首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stable isotopes of dissolved organic carbon (DOC) are a powerful tool for distinguishing sources and inputs of organic matter in aquatic systems. While several methods exist to perform these analyses, no labs routinely utilize a high temperature combustion (HTC) instrument. Advantages of HTC instruments include rapid analysis, small sample volumes and minimal sample preparation, making them the favored devices for most routine oceanic DOC concentration measurements. We developed a stable carbon DOC method based around an HTC system. This method has the benefit of a simple setup, requiring neither vacuum nor high pressures. The main drawback of the method is a significant blank, requiring careful accounting of all blank sources for accurate isotopic and concentration values. We present here a series of experiments to determine the magnitude, source and isotopic composition of the HTC blank. Over time, the blank is very stable at  20 ng of carbon with a δ13C of − 18.1‰ vs. VPDB. The similarity of the isotopic composition of the blank and seawater samples makes corrections relatively minor. The precision of the method was determined by oxidizing organic standards with a wide isotopic and concentration range (− 9‰ to − 39‰; 18 μM to 124 μM). Analysis of seawater samples demonstrates the accuracy for low concentration, high salinity samples. The overall error on the measurement is approximately ± 0.8‰.  相似文献   

2.
Brood sizes of 1259 adult female Euphausia pacifica and Thysanoessa spinifera were measured during 48 h incubations (10 °C, ±0.5 °C) on 27 oceanographic cruises between July 1999 and September 2004. The data set includes measurements from several stations off Newport, Oregon (Newport Hydrographic line, 44°39′N) made over a 5-year period and measurements from 14 more extensive cruises at stations representative of continental shelf, slope, and oceanic waters off Oregon and California, USA. E. pacifica had similar brood sizes at inshore (<200 m) and offshore (>200 m) stations with an average of 151 and 139 eggs brood−1 fem−1, respectively. T. spinifera brood sizes were considerably higher at inshore stations—particularly at Heceta Bank (44°N) and south of Cape Blanco (42°50′N)—than at offshore stations, 155 and 107 eggs brood−1 fem−1, respectively. Average brood sizes of E. pacifica increased during the study period, from 125 (in 2000) to 171 eggs brood−1 fem−1 (in 2003). Average percentage of carbon weight invested in spawning (reproductive effort) was higher in E. pacifica (14%) than in T. spinifera (6%), because both species have similar brood size but T. spinifera females are larger than E. pacifica females and produce smaller eggs. Reproductive effort for both species was higher during summer 2002, probably associated with anomalous cool subarctic waters and high chl-a concentration observed during that summer. Brood sizes and chl-a values remained relatively high in 2003–2004 compared to the 1999–2001 period. Geographical and temporal variability in brood sizes for both species were significantly correlated with in situ measurements of chl-a concentration but not with sea surface temperature. No gravid females were collected during late autumn and winter cruises, thus the spawning season along the Oregon coast appears to extend from March through September for both species. However, T. spinifera usually starts reproductive activity earlier in the spring (March) than E. pacifica. Both species had their highest brood sizes in summer during the period of most intense upwelling, which is associated with an increase in regional phytoplankton standing stock.  相似文献   

