首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Using two volume-limited Main galaxy samples of the Sloan Digital Sky Survey Data Release 6 (SDSS DR6), we have explored the difference of the environmental dependence of u-, g-, r-, i-, and z-band luminosities between galaxies above and below the value of M r*. It turns out that in the luminous volume-limited sample, all the five band luminosities strongly correlate with local environments. Because the u-band luminosity of galaxies still strongly depends on local environments in the faint volumelimited sample, we conclude that M r* is not an important characteristic parameter for the environmental dependence of the u-band luminosity. It is worth noting that for the u-band, the subsample at low density has a higher proportion of luminous galaxies and a lower proportion of faint galaxies than the one at high density, which is opposite to widely accepted conclusion: luminous galaxies exist preferentially in the densest regions of the universe, but faint galaxies are located preferentially in low density regions. Our results show that the environmental dependence of luminosity is not a single trend in different luminosity regions and for different bands.  相似文献   

2.
The Eridanus galaxies follow the well-known radio—FIR correlation. The majority (70%) of these galaxies have their star formation rates below that of the Milky Way. The galaxies that have a significant excess of radio emission are identified as low luminosity AGNs based on their radio morphologies obtained from the GMRT observations. There are no powerful AGNs (L 20cm > 1023 W Hz−1) in the group. The two most far-infrared and radio luminous galaxies in the group have optical and HI morphologies suggestive of recent tidal interactions. The Eridanus group also has two far-infrared luminous but radio-deficient galaxies. It is believed that these galaxies are observed within a few Myr of the onset of an intense star formation episode after being quiescent for at least a 100 Myr. The upper end of the radio luminosity distribution of the Eridanus galaxies (L 20cm ∼ 1022 W Hz−1) is consistent with that of the field galaxies, other groups, and late-type galaxies in nearby clusters.  相似文献   

3.
Using high-quality Hα images of five spiral galaxies, we have studied the luminosity and distribution of the emission from diffuse ionized gas (DIG). The estimated DIG luminosities account for 25–60%of the total Hα emission in each galaxy and analysis of the distribution has shown that the DIG is highly correlated geometrically with the most luminous HII regions of the galaxies. The power required to ionize the DIG is very high. The mean ionization rates per unit surface area of a galaxy disc are of the order of 107 cm-2 s-1. Lyman continuum photons (Lyc) from OB asociations are the most probable sources of this ionization. Here we propose a specific model for these sources: we show that the Lyman photon flux that leaks out of the density-bounded HII regions of the galaxies is more than enough to ionize the measured DIG in the five galaxies analysed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
We are addressing the issue of whether there exists an evolutionaryconnection between starburst and AGN in luminous infrared galaxies. We are combining theoretical modelling with optical, radio and infrared data from IRAS for a large sample of 285 infrared galaxies with a range ofluminosities. In this paper, we present a comparison between the optical spectroscopic data with the incidence of compact radio cores for a subsample of these galaxies. We find 90% of AGN type galaxies contain compact radio cores, while 37% of starburst galaxies contain compact radio cores. The compact radio cores in the starburst galaxies have a minimum brightness temperature of 3 × 105 K, higher than those of standard extended HII regions and may be obscured AGN or complexes of extremely luminous supernovae such as that seen in Arp 220.  相似文献   

5.
The existence or otherwise of X-ray luminous star-forming galaxies has been an open question since the era of the Einstein satellite. Various authors have claimed the discovery of X-ray luminous star-forming galaxies but in many cases more careful spectroscopic studies of these objects have shown that many of them are in fact obscured AGN. In order to investigate the possibility that such a class of galaxies do exist, we have carried out a cross-correlation between optical and IRAS samples of galaxies which are known to contain large numbers of star-forming galaxies and catalogues of sources detected in X-ray surveys. The selection criteria for the optical follow-up observations was based on their X-ray and infrared (IRAS) colours and their X-ray luminosities. We note that this sample is by no means complete or uniformly selected and hence cannot be used for statistical studies; nevertheless, confirmation of the existence of such a class of objects would be an important step and would require us to understand the physical process responsible for such powerful X-ray emission. We have initiated an optical spectroscopic survey in order to obtain accurate spectroscopic classifications for all the objects which are claimed to be starburst galaxies. Here we present preliminary results from this survey. We have discovered a number of starburst galaxies with X-ray luminosities above ~ 1041 erg s-1 (for H 0=50 km s-1 Mpc-1).We investigate possible origins for the X-ray emission in individual cases.  相似文献   

