, BOB and the South China Sea (SCS), then along the western flank of WPSH, to the Yangtze River Valley and southern Japan. With the northward moving of the subtropical jet streams, the upper westerly jet stream and the low level jet have been coupled ver- tically over east Asia, while the Yangtze River Valley happens to locate in the ascending motion area between the upper jet stream and the low level jet, i.e. right of the entrance of the upper jet stream and left of the low level jet. Such a structure of the vertical circulation can trigger the Meiyu onset over the Yangtze River Valley.  相似文献   

2.
Sea breeze, the onshore wind over a coastal belt during daytime, is a welcoming weather phenomenon as it modulates the weather condition by moderating the scorching temperature and acts as a favourable mechanism to trigger convection and induce precipitation over coastal and interior locations. Sea breeze aids dispersal of pollutants as well. Observational studies about its onset, depth of circulation and induced precipitation have been carried out in this paper for the period April to September, 2004–2005 using a S-band Doppler Weather Radar functioning at Cyclone Detection Radar Station, India Meteorological Department, Chennai, India. The onset of sea breeze has been observed to be between 0900 and 1000 UTC with the earliest onset at 0508 UTC and late onset at 1138 UTC. The frequency is greater during the southwest monsoon season, viz., June – September and the frequency of initial onset is greater in north Chennai. The modal length of sea breeze is between 20 and 50 km with extreme length as high as 100 km also having been observed. Though the inland penetration is on average 10 to 20 km, penetration reaching 100 km was also observed on a number of cases. The induced convection could be seen in the range 50–100 km in more than 53% of the cases. The mean depth of sea breeze circulation is 300–600 m but may go well beyond 1000 m on conducive atmospheric conditions.  相似文献   

3.
Geostrophic balance over the Arabian Sea and Bay of Bengal regions has been studied using the wind data obtained from the AVRO (HS-748) aircraft during the FGGE-MONEX-79.In the Arabian Sea and the Bay of Bengal regions, the observed wind south of 20°N was found to be sub-geostrophic. In the Arabian Sea region the departure at 1500 m was 75–95% and at 3050 m it was 60–65%. In the Bay of Bengal region the departure was 85–95%. In a few cases north of 20°N the observed winds at 3050 m were found to be super-geostrophic in the regions of enhanced monsoon activity, cyclonic circulation reaching up to 6000 m and in the region of monsoon trough.  相似文献   

4.
The Pearl River Estuary (PRE) in South China's Guangdong Province is a subtropical estuary with highly irregular topography and dynamically complicated circulations. A nested-grid coastal circulation modelling system is used in this study to examine dynamic responses of the PRE to tides, meteorological forcing and buoyancy forcing. The nested-grid modelling system is based on the Princeton Ocean Model and consists of three downscaling subcomponents: including an outer-most model with a coarse horizontal resolution of ~7 km for simulating tidally forced and wind-driven surface elevations and depth-mean currents over the China Seas from Bohai Sea to the northern South China Sea and an innermost model with a fine resolution of ~1.2 km for simulating the 3D coastal circulation and hydrography over the PRE and adjacent coastal waters. Model results during the winter northeast monsoon surge in January and super typhoon Koryn in June of 1993 are used to demonstrate that the 3D coastal circulation and hydrographic distributions in the PRE are affected by tides, winds and buoyancy forcing associated with river discharge from the Pearl River with significant seasonal and synoptic variabilities.  相似文献   