3.
Changes from winter (July) to summer (February) in mixed layer carbon tracers and nutrients measured in the sub-Antarctic zone (SAZ), south of Australia, were used to derive a seasonal carbon budget. The region showed a strong winter to summer decrease in dissolved inorganic carbon (DIC;  45 µmol/kg) and fugacity of carbon dioxide (fCO2;  25 µatm), and an increase in stable carbon isotopic composition of DIC (δ13CDIC;  0.5‰), based on data collected between November 1997 and July 1999.The observed mixed layer changes are due to a combination of ocean mixing, air–sea exchange of CO2, and biological carbon production and export. After correction for mixing, we find that DIC decreases by up to 42 ± 3 µmol/kg from winter (July) to summer (February), with δ13CDIC enriched by up to 0.45 ± 0.05‰ for the same period. The enrichment of δ13CDIC between winter and summer is due to the preferential uptake of 12CO2 by marine phytoplankton during photosynthesis. Biological processes dominate the seasonal carbon budget (≈ 80%), while air–sea exchange of CO2 (≈ 10%) and mixing (≈ 10%) have smaller effects. We found the seasonal amplitude of fCO2 to be about half that of a study undertaken during 1991–1995 [Metzl, N., Tilbrook, B. and Poisson, A., 1999. The annual fCO2 cycle and the air–sea CO2 flux in the sub-Antarctic Ocean. Tellus Series B—Chemical and Physical Meteorology, 51(4): 849–861.] for the same region, indicating that SAZ may undergo significant inter-annual variations in surface fCO2. The seasonal DIC depletion implies a minimum biological carbon export of 3400 mmol C/ m2 from July to February. A comparison with nutrient changes indicates that organic carbon export occurs close to Redfield values (ΔP:ΔN:ΔC = 1:16:119). Extrapolating our estimates to the circumpolar sub-Antarctic Ocean implies a minimum organic carbon export of 0.65 GtC from the July to February period, about 5–7% of estimates of global export flux. Our estimate for biological carbon export is an order of magnitude greater than anthropogenic CO2 uptake in the same region and suggests that changes in biological export in the region may have large implications for future CO2 uptake by the ocean.  相似文献   

4.
Sources and discharges of dissolved organic carbon (DOC) from the central Sumatran river Siak were studied. DOC concentrations in the Siak ranged between 560 and 2594 μmol l−1 and peak out after its confluence with the river Mandau. The Mandau drains part of the central Sumatran peatlands and can be characterized as a typical blackwater river due to its high DOC concentration, its dark brown-coloured, acidic water (pH 4.4–4.7) and its low concentration of total suspended matter (12–41 mg l−1). The Mandau supplies about half of the DOC that enters the Siak Estuary where it mixes conservatively with ocean water. The DOC input from the Siak into the ocean was estimated to be 0.3 Tg C yr−1. Extrapolated to entire Indonesia the data suggest a total Indonesian DOC export of 21 Tg yr−1 representing 10% of the global riverine DOC input into the ocean.  相似文献   

5.
The apparent solubility product Ksp of calcite in seawater was measured as a function of temperature, salinity, and pressure using potentiometric saturometry techniques. The temperature effect was hardly discernible experimentally. The value of Ksp at 25°C was 4.59·10−7 mole2/(kg seawater)2 at 35‰S, 5.34·10−7 at 43‰S, and 3.24·10−7 at 27‰S. The apparent partial molal volume was found to be −34.4 cm3 at 25°C and −42.3 cm3 at 2°C from a linear fit of log(Ksp P/Ksp 1). These results were used in conjunction with field data to calculate the degree of saturation in the oceans and showed undersaturation at shallower depths than previously reported.  相似文献   

6.
Dissolved organic carbon (DOC), dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP) measured in deep profiles in the N-E Atlantic and in the N-W Mediterranean in the period 1984–2002 are described. After accurate validation, they show close agreement with those previously published.Classic profiles were obtained, with concentrations decreasing in deep waters. In the Mediterranean and in the Atlantic comparable concentrations were found in the 1500–2000 m waters, 44–46 μmol l−1 DOC, 2.6–2.8 μmol l−1 DON and 0.02–0.03 μmol l−1 DOP. In the surface layers, DOC concentrations were higher, but DON and DOP concentrations lower, in the Mediterranean than in the Atlantic, leading to higher element ratios in the Mediterranean. In autumn, values were, respectively, DOC:DON 17 vs. 14, DOC:DOP 950 vs. 500 and DON:DOP 55 vs. 35. The data suggest an increase in DOC and DON in the North Atlantic Central Water over 15 years, which may be linked to the North Atlantic climatic oscillations.Refractory DOM found in the 1500–2000 m layer exhibited C:N:P ratios of 1570:100:1. The labile+semi-labile (=non-refractory) DOM (nrDOM) pool was computed as DOM in excess of the refractory pool. Its contribution to total DOM above the thermocline in the open sea amounted to 25–35% of DOC, 30–35% of DON, and 60–80% of DOP. Element ratios of the nrDOM varied among stations and were lower than those of refractory DOM, except for C:N in the Mediterranean: nrDOC:nrDON 10–19, nrDOC:nrDOP 160–530 and nrDON:nrDOP 15–38. The specific stoichiometry of DOM in the Mediterranean led us to postulate that overconsumption of carbon is probably a main process in that oligotrophic sea.By coupling non-refractory DOM stoichiometry and relationships between the main DOM elements in the water column, the relative mineralization of C, N and P from DOM was studied. Below the thermocline, the preferential removal of phosphorus with regard to carbon from the semi-labile DOM can be confirmed, but not the preferential removal of nitrogen. In the ocean surface layers, processes depend on the oceanic area and can differ from deep waters, so preferential carbon removal seems more frequent. Bacterial growth efficiency data indicate that bacteria are directly responsible for mineralization of a high proportion of DON and DOP in the deep water.  相似文献   