6.
《New Astronomy Reviews》2002,46(2-7):155-158
We present preliminary results of HST imaging observations of three central galaxies in X-ray luminous clusters of galaxies with putative major cooling flows in their cores: NGC 1275 in the Perseus cluster, Abell 2597, and PKS 0745-19. Narrow-band NICMOS imaging at 2 microns reveals extended, warm (T∼2000–3000 K) molecular hydrogen structures in the cores of Abell 2597 and PKS 0745-19 that appear to be co-spatial with the ionized hydrogen revealed in Hα+[N II] images obtained with WFPC2. The H2/Hα emission line ratio is unexpectedly high in Abell 2597 and PKS 0745-191: too high to be explained by shocks with v>50 km s−1 or by power-law photo-ionization. Photo-ionization by the surrounding X-ray gas is unlikely in Abell 2597. Fluorescent heating by hot stars is plausible in both Abell 2597 and PKS 0745-191. No extended H2 emission was discovered in NGC 1275. The H2/Hα ratio allowed by our detection limits are consistent with shocks or nuclear photo-ionization in NGC 1275. A paper by Donahue et al. is in preparation.  相似文献   

7.
We study the nature of faint blue compact galaxies (BCGs) at redshifts z ∼ 0.2 - 1.3 using Keck and HST. Despite being very luminous (LB ∼ L*), most distant BCGs have masses M ∼ 1010M, i.e., they are dwarf stellar systems. The majority of these galaxies have colors, sizes, surface brightnesses, luminosities, velocity widths, excitations, star formation rates (SFR), and mass-to-light ratios characteristic of the most luminous nearby HII galaxies. The more massive BCGs form a more heterogeneous class of evolved starburst, similar to local disk starburst galaxies. Without additional star formation, HII-like BCGs will most likely fade to resemble today's spheroidal galaxies such as NGC 205. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
We present evidence for non-Gaussian velocity fields within the cores of luminous elliptical galaxies. This evidence is based on high signal-to-noise ratio, medium-resolution spectroscopy of the cores of early-type members of the Virgo and Coma Clusters obtained with the Wisconsin-Indiana-Yale-NOAO 3.5 m telescope. The Virgo data were acquired using an integral-field unit (DensePak), which allows the velocity field to be sampled over a variety of spatial scales. The Coma data were obtained through single 2&arcsec; diameter fibers. The cross-correlation profiles of luminous elliptical galaxies show considerable structure, often having several features with amplitudes as high as 10% that of the cross-correlation peak itself. This structure is most obvious within a radius of 1&farcs;5 (at Virgo), or 相似文献   

9.
The 395 late-type spiral galaxies brighter than 15m in r-band are selected from the Data Release 2 of Sloan Digital Sky Survey and the colormagnitude relations of these galaxies and their disks are investigated. It is found that the colors g − r, r − z and g − z of these galaxies and their disks are strongly correlated with the r-band absolute magnitudes, i.e., the more luminous galaxies (or disks) have the redder colors than the less luminous galaxies (or disks). And the correlation of galaxies is stronger than that of their disks.  相似文献   

10.
SeveralN-body experiments were performed in order to simulate the dynamical behaviour of systems of galaxies gravitationally dominated by a massive dark background.We discuss mass estimates from the dynamics of the luminous component (M VT) under the influence of such a background, assuming a constant dark/luminous mass ratio (M D/M L) and plausible physical conditions. We extend in this way previous studies (Smith, 1980, 1984) about the dependence ofM VT on the relative distributions of dark and luminous matter (Limber, 1959). We found that the observed ratio of the virial theorem mass to luminosity (M VT/L) in systems of galaxies of different sizes could be the result of different stages of their post-virialisation evolution as was previously suggested by White and Rees (1978) and Barnes (1983). This evolution is mainly the result of the dynamical friction that dark matter exerts on the luminous component. Thus our results give support to the idea that compact groups of galaxies are dynamically more evolved than large clusters, which is expected from the hierarchical clustering picture for the formation of such structures.  相似文献   