5.
Based on the theory of potential vorticity(PV),the unstable development of the South Asia High(SAH)due to diabatic heating and its impacts on the Indian Summer Monsoon(ISM)onset are studied via a case diagnosis of 1998.The Indian Summer Monsoon onset in 1998 is related to the rapidly strengthening and northward moving of a tropical cyclone originally located in the south of Arabian Sea.It is demonstrated that the rapid enhancement of the cyclone is a consequence of a baroclinic development characterized by the phase-lock of high PV systems in the upper and lower troposphere.Both the intensification of the SAH and the development of the zonal asymmetric PV forcing are forced by the rapidly increasing latent heat released from the heavy rainfall in East Asia and South East Asia after the onsets of the Bay of Bengal(BOB)monsoon and the South China Sea(SCS)monsoon.High PV moves southwards along the intensified northerlies on the eastern side of the SAH and travels westwards on its south side,which can reach its northwest.Such a series of high PV eddies are transported to the west of the SAH continuously,which is the main source of PV anomalies in the upper troposphere over the Arabian Sea from late spring to early summer.A cyclonic curvature on the southwest of the SAH associated with increasing divergence,which forms a strong upper tropospheric pumping,is generated by the anomalous positive PV over the Arabian Sea on 355 K.The cyclone in the lower troposphere moves northwards from low latitudes of the Arabian Sea,and the upper-layer high PV extends downwards and southwards.Baroclinic development thus occurs and the tropical low-pressure system develops into an explosive vortex of the ISM,which leads to the onset of the ISM.In addition,evolution of subtropical anticyclone over the Arabian Peninsula is another important factor contributing to the onset of the ISM.Before the onset,the surface sensible heating on the Arabian Peninsula is very strong.Consequently the subtropical anticyclone which dominated the Arabian Sea in spring retreats westwards to the Arabian Peninsula and intensifies rapidly.The zonal asymmetric PV forcing develops gradually with high PV eddies moving southwards along northerlies on the eastern side of the anticyclone,and a high PV trough is formed in the middle troposphere over the Arabian Sea,which is favorable to the explosive barotropic development of the tropical cyclone into the vortex.Results from this study demonstrate that the ISM onset,which is different from the BOB and the SCS monsoon onset,is a special dynamical as well as thermodynamic process occurring under the condition of fully coupling of the upper,middle,and lower tropospheric circulations.  相似文献   

6.
The present study is an attempt to examine the variability of convective activity over the north Indian Ocean (Bay of Bengal and Arabian Sea) on interannual and longer time scale and its association with the rainfall activity over the four different homogeneous regions of India (viz., northeast India, northwest India, central India and south peninsular India) during the monsoon season from June to September (JJAS) for the 26 year period (1979 to 2004). The monthly mean Outgoing Long-wave Radiation (OLR) data obtained from National Oceanic and Atmospheric Administration (NOAA) polar orbiting spacecraft are used in this study and the 26-year period has been divided into two periods of 13 years each with period-i from 1979 to 1991 and period -ii from 1992 to 2004. It is ascertained that the convective activity increases over the Arabian Sea and the Bay of Bengal in the recent period (period -ii; 1992 to 2004) compared to that of the former period (period -i; 1979 to 1991) during JJAS and is associated with a significantly increasing trend (at 95% level) of convective activity over the north Bay of Bengal (NBAY). On a monthly scale, July and August also show increase in convective activity over the Arabian Sea and the Bay of Bengal during the recent period and this is associated with slight changes in the monsoon activity cycle over India. The increase in convective activity particularly over the Arabian Sea during the recent period of June is basically associated with about three days early onset of the monsoon over Delhi and relatively faster progress of the monsoon northward from the southern tip of India. Over the homogeneous regions of India the correlation coefficient (CC) of OLR anomalies over the south Arabian Sea (SARA) is highly significant with the rainfall over central India, south peninsular India and northwest India, and for the north Arabian Sea (NARA), it is significant with northwest India rainfall and south peninsular rainfall. Similarly, the OLR anomalies over the south Bay of Bengal (SBAY) have significant CC with northwest India and south peninsular rainfall, whereas the most active convective region of the NBAY is not significantly correlated with rainfall over India. It is also found that the region over northeastern parts of India and its surroundings has a negative correlation with the OLR anomalies over the NARA and is associated with an anomalous sinking (rising) motion over the northeastern parts of India during the years of increase (decrease) of convective activity over the NARA.  相似文献   