7.
C37–C39 alkenones were measured in time-series sediment trap samples collected from August 1998 to June 2000 at two depths in the seasonal sea ice region of the western Sea of Okhotsk, off Sakhalin, in order to investigate alkenone production and water-column processes in the region. Measurable export fluxes of alkenones are ranged from < 0.1 to 5.8 μg/m2/day and clearly showed that the alkenone production was restricted to autumn. In 1998, maximum export flux of alkenones occurred in September when surface water column was well stratified with low nutrients in the surface mixing layer. In the next year, the maximum flux is observed in October. Comparison between alkenone temperature and satellite based sea surface temperature (SST) shows that the estimated alkenone temperatures in August 1998 were found to be  10 °C lower than the temporal satellite SST, suggesting that alkenones are produced in surface to subsurface thermocline layers during the period. Annual mean flux of alkenones is lower in the lower traps than that of the upper traps, suggesting rapid degradation of alkenones in water column, but the UK37′ value is not significantly altered. This study indicates that UK37′ values preserved in the surface sediments off Sakhalin reflect the seasonal temperature signal of near surface water, rather than annual mean surface temperature.  相似文献   

8.
We conducted full-depth hydrographic observations in the southwestern region of the Northwest Pacific Basin in September 2004 and November 2005. Deep-circulation currents crossed the observation line between the East Mariana Ridge and the Shatsky Rise, carrying Lower Circumpolar Deep Water westward in the lower deep layer (θ<1.2 °C) and Upper Circumpolar Deep Water (UCDW) and North Pacific Deep Water (NPDW) eastward in the upper deep layer (1.3–2.2 °C). In the lower deep layer at depths greater than approximately 3500 m, the eastern branch current of the deep circulation was located south of the Shatsky Rise at 30°24′–30°59′N with volume transport of 3.9 Sv (1 Sv=106 m3 s−1) in 2004 and at 30°06′–31°15′N with 1.6 Sv in 2005. The western branch current of the deep circulation was located north of the Ogasawara Plateau at 26°27′–27°03′N with almost 2.1 Sv in 2004 and at 26°27′–26°45′N with 2.7 Sv in 2005. Integrating past and present results, volume transport southwest of the Shatsky Rise is concluded to be a little less than 4 Sv for the eastern branch current and a little more than 2 Sv for the western branch current. In the upper deep layer at depths of approximately 2000–3500 m, UCDW and NPDW, characterized by high and low dissolved oxygen, respectively, were carried eastward at the observation line by the return flow of the deep circulation composing meridional overturning circulation. UCDW was confined between the East Mariana Ridge and the Ogasawara Plateau (22°03′–25°33′N) in 2004, whereas it extended to 26°45′N north of the Ogasawara Plateau in 2005. NPDW existed over the foot and slope of the Shatsky Rise from 29°48′N in 2004 and 30°06′N in 2005 to at least 32°30′N at the top of the Shatsky Rise. Volume transport of UCDW was estimated to be 4.6 Sv in 2004, whereas that of NPDW was 1.4 Sv in 2004 and 2.6 Sv in 2005, although the values for NPDW may be slightly underestimated, because they do not include the component north of the top of the Shatsky Rise. Volume transport of UCDW and NPDW southwest of the Shatsky Rise is concluded to be approximately 5 and 3 Sv, respectively. The pathways of UCDW and NPDW are new findings and suggest a correction for the past view of the deep circulation in the Pacific Ocean.  相似文献   