11.
Molecular line emission is a useful tool for probing the highly obscured inner kpc of starburst galaxies and buried AGNs. Molecular line ratios serve as diagnostic tools of the physical conditions of the gas—but also of its chemical properties. Both provide important clues to the type and evolutionary stage of the nuclear activity. While CO emission remains the main tracer for molecular distribution and dynamics, molecules such as HCN, HNC, HCO+, CN and HC3N are useful for probing the properties of the denser (n≳104 cm−3), star-forming gas. Here I discuss current views on how line emission from these species can be interpreted in luminous galaxies. HNC, HCO+ and CN are all species that can be associated both with photon dominated regions (PDRs) in starbursts—as well as X-ray dominated regions (XDRs) associated with AGN activity. HC3N line emission may identify galaxies where the starburst is in the early stage of its evolution.  相似文献   

12.
We present the results of our observational study of two candidates for polar-ring galaxies (PRGs). Both objects, A2330-3751 and SDSS J000911.57-003654.7, are giant edge-on galaxies with large-scale structures resembling polar rings observed along their minor axes. The optical diameter of the putative ring reaches 60 kpc in A2330-3751 and 18 kpc in SDSS J000911.57-003654.7. To estimate the space density of PRGs, we have constructed their luminosity function in the range of B-band absolute magnitudes from −17· m 5 to −21· m 5. We have found that ∼10−3 of the nearby galaxies exhibit polar structures. Polar rings around early-type (E/S0) galaxies are encountered approximately a factor of 3 more frequently than those around spiral ones. According to our estimates, ∼20–30 PRGs in which large-scale rings are seen almost face-on must be observed among relatively bright galaxies (B ≤ 15 m ).  相似文献   

13.
We have measured central line strengths for a complete sample of early-type galaxies in the Fornax Cluster comprising 11 elliptical and 11 lenticular galaxies, more luminous than M B=–17. We find that the centres of Fornax ellipticals follow the locus of galaxies of fixed age in Worthey's models and have metallicities varying roughly from half to 2.5 times solar. The centres of (relatively low luminosity) lenticular galaxies, however, exhibit a substantial spread to younger luminosity-weighted ages indicating amore extended star formation history. Our conclusions are based on two age/metallicity diagnostic diagrams in the Lick/IDS system comprising established indices such as [MgFe]and Hβ as well as new and more sensitive indices, such as Fe3and H . The inferred difference in the age distribution between lenticular and elliptical galaxies is a robust conclusion as the models generate consistent relative ages using different age and metallicity indicators even though the absolute ages remain uncertain. The absolute age uncertainty is caused mainly by the effects of non-solar abundance ratios, which are not accounted for in the stellar population models. We find that Es are generally overabundant in magnesium and the most luminous galaxies show stronger overabundances. The luminosity-weighted stellar populations of young S0s are consistent with solar abundance ratios or a weak Mg under abundance. Two of the faintest lenticular galaxies in our sample have blue continua and extremely strong Balmer-line absorptions suggesting starbursts <2 Gyr ago. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
The redshifts of 576 clusters of galaxies have been compiled from literature. This sample was used to study the large-scale distribution of clusters up to about z = 0.15. The distribution of the clusters reveals several chains and filaments 50 to 200 h−1 Mpc in size. There are many empty regions and holes, too, some of them known previously.  相似文献   