7.
A large aerosol plume with optical depth exceeding 0.7 engulfs most parts of the Arabian Sea during the Asian summer monsoon season. Based on Micro Pulse Lidar observations during the June–September period of 2008 and 2009, the present study depicts, for the first time, the existence of an elevated dust layer occurring very frequently in the altitude band of 1–3.5 km over the west coast of peninsular India with relatively large values of linear depolarization ratio (δL). Large values of δL indicate the dominance of significantly non-spherical aerosols. The aerosol optical depth of this layer (0.2) is comparable to that of the entire atmospheric column during dust-free days. Back-trajectory analysis clearly shows the advection of airmass from the arid regions of Arabia and the west Arabian Sea, through the altitude region centered around 3 km. This is in contrast to the airmass below 1 km originating from the pristine Indian Ocean region which contains relatively spherical aerosols of marine origin with δL generally <0.05.  相似文献   

8.
The Asian-Australian “land bridge” is an area with the most vigorous convection in Asian monsoon region in boreal spring, where the onset and march of convection are well associated with the onset of East Asian summer monsoon. The convection occurs over Indo-China Peninsula as early as mid-April, which exerts critical impact on the evolution of monsoon circulation. Before mid-April there are primarily sensible heatings to the atmosphere over Indo-China Peninsula and Indian Peninsula, so the apparent heating ratios over them decrease with height. However, after mid-April it changes into latent heating over Indo-China Peninsula due to the onset of convection, and the apparent heating ratio increases with height in mid-and lower troposphere. The vertical distribution of heating ratio and its differences between Indo-China Peninsula and Indian Peninsula are the key factors leading to the splitting of boreal subtropical high belt over the Bay of Bengal. Such mechanism is strongly supported by the fact that the evolution of the vertical heating ratio gradient above Indo-China Peninsula leads that of 850 hPa vorticity over the Bay of Bengal. Convections over Indo-China Peninsula and its surrounding areas further increase after the splitting. Since then, there is a positive feedback lying among the convective heating, the eastward retreat of the subtropical high and the march of monsoon, which is a possible mechanism of the advance of summer monsoon and convection from Indo-China Peninsula to South China Sea.  相似文献   

9.
The NCEP/NCAR R1 reanalysis data are employed to investigate the impact of forced and inertial instability in the lower troposphere over the Arabian Sea on the onset process of Indian summer monsoon(ISM),and to reveal the important role of zonal advection of zonal geostrophic momentum played in the forced unstable convection.Results show that during the ISM onset the zero absolute vorticity contour(??=0)shifts northward due to the strong cross-equatorial pressure gradient in the lower troposphere over southern Arabian Sea.Thus a region with negative absolute vorticity is generated near the equator in the northern hemisphere,manifesting the evident free inertial instability.When a southerly passes through this region,under the influence of friction a lower convergence that facilitates the convection flourishing at the lower latitudes appears to the north of zero absolute vorticity contour.However,owing to such a traditional inertial instability,the convection is confined near the equator which does not have direct influence on the ISM onset.On the contrary in the region to the north of the zero absolute vorticity contour and to the south of the low pressure center near the surface,although the atmosphere there is inertially stable,the lower westerly jet can develop and bring on the apparent zonal advection of zonal geostrophic momentum.Both theoretical study and diagnosing analysis present that such a zonal advection of geostrophic momentum is closely associated with the zonal asymmetric distribution of meridional land-sea thermal contrast,which induces a convergence center near and further north of the westerly jet in the lower troposphere over the southwestern coast of the Indian Peninsula,providing a favorable lower circulation for the ISM onset.It illustrates that the development of convection over the Arabian Sea in late spring and early summer is not only due to the frictional inertial instability but also strongly affected by the zonal asymmetric distribution of land-sea thermal contrast.Moreover,before the ISM onset due to the eastward development of the South Asian High(SAH)in the upper troposphere,high potential vorticity is transported to the region over the Arabian Sea.Then a local trumpet-shaped stream field is generated to cause the evident upper divergence-pumping effect which favors the ISM onset.When the upper divergence is vertically coupled with the lower convergence resulted from the aforementioned forced unstable convection development near the southwestern coast of Indian Peninsula,the atmospheric baroclinic unstable development is stimulated and the ISM onset is triggered.  相似文献   