9.
Surface water samples were collected daily in June 2000 at a site in the Sargasso Sea to observe variability of Δ14C values in dissolved inorganic carbon (DIC). Temperature, salinity, DIC concentration, alkalinity, and δ13C and Δ14C values of DIC were measured in the samples. Ten Δ14C measurements averaged 81 ± 8‰ and had a range of 24‰ over the sixteen-day cruise. Δ14C values were more variable during the latter half of the cruise. Salinity and temperature measurements in the mixed layer throughout the cruise indicate that there were changes in water mass that occurred at our site. We conclude that the daily range of DIC Δ14C values in the surface ocean at our site is several times greater than the annual change in surface waters in the Sargasso Sea during the last two decades of the 20th century. This points to the importance of obtaining multiple measurements of the surface ocean to adequately define the true variability of DIC Δ14C measurements.  相似文献   

10.
The dynamics of dissolved inorganic carbon (DIC) and processes controlling net community production (NCP) were investigated within a mature cyclonic eddy, Cyclone Opal, which formed in the lee of the main Hawaiian Islands in the subtropical North Pacific Gyre. Within the eddy core, physical and biogeochemical properties suggested that nutrient- and DIC-rich deep waters were uplifted by 80 m relative to surrounding waters, enhancing biological production. A salt budget indicates that the eddy core was a mixture of deep water (68%) and surface water (32%). NCP was estimated from mass balances of DIC, nitrate+nitrite, total organic carbon, and dissolved organic nitrogen, making rational inferences about the unobserved initial conditions at the time of eddy formation. Results consistently suggest that NCP in the center of the eddy was substantially enhanced relative to the surrounding waters, ranging from 14.1±10.6 (0–110 m: within the euphotic zone) to 14.2±9.2 (0–50 m: within the mixed layer) to 18.5±10.7 (0–75 m: within the deep chlorophyll-maximum layer) mmol C m−2 d−1 depending on the depth of integration. NCP in the ambient waters outside the eddy averaged about 2.37±4.24 mmol C m−2 d−1 in the mixed layer (0–95 m). Most of the enhanced NCP inside the eddy appears to have accumulated as dissolved organic carbon (DOC) rather than exported as particulate organic carbon (POC) to the mesopelagic. Our results also suggest that the upper euphotic zone (0–75 m) above the deep chlorophyll maximum is characterized by positive NCP, while NCP in the lower layer (>75 m) is close to zero or negative.  相似文献   

11.
Quasi-synoptic observations of the horizontal and vertical structure of a cold-core cyclonic mesoscale eddy feature (Cyclone Noah) were conducted in the lee of Hawai’i from November 4–22, 2004 as part of the E-Flux interdisciplinary collaborative research program. Cyclone Noah appears to have spun up to the southwest of the ‘Alenuihaha Channel (between Maui and Hawai’i) as a result of strong and persistent northeasterly trade winds through the channel. Shipboard hydrographic surveys 2.5 months later suggest that Noah weakened and was in a hypothesized spin-down phase of its life cycle. Although the initial surface expression of Noah was limited in scale to 40 km in diameter and, as evidenced by surface temperatures, 2–3 °C cooler than the surrounding waters, depth profiles revealed a fully developed semi-elliptical shallow feature (200 m), 144 km long and 90 km wide (based on sigma-t=23 kg m−3) with tangential speeds of 40–80 cm s−1, and substantial isopycnal doming. Potential vorticity distribution of Noah suggests that radial horizontal flow of the core water was inhibited from the surface to depths of 75 m, with high vorticity confined above the sigma-t=23.5 kg m−3 isopycnal surface. Upward displacements of isopycnal surfaces in the eddy's center (50 m) were congruent with enhanced pigment concentrations (0.50 mg m−3). Comparisons of the results obtained for E-Flux I (Noah) and E-Flux III (Opal) suggest that translation characteristics of cyclonic Hawaiian lee eddies may be important in establishing the biogeochemical and biological responses of the oligotrophic ocean to cyclonic eddies.  相似文献   