15.
The fundamental plane (FP) scaling relations and their evolution are a powerful tool for studying the global properties of early-type galaxies and their evolutionary history. The form of the FP, as derived by surveys in the local Universe at wavelengths ranging from the U to the K band, cannot be explained by metallicity variations alone among early-type galaxies; systematic variations in age, dark matter content, or homology breaking are required. A large-scale study of early-type galaxies at 0.1 < z < 0.6demonstrates that the SB intercept of the FP, the rest frame (U-V) colour, and the absorption line strengths all evolve passively, thereby implying a high mean formation redshift for the stellar content. The slope of the FP evolves with redshift, which is broadly consistent with systematic age effects occurring along the early-type galaxy sequence. The implication that the least luminous early-type galaxies formed later than the luminous galaxies is discussed in the context of the evolution of thecolour–magnitude relation, the Butcher–Oemler effect and hierarchical galaxy formation models. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
The most accurate data on galaxy types, corrected apparent magnitudes and redshifts as given in the Sandage-TammanRevised Shapley-Ames catalog are analyzed. It is shown that Sb galaxies of the same luminosity class as M31 and M81 define a narrow Hubble relation withH 0=65 –6 +15 km s–1 Mpc–1.In contrast, Sc galaxies deviate strongly towars higher redshift from a linear, log redshift—apparent magnitude relation. Not all this deviation can be selection effect due to increasing volume sampled at increasing redshift (Malmquist bias). Physical associations of groups of galaxies in theRSA Catalog are used to establish the existence of various amounts of excess (non-velocity) redshifts among Sc and allied types of galaxies.Independent distances fromHi line width — luminosity criterion (Tully-Fisher) are analyzed. It is shown that this criterion gives much smaller distances than redshifts do for galaxies which deviate above the Hubble line. Unless the Tully-Fisher relation gives too small distances for more luminous galaxies, this confirms the excess redshift to be intrinsic to the Galaxy. But it is next demonstrated, that for low redshift galaxies, there is no discrepancy between redshift and Tully-Fisher distance even though there is a wide range of absolute magnitudes.If Tully-Fisher distances are accepted, the onlly alternative to having a Hubble constant which increases strongly with distance is to have a component of the higher redshift Sc's contributed by a non-recessional redshift. Streaming motions would have to be large, increase with distance and be always in the receding sence. It is shown here that the Sc's which deviate most from the Hubble relation and have the largest discrepancies with Tully-Filsher distances lie predominantly in the sky toward very nearby groups of galaxies. If they were at these closer distances the discordant galaxies, mostly ScI's, would have dwarfish physical properties but not so unprecedented as the large sizes which result from redshift distances.Finally the interaction of specific high redshift ScI's with nearby galaxies is presented as an independent proof that ScI's are generally small, low luminosity galaxies. This result furnishes insight into the long standing puzzle of how apparently distant ScI's can interact with nearby galaxies such as in Stephan's Quintet, Seyfert's Sextet and NGC 4151/4156.  相似文献   