10.
Extensive and collocated measurements of several aerosol parameters were made over the eastern Arabian Sea, during the inter-monsoon and summer monsoon seasons of 2003 as a part of the Arabian Sea Monsoon Experiment (ARMEX). Associated with the seasonal changes in the synoptic wind fields from northeasterly/easterly to westerly/northwesterly, the aerosol characteristics and columnar optical depth show large variations. Consequently, the atmospheric forcing is found to increase from March to April and then to decrease consistently towards June. However, the magnitude of the forcing efficiency of aerosols continuously decreases from winter to summer. Such temporal changes in radiative forcing need to be accounted for in reducing the uncertainty in aerosol climate impact.  相似文献   

11.
During the summer monsoon season over India a range of intraseasonal modulations of the monsoon rains occur due to genesis of weather disturbances over the Bay of Bengal (BOB) and the east Arabian Sea. The amplitudes of the fluctuations in the surface state of the ocean (sea-surface temperature and salinity) and atmosphere are quite large due to these monsoonal modulations on the intraseasonal scale as shown by the data collected during the field programs under Bay of Bengal Monsoon Experiment (BOBMEX) and Arabian Sea Monsoon Experiments (ARMEX). The focus of BOBMEX was to understand the role of ocean-atmospheric processes in organizing convection over the BOB on intra-seasonal scale. ARMEX-I was aimed at understanding the coupled processes in the development of deep convection off the West Coast of India. ARMEX-II was focused on the formation of the mini-warm pool across the southeast Arabian Sea in April-May and its role in the abrupt onset of the monsoon along the Southwest Coast of India and its further progress along the West Coast of India. The paper attempts to integrate the results of the observational studies and brings out an important finding that atmospheric instability is prominently responsible for convective organization whereas the upper ocean parameters regulate the episodes of the intraseasonal oscillations.  相似文献   

12.
—Based on the NCMRWF analysis over the Arabian Sea, a complete energy cycle of the severe cyclonic storm that formed in the beginning of June 1994 in the east central Arabian Sea is carried out, using the in-house developed energy package. Both barotropic and baroclinic energy conversions are responsible for the maintenance of the system, however dominance of one over the other is noticed at different stages of the system at different heights. Dynamical characteristics of synoptic scale monsoon flow surrounding the cyclonic storm are also investigated. By examining the generation and dissipation terms, it is observed that both zonal and eddy components of the synoptic scale flow act as source of energy for the cyclonic storm, both in the predeveloped and developed stages.  相似文献   

13.
As early as in the 1980s, Chinese scientists hadfirst proposed that there exits two summer monsoonsystems in Asia, namely the East Asian summer mon-soon (EASM) and the Indian summer monsoon(ISM)[1-4]. The two monsoon systems are quite dif-ferent in characteristics. Since then, such issue andconclusion had been documented and approved by alot of studies in the past two decades, and was appliedin the guideline of the South China Sea summer mon-soon experiment (SCSMEX), which was undertak…  相似文献   

14.
—The thermodynamic characteristics of the Asian summer monsoon are examined with a global analysis-forecast system. In this study, we investigated the large-scale balances of heat and moisture by making use of operational analyses as well as forecast fields for June, July and August (JJA), 1994. Apart from elucidating systematic errors in the temperature and moisture fields, the study expounds the influence of these errors on the large-scale budgets of heat and moisture over the monsoon region. The temperature forecasts of the model delineate predominant cooling in the middle and lower tropospheres over the monsoon region. Similarly, the moisture forecasts evince a drying tendency in the lower troposphere. However, certain sectors of moderate moistening exist over the peninsular India and adjoining oceanic sectors of the Arabian Sea and Bay of Bengal.¶The broad features of the large-scale heat and moisture budgets represented by the analysis/forecast fields indicate good agreement with the observed aspects of the summer monsoon circulation. The model forecasts fail to retain the analyzed atmospheric variability in terms of the mean circulation, which is indicated by underestimation of various terms of heat and moisture budgets with an increase in the forecast period. Further, the forecasts depict an anomalous diabatic cooling layer in the lower middle troposphere of the monsoon region which inhibits vertical transfer of heat and moisture from the mixed layer of the atmospheric boundary layer to the middle troposphere. In effect, the monsoon circulation is considerably weakened with an increase in the forecast period. The treatment of shallow convection and the use of interactive clouds in the model can reduce the cooling bias considerably.  相似文献   