12.
The study on dissolved organic ligands capable to complex copper ions (LT), surface-active substances (SAS) and dissolved organic carbon (DOC) in the Northern Adriatic Sea station (ST 101) under the influence of Po River was conducted in period from 2006–2008. The acidity of surface-active organic material (Acr) was followed as well. The results are compared to temperature and salinity distributions. On that way, the contribution of the different pools of ligands capable to complex Cu ions could be determined as well as the influence of aging and transformation of the organic matter. The LT values in the investigated period were in the range of 40–300 nmol l−1. The range of DOC values for surface and bottom samples were 0.84–1.87 mg l−1 and 0.80–1.30 mg l−1, respectively. Total SAS concentrations in the bottom layer were 0.045–0.098 mg l−1 in equiv. of Triton-X-100 while those in the surface layer were 0.050–0.143 mg l−1 in equiv. of Triton-X-100. The majority of organic ligands responsible for Cu binding in surface water originate from new phytoplankton production promoted by river borne nutrients. Older, transformed organic matter, possessing higher relative acidity, is the main contributor to the pool of organic ligands that bind copper in the bottom samples. It was estimated that 9% of DOC in surface samples and 12% of DOC in the bottom samples are present as ligands capable to complex copper ions.  相似文献   

13.
Geochemical estimates of N2 fixation in the North Atlantic often serve as a foundation for estimating global marine diazotrophy. Yet despite being well-studied, estimations of nitrogen fixation rates in this basin vary widely. Here we investigate the variability in published estimates of excess nitrogen accumulation rates in the main thermocline of the subtropical North Atlantic, testing the assumptions and choices made in the analyses. Employing one of these previously described methods, modified here with improved estimates of excess N spatial gradients and ventilation rates of the main thermocline, we determine a total excess N accumulation rate of 7.8 ± 1.7 × 1011 mol N yr− 1. Contributions to excess N development include atmospheric deposition of high N:P nutrients (adding excess N at a rate of 3.0 ± 0.9 × 1011 mol N yr− 1 for  38% of the total), high N:P dissolved organic matter advected into and mineralized in the main thermocline (adding excess N at 2.2 ± 1.1 × 1011 mol N yr− 1 for  28% of the total), and, calculated by mass balance of the excess N field, N2 fixation (adding excess N at 2.6 ± 2.2 × 1011 mol N yr− 1 for  33% of the total). Assuming an N:P of 40 and this rate of excess N accumulation due to the process, N2 fixation in the North Atlantic subtropical gyre is estimated at  4 × 1011 mol N yr− 1. This relatively low rate of N2 fixation suggests that i) the rate of N2 fixation in the North Atlantic is greatly overestimated in some previous analyses, ii) the main thermocline is not the primary repository of N fixed by diazotrophs, and/or iii) the N:P ratio of exported diazotrophic organic matter is much lower than generally assumed. It is this last possibility, and our uncertainty in the N:P ratios of exported material supporting excess N development, that greatly lessens our confidence in geochemical measures of N2 fixation.  相似文献   