17.
The dust‐to‐gas ratios in three different samples of luminous, ultraluminous, and hyperluminous infrared galaxies are calculated by modelling their radio to soft X‐ray spectral energy distributions (SED) using composite models which account for the photoionizing radiation from H II regions, starbursts, or AGNs, and for shocks. The models are limited to a set which broadly reproduces the mid‐IR fine structure line ratios of local, IR bright, starburst galaxies. The results show that two types of clouds contribute to the IR emission. Those characterized by low shock velocities and low preshock densities explain the far‐IR dust emission, while those with higher velocities and densities contribute to the mid‐IR dust emission. Clouds with shock velocities of 500 km s–1 prevail in hyperluminous infrared galaxies. An AGN is found in nearly all of the ultraluminous infrared galaxies and in half of the luminous infrared galaxies of the sample. High IR luminosities depend on dust‐to‐gas ratios as high as ∼0.1 by mass, however most hyperluminous IR galaxies show dustto‐gas ratios much lower than those calculated for the luminous and ultraluminous IR galaxies. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
In this contribution we review the properties of Brightest Cluster Galaxies (BCGs) and discuss the impact that X-ray cluster selection is having on their use as cosmological probes. BCGs form a unique galaxy population. They are located near the gravitational centre of galaxy clusters and are the most massive galaxies in the universe, being some 10 times more luminous than L* systems. Historically, BCGs have been credited with small intrinsic dispersion in their absolute magnitudes (Δ≃0.2–0.3 mag) and used as standard candles to constrain the cosmological parameters. Although indirect signs of mass accretion out to z≃1 have been observed, uncovering their full evolutionary picture has remained an elusive goal. Studies of BCGs based on serendipitiously discovered X-ray cluster samples, particularly from ROSAT, provide large numbers of unbiased clusters at z≤1. Furthermore X-ray emission guarantees the presence of a large gravitationally bound potential well and the X-ray information can be used to locate the centroids of clusters, aiding the identification of the BCG. We show that this has important consequences for studies of distance determination and large-scale streaming flows based on the optical properties of BCGs. Recent results based on X-ray selected clusters show large differences in near-IR BCG properties with their cluster environment; such that those in clusters with L x≥1.9×1044erg s-1 are brighter and more uniform than those in their low-L x counterparts. The BCGs in highL x systems show no evidence of having undergone mass growth, whereas those in low L x systems show a widerrange of evolution, with evidence that some have grown by a factor of 4 ormore since z≃1. These results are a direct indication of howa single homogeneous population of galaxies evolves and are a challenge to simple semi-analytical hierarchical models. If future observations at high redshift are to seriously challenge theory then better predictions of the evolutionary process are required. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
We have compared the frequency distribution of the dynamical observedquantity log (V z 2 r p), for a sample of 46 pairs of elliptical galaxies, to the distribution of this quantity obtained from numerical simulations of pairs of galaxies. From such an analysis, where we have considered the structure of the galaxies and its influence in the orbital evolution of the system, we have obtained the characteristic mass and the mass-luminosity ratio for the sample. Our results show that the hypothesis of point-mass in elliptical orbits is, for this sample, an approximation as good as the model that takes into account the structure of the galaxies. The statistical method used here gives an estimate of a more reliable mass, it minimizes the contamination of spurious pairs and it considers adequately the contribution of the physical pairs. We have obtained a characteristic mass to the 46 elliptical pairs of 1.68 × 1012 ± 7.01 ×1011 M with M/L = 17.6 ± 7.3 (H 0 = 60 km s-1Mpc-1). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
The value of Hubble parameter (H0) is determined using the morphologically type dependent Ks-band Tully-Fisher Relation (K-TFR). The slope and zero point are determined using 36 calibrator galaxies with ScI morphology. Calibration distances are adopted from direct Cepheid distances, and group or companion distances derived with the Surface Brightness Fluctuation Method or Type Ia Supernova. It is found that a small morphological type effect is present in the K-TFR such that ScI galaxies are more luminous at a given rotational velocity than Sa/Sb galaxies and Sbc/Sc galaxies of later luminosity classes. Distances are determined to 16 galaxy clusters and 218 ScI galaxies with minimum distances of 40.0 Mpc. From the 16 galaxy clusters a weighted mean Hubble parameter of H0 = 84.2 ± 6 km s−1 Mpc−1 is found. From the 218 ScI galaxies a Hubble parameter of H0 = 83.4 ± 8 km s−1 Mpc−1 is found. When the zero point of K-TFR is corrected to account for recent results that find a Large Magellanic Cloud distance modulus of 18.39±0.05, a Hubble parameter of 88.0 ± 6 km s−1 Mpc−1 is found. Effects from Malmquist bias are shown to be negligible in this sample as galaxies are restricted to a minimum rotational velocity of 150 km s−1. It is also shown that the results of this study are negligibly affected by the adopted slope for the K-TFR, inclination binning, and distance binning. A comparison with the results of the Hubble Key Project (Freedman et al. 2001) is made. Discrepancies between the K-TFR distances and the HKP I-TFR distances are discussed. Implications for Λ-CDM cosmology are considered with H0 = 84 km s−1 Mpc−1. It is concluded that it is very difficult to reconcile the value of H0 found in this study with ages of the oldest globular clusters and matter density of the universe derived from galaxy clusters in the context of Λ-CDM cosmology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号