15.
Mani  A.  Sreedharan  C. R. 《Pure and Applied Geophysics》1973,106(1):1180-1191
The latitudinal and temporal variations in the vertical profiles of ozone over the Indian subcontinent are discussed. In the equatorial atmosphere represented by Trivandrum (8°N) and Poona (18°N), while tropospheric ozone shows marked seasonal variations, the basic pattern of the vertical distribution of ozone in the stratosphere remains practically unchanged throughout the year, with a maximum at about 28 to 26 km and a minimum just below the tropopause. The maximum total ozone occurs over Trivandrum in the summer monsoon season and the latitudinal anomaly observed over the Indian monsoon area at this time is explained as arising from the horizontal transport of ozone-rich stratospheric air from over the thermal equator to the southern regions.In the higher latitudes represented by New Delhi (28°N), the maximum occurs at 23 km. Delhi, which lies in the temperate regime in winter, shows marked day-to-day variations in association with western disturbances and the strong westerly jet stream that lies over north and central India at this time.Although the basic pattern of the vertical distribution of ozone in the equatorial atmosphere is generally the same in all seasons, significant though small changes occur in the lower stratosphere and in the troposphere. There are small perturbations in the ozone and temperature structures, distinct ozone maxima being always associated with temperature inversions. There are also large perturbances not related to temperature, ozone-depleted regions normally reflecting a stratification of either destructive processes or materials such as dust layers or clouds at these levels. Particularly interesting are the upper tropospheric levels just below the tropopause where the ozone concentration is consistently the smallest, in all seasons and at all places where soundings have been made in India.  相似文献   

16.
The Arabian Sea Mini Warm Pool (MWP) is a zone of anomalously high Sea Surface Temperature (SST) in the Arabian Sea over which the monsoon onset vortex (OV) is believed to form. In the present study it is shown that this MWP is a key parameter in the development of the onset vortex. Atmospheric model experiments are carried out with and without MWP to understand the mechanisms for the formation of the OV. The model failed to simulate the OV with the cold SST advocating the importance of the MWP for the formation of the OV. The MWP is found to favor the formation of the onset vortex in the east central Arabian Sea by increasing the horizontal shear and decreasing the vertical wind shear.  相似文献   

17.
This numerical study focuses on the response of the Western Adriatic Current to wind forcing. The turbulent buoyant surface current is induced by the Po river outflow in the Adriatic Sea. Idealized and realistic wind conditions are considered by retaining the complex geomorphology of the middle Adriatic basin. In the absence of wind, the Adriatic Promontories force the current to separate from the coast and induce instabilities. Persistent 7-m s − 1 downwelling favorable northwesterly winds thicken and narrow the current. Instabilities whose size is ~10 km develop but ultimately vanish, since there is not enough across-shore space to grow. On the contrary, 7-m s − 1 upwelling favorable southeasterly winds thin and widen the current, and instabilities can grow to form mesoscale (~35 km) features. When realistic winds are considered, the same trends are observed, but the state of the sea set up by previous wind events also plays a crucial role. The turbulent regimes set up by different winds affect mixing and the WAC meridional transport. With downwelling winds, the transport is generally southward and mixing happens mostly between the fresher (S ≤ 38) salinity classes. With upwelling winds, the transport decreases and changes sign, and mixing mainly involves saltier (S > 38) waters. In all cases, mixing is enhanced when a finer 0.5-km horizontal resolution is employed.  相似文献   