14.
This study examined the relationship between carbon isotopic composition of sinking organic matter (OM) and the biological, physical and chemical properties of the surface ocean in the Cariaco Basin. The 13C/12C ratio of OM (δ13Corg) in sinking particles was determined on sediment trap samples from four depths collected from 1996 to 1999 as part of the CArbon Retention In A Colored Ocean time series. Water column properties, including temperature, productivity, chlorophyll and concentration of dissolved CO2, were concurrently measured on monthly cruises. The δ13Corg varied from a high of –17.7‰ to a low of –22.6‰ during the study period. The variation of the δ13Corg throughout seasonal cycles was directly proportional to the strength of upwelling and was negatively correlated with temperature (r2=0.64). During the 1996–1997 upwelling event, the strongest during the study period, the δ13Corg increased by 4.4‰ whereas during the 1998–1999 upwelling event, the weakest during the study period, the δ13Corg only increased by 3.3‰. Contrary to most previous studies, we observed a negative relationship (r2=0.53) between [CO2 aq] and the estimated isotopic fractionation factor (εp). However, there was no correlation between εp and the calculated growth rates indicating that there was non-diffusive uptake of carbon into phytoplankton cells. It thus appears that [CO2 aq] does not control the δ13Corg in the water column of the study site. The best explanation for the isotopic enrichment observed is a carbon concentrating mechanism (CCM) in phytoplankton. The existence of a CCM in phytoplankton has major implications for the interpretation of the δ13Corg in the Cariaco Basin.  相似文献   

15.
Biogeochemical processes in sediments under the influence of the Rhône River plume were studied using both in situ microelectrodes and ex situ sediment core incubations. Organic carbon (OC) and total nitrogen (TN) content as well as stable carbon isotopic composition of OC (δ13COC) were analysed in 19 surface sediments to determine the distribution and sources of organic matter in the Rhône delta system. Large spatial variations were observed in both the total O2 uptake (5.2 to 29.3 mmol m−2 d−1) and NH4+ release (−0.1 to −3.5 mmol m−2 d−1) rates at the sediment–water interface. The highest fluxes were measured near the Rhône River mouth where sedimentary OC and TN contents reached 1.81% and 0.23% respectively. Values of δ13COC ranged from −26.83‰ to −23.88‰ with a significant seawards enrichment tracing the dispersal of terrestrial organic matter on the continental shelf. The amount of terrestrial-derived OC reaches 85% in sediments close to the Rhône mouth decreasing down to 25% in continental shelf sediments. On the prodelta, high terrestrial OC accumulation rates support high oxygen uptake rates and thus indicating that a significant fraction of terrestrial OC is remineralized. A particulate organic carbon (POC) mass balance indicates that only 3% of the deposited POC is remineralized in prodelta sediments while 96% is recycled on the continental shelf. It was calculated that a large proportion of the Rhône POC input is either buried (52%) or remineralized (8%), mostly on the prodelta area. The remaining fraction (40%) is either mineralized in the water or exported outside the Rhône delta system in dissolved or particulate forms.  相似文献   

16.
Concentrations of thiol compounds, copper-complexing ligands, and total dissolved copper were followed over the course of 1 year (October 2002 until September 2003) in the Elizabeth River, Virginia to evaluate seasonality. Copper-complexing ligand concentrations were determined by competitive ligand equilibration-adsorptive cathodic stripping voltammetry (CLE/ACSV). Thiol detection was carried out by high performance liquid chromatography (HPLC) and calibration using a suite of nine thiol compounds (cysteine, glutathione, mercaptoacetic acid, 2-mercaptoethanesulfonic acid, 2-mercaptoethanol, 2-mercaptopropionic acid, 3-mercaptopropionic acid, mercaptosuccinic acid, and monothioglycerol). Total dissolved copper concentrations reached a January low of 13.1 nM to a June high of 24.7 nM and were found to vary seasonally with higher concentrations occurring from June to September. With a low of 26 nM during April to a high of 56 nM in October, copper-complexing ligand (average log KCuL of 12.0 ± 0.2) concentrations displayed a similar seasonal pattern to that of total dissolved copper. Free cupric ion concentrations remained below 1.5 pM for a majority of the year except during March, April, and December when values reached pM levels greater than 1.5. Six of the nine thiol compounds surveyed were detected in the Elizabeth River samples and ranged in concentration from below detectable concentrations (< 5 nM) to individual highs ranging from 25.3 to168.5 nM. The thiol compound concentrations displayed a clear seasonality fluctuating at below detection limits during November to February then increasing with increasing surface water temperatures from March to July. CLE/ACSV was used to assess whether or not the suite of thiol compounds detected by HPLC could contribute to the copper-complexing ligand pool. Conditional stability constants for each one of six thiol standards (average log KCuL  12.1 ± 0.5) were found to be statistically equivalent to the naturally occurring copper-complexing ligands (average log KCuL  12.0 ± 0.2). This suggests that these thiol compounds could act as copper-complexing ligands in natural samples and could contribute to the copper-complexing ligand pool detected by CLE/ACSV. This study involving seasonality of copper-complexing ligands and thiols in an industrialized, urban estuary underscored several points that have to be substantiated in future research efforts including copper-complexing ligands sources and the role that thiol compounds as well as other unidentified organic compounds play in the copper-complexing ligand pool.  相似文献   