18.
The Asian-Australian "land bridge" is an area with the most vigorous convection in Asian monsoon region in boreal spring, where the onset and march of convection are well associated with the onset of East Asian summer monsoon. The convection occurs over Indo-China Peninsula as early as mid-April, which exerts critical impact on the evolution of monsoon circulation. Before mid-April there are primarily sensible heatings to the atmosphere over Indo-China Peninsula and Indian Peninsula, so the apparent heating ratios over them decrease with height. However, after mid-April it changes into latent heating over Indo-China Peninsula due to the onset of convection, and the apparent heating ratio increases with height in mid- and lower troposphere. The vertical distribution of heating ratio and its differences between Indo-China Peninsula and Indian Peninsula are the key factors leading to the splitting of boreal subtropical high belt over the Bay of Bengal. Such mechanism is strongly supported by the fact that the evolution of the vertical heating ratio gradient above Indo-China Peninsula leads that of 850 hPa vorticity over the Bay of Bengal. Convections over Indo-China Peninsula and its surrounding areas further increase after the splitting. Since then, there is a positive feedback lying among the convective heating, the eastward retreat of the subtropical high and the march of monsoon, which is a possible mechanism of the advance of summer monsoon and convection from Indo-China Peninsula to South China Sea.  相似文献   

19.
We examine the seasonal mixed-layer temperature (MLT) and salinity (MLS) budgets in the Banda–Arafura Seas region (120–138° E, 8–3° S) using an ECCO ocean-state estimation product. MLT in these seas is relatively high during November–May (austral spring through fall) and relatively low during June–September (austral winter and the period associated with the Asian summer monsoon). Surface heat flux makes the largest contribution to the seasonal MLT tendency, with significant reinforcement by subsurface processes, especially turbulent vertical mixing. Temperature declines (the MLT tendency is negative) in May–August when seasonal insolation is smallest and local winds are strong due to the southeast monsoon, which causes surface heat loss and cooling by vertical processes. In particular, Ekman suction induced by local wind stress curl raises the thermocline in the Arafura Sea, bringing cooler subsurface water closer to the base of the mixed layer where it is subsequently incorporated into the mixed layer through turbulent vertical mixing; this has a cooling effect. The MLT budget also has a small, but non-negligible, semi-annual component since insolation increases and winds weaken during the spring and fall monsoon transitions near the equator. This causes warming via solar heating, reduced surface heat loss, and weakened turbulent mixing compared to austral winter and, to a lesser extent, compared to austral summer. Seasonal MLS is dominated by ocean processes rather than by local freshwater flux. The contributions by horizontal advection and subsurface processes have comparable magnitudes. The results suggest that ocean dynamics play a significant part in determining both seasonal MLT and MLS in the region, such that coupled model studies of the region should use a full ocean model rather than a slab ocean mixed-layer model.  相似文献   

20.
使用中尺度数值模式WRF-ARW,针对2010年6月发生在中国东北地区一例伴随对流层高空西风急流(位于~9 km高度)演变过程出现的平流层重力波活动特征开展了数值模拟. 事件发生期间,对流层区域环流处在一个东北冷涡系统的控制之下. 模拟结果再现了该东北冷涡的发展和维持过程,以及与之相伴的高空急流的特征. 模拟结果揭示出在急流区域上空的平流层中存在显著重力波活动现象. 分析结果显示,重力波活动与急流存在紧密联系,在水平方向上,重力波呈显著的二维结构,出现在急流出口区上部并逆背景流向西传播. 功率谱分析结果表明盛行波动具有~700 km水平尺度、9~12 h时间尺度以及4~5 km垂直波长. 由于急流的存在,造成其与平流层中下部之间存在显著的水平风速垂直切变,与切变相伴的耗散使得上传的重力波动量通量数值随着高度升高而递减. 同时,在18~20 km高度间出现的西风-东风转换带极大地抑制了波动在垂直方向的传播,形成显著动量通量沉积效应. 估算结果表明,在11~20 km高度之间,这种效应的整体作用相当于对该层背景流施加强度为0.86 m·s-1·day-1的动力阻曳.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号