17.
Exopolymeric substances (EPS) produced by microorganisms play important roles in various aquatic, porous, and extreme environments. Only recently has their occurrence in sea ice been considered. We used macroscopic and microscopic approaches to study the content and possible ecological role of EPS in wintertime fast ice near Barrow, Alaska (71°20′ N, 156°40′ W). Using Alcian blue staining of melted ice samples, we observed high concentrations of EPS in all samples examined, ranging from 0.79 to 7.71 mg xanthan gum equivalents (XGEQV) l−1. Areal conversions to carbon equivalents yielded 1.5−1.9 g C m−2 ice in March and 3.3−4.0 g C m−2 in May (when the ice was thicker). Although EPS did not correlate with macronutrient or pigment data, the latter analyses indicated ongoing or recent biological activity in the ice within temperature horizons of −11°C to −9°C and warmer. EPS correlated positively with bacterial abundance (although no functional relationship could be deduced) and with dissolved organic carbon (DOC) concentrations. Ratios of EPS/DOC decreased at colder temperatures within the core, arguing against physical conversion of DOC to EPS during freezing. When sea-ice segments were maintained at representative winter temperatures (−5°C,−15°C and −25°C) for 3−14 months, the total EPS content increased significantly at rates of 5−47 μg XGEQV l−1 d−1, similar to published rates of EPS production by diatoms. Microscopic images of ice-core sections at these very cold temperatures, using a recently developed non-invasive method, revealed diatoms sequestered in spacious brine pockets, intact autofluorescent chloroplasts in 47% of the (pennate) diatoms observed, and indications of mucus in diatom-containing pores. The high concentrations of EPS detected in these winter ice cores represent a previously unrecognized form of organic matter that may contribute significantly to polar ocean carbon cycles, not only within the ice but after springtime release into the water column. The EPS present in very high concentrations in the brine of these microhabitats appear to play important buffering and cryoprotectant roles for microorganisms, especially diatoms, against harsh winter conditions of high salinity and potential ice-crystal damage.  相似文献   

18.
Axenic cultures of the microalgae species, Dunaliella tertiolecta and Phaeodactylum tricornutum were grown at arsenic (As) concentrations typically found in uncontaminated marine environments ( 2 µg L− 1) under different phosphorus concentrations. D. tertiolecta accumulated higher arsenic concentrations (mean: 13.7 ± 0.7 µg g− 1 dry mass) than P. tricornutum (mean: 1.9 ± 0.2 µg g−1 dry mass). Media phosphorus concentrations (0.6–3 mg/L) had little influence on microalgae growth rates or arsenic accumulation. Arsenic was present as lipid bound (29–38%; 4.2–9.5%), water-soluble (20–29%; 26–34%) and residue bound (41–45%; 57–69%) arsenic species in D. tertiolecta and P. tricornutum respectively. Hydrolysed lipids contained mostly glycerol arsenoribose (OH- ribose), dimethylarsinate (DMA) and inorganic arsenic (As(V)) moieties. Water-soluble species of microalgae were very different. D. tertiolecta contained inorganic arsenic (54–86%) with variable amounts of DMA (7.4–20%), arsenoriboses (5–25%) and traces of methylarsonate (MA) ( 1%). P. tricornutum contained mostly DMA (32–56%) and phosphate arsenoribose (PO4-ribose, 23–49%) and small amounts of OH-ribose (3.8–6.5%) and As(V) (9–16%). Both microalgae contained an unknown cationic arsenic species. The residue fractions of both microalgae contained predominately inorganic arsenic (99–100%). These results show that at natural seawater arsenic concentrations, both algae take up substantial amounts of inorganic arsenic that is complexed with structural elements or sequestered in vacuoles as stable complexes. A significant portion is also incorporated into lipids. Arsenic is metabolised to simple methylated species and arsenoriboses.  相似文献   

19.
Temperature data collected over the last 36 years (1969–2004) in Drake Passage are used to examine interannual temperature variation and long-term trends in the upper ocean. To reduce the effect of variation from different sampling locations and temporal variability introduced by meridional shifts in the Polar Front (PF), the data were divided into two sub-regions north (3800 temperature profiles) and south (3400) of the PF. Temperature anomalies were formed by removing a temporal mean field for each profile in each sub-region at 100 m depth intervals from the surface to 700 m. North of the PF, statistically significant warming trends of 0.02 °C yr−1 were observed that were largely depth-independent between 100 and 700 m. A statistically significant cooling trend of −0.07 °C yr−1 was observed at the surface south of the PF, which was smaller (−0.04 °C yr−1) but still statistically significant when possible seasonal sampling biases were accounted for. The observed cooling at the surface and warming at depth is largely consistent with a poleward shift of the PF due to enhancement of westerly winds in the Southern Ocean, as recently suggested by models and observations. The observed annual temperature anomalies in the upper 400 m north of the PF and in the upper 100 m south of the PF are highly correlated to variability in sea ice, and also to climate indices of the Antarctic Oscillation and the El Niño Southern Oscillation. Variability in sea ice and temperature anomalies lag El Niño variability in the Pacific, with a phasing consistent with the observed cyclical patterns of sea ice and sea surface temperature associated with the Antarctic Circumpolar Wave or Antarctic Dipole Mode in the Southern Ocean. In contrast, the sea ice variability and temperature anomalies at all depths north of the PF and at 0–100 m depth south of the PF were primarily coincident with, or led the Antarctic Oscillation Index. No significant correlations were found with the large-scale climate variability indices in southern Drake Passage below 100 m depth, which is occupied by upper Circumpolar Deep Water (uCDW). This water mass is not formed locally, is largely isolated from the surface, and exhibits vertical and lateral homogeneity. Hence changes may be difficult to detect in the available measurements, and climate variation in the source water regions of uCDW may take a long time to reach Drake Passage.  相似文献   

20.
Biweekly composite averages of the standing stock of sea-surface chlorophyll (SSC) were derived from SeaWiFS satellite ocean-color data at 44 benthic sampling stations occupied along the continental slope and rise by the Deep Gulf of Mexico Benthos (DGoMB) program. At the 22 DGoMB sites north of 26°N and west of 91°W in the NW Gulf of Mexico, annual average SSC was 0.19 mg m−3, ranging at most locations from annual highs of about 0.3 mg m−3 in November–February to lows of about 0.1 mg m−3 in May–August. Comparison of three years of SeaWiFS data (January 1998–December 2000) showed little inter-annual variation at these NW Gulf stations. In contrast, at the 22 NE Gulf sites north of 26°N and east of 91°W, SSC averaged 2.8 times higher than in the NW Gulf, showing also strong inter-annual variation. Maxima in the NE region occurred in November–February and also during summers. The summer maxima were associated with Mississippi River water transported offshore to the east and southward by anticyclonic eddies in the NE Gulf. The apparent increases in SSC in June–August at NE Gulf stations reached average monthly concentrations >50% greater than in November–February. Based on a primary productivity model and a vertical flux model, the calculated export of particulate organic carbon (POC flux reaching the seafloor) was estimated as 18 mg C m−2 day−1 at the 22 NE Gulf stations, and 9 mg C m−2 day−1 at the 22 NW Gulf stations. These estimates are comparable to fluxes measured by benthic lander by others in the DGoMB program, which may drive the differences in west versus east bathymetric zonation and community structure of macrobenthos that were sampled with large box corers by others in the DGoMB program.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号