首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
吴晨  陈宣华  丁林 《地学前缘》2023,(3):262-281
祁连造山带位于东特提斯北缘,蛇绿混杂岩带、(超)高压变质岩和弧岩浆岩等广泛发育,是前新生代华北克拉通与柴达木古地块之间多期次俯冲、碰撞和造山形成的复合造山带。现今的祁连山是青藏高原北缘高原隆升与扩展的关键构造带,具有复杂的陆内变形构造和深部结构,记录了新生代高原生长过程中不同阶段的构造变形和盆-山演化历史。本文在区域地质研究资料的综合分析基础上,讨论祁连造山带元古宙变质基底属性、新元古代—古生代古海洋演化和中—新生代构造变形特征,探讨祁连(山)造山带的构造演化过程和陆内变形历史。祁连造山带发育新元古代早期和早古生代两期岩浆弧,分别代表了古祁连洋和(南、北)祁连洋的俯冲-碰撞事件;亲华北的基底属性指示了祁连洋实属陆缘海。新生代青藏高原东北缘发育两阶段构造变形和盆-山演化,在中新世完成了由新生代早期以逆冲断裂活动为主向走滑断裂和逆冲断裂共同作用的转变,随着东昆仑山的快速隆起将古近纪大盆地隔开成两个盆地,即现今的柴达木盆地和可可西里盆地。中新世中晚期以来,青藏高原东北缘的构造格局主要受控于东昆仑和海原两个近乎平行的大型转换挤压构造系统的发育、顺时针旋转和侧向生长。大型走滑断裂系统在造山带内的...  相似文献   

2.
张建新  孟繁聪  于胜尧 《岩石学报》2010,26(7):1967-1992
在祁连-阿尔金造山带的南北两侧,分别出露有北祁连-北阿尔金HP/LT变质带和柴北缘-南阿尔金UHP变质带。北祁连-北阿尔金HP/LT变质带主要由蓝片岩、低温榴辉岩和高压变沉积岩所组成,榴辉岩形成的温压条件为420~570℃和2.0~2.5GPa,形成时代为510~440Ma。含硬柱石榴辉岩和含纤柱石高压变沉积岩的存在显示洋壳俯冲把大量水带到地幔深处。与HP/LT变质带伴生的早古生代蛇绿岩、俯冲增生杂岩、岛弧、弧后盆地等显示北祁连-北阿尔金为典型的早古生代增生造山带。柴北缘-南阿尔金UHP变质带由榴辉岩、石榴橄榄岩、高压麻粒岩及具有陆壳性质的正副片麻岩所组成,它们遭受了超高压变质作用(T700℃,P2.8GPa),UHP变质时代为500~420Ma,榴辉岩的原岩时代为750~850Ma,形成于新元古代的大陆裂谷环境。野外地质关系、岩石学及年代学研究显示柴北缘-南阿尔金HP-UHP变质带为大陆深俯冲作用的产物。在柴北缘-南阿尔金UHP变质带中,超高压榴辉岩和高压麻粒岩同时形成在不同的构造热环境中,构成大陆俯冲及碰撞造山带中的"双变质带",同时也显示柴北缘-南阿尔金造山带具有典型碰撞造山带的特征。祁连-阿尔金造山带南北两侧几乎同时发生增生造山作用和碰撞造山作用,构成由不同造山类型所组成的复合造山带。南北两侧的HP/LT变质带和UHP变质带以及可能存在的不同类型双变质带制约了祁连-阿尔金造山带早古生代的造山性质、造山类型以及造山机制。  相似文献   

3.
喜马拉雅造山带东端的南迦巴瓦岩群是高喜马拉雅结晶岩系的一部分,主要由麻粒岩相和角闪岩相变质的片麻岩、斜长角闪岩、片岩和钙硅酸盐岩组成.长英质片麻岩主要由斜长石、钾长石、石英、石榴石、黑云母和褐帘石组成.片麻岩中的锆石具有核一边结构,由一个大的继承岩浆核和一个窄的变质生长边组成.锆石岩浆核具同心韵律环带.其REE配分模式以HREE富集和负Eu异常为特征,并具有高的Th/U比值.锆石U-Pb年代分析表明,这种继承岩浆锆石给出的加权平均年龄为490~500Ma.地球化学特征表明,这些片麻岩的原岩是花岗岩和花岗闪长岩,形成在俯冲带的岩浆弧构造环境.钙硅酸盐岩中的锆石具有高级变质岩中变质生长锆石的典型特征,即具有相对较低的REE含量,不明显的负Eu异常和较低的Th/U比值.变质锆石所获得的U-Pb加权平均年龄为505Ma.本文和现有的研究结果表明,喜马拉雅造山带是一个复合造山带,它经历了古生代的原始造山作用,在新生代印度与欧亚板块的碰撞过程中发生了再造山作用.喜马拉的古生代造山带作用是原特提斯洋向冈瓦纳大陆北缘俯冲和亚洲微陆块(包括拉萨和羌塘地块)增生的结果,是在冈瓦纳大陆拼合之后其边缘发生的安底斯型造山作用,因此,它并不属于在冈瓦纳超大陆聚合过程中陆-陆碰撞形成的泛非造山带.  相似文献   

4.
塔里木盆地东南缘早古生代弯山构造   总被引:1,自引:1,他引:0  
位于塔里木盆地东南缘的阿尔金地区发育南、北两条早古生代缝合带,通过对带内出露的大量早古生代蛇绿岩、高压-超高压变质岩以及不同性质的花岗岩的同位素年代学资料的收集、整理和对比,发现南、北缝合带内岩体在岩石学、地球化学、形成的时代和构造环境等方面具有可对比性,推测在早古生代两者处于同一个俯冲带体系中,只是演化时限存在沿走向的穿时性。本文提出,阿尔金造山带为一弯山构造,我们称之为塔里木盆地东南缘早古生代弯山构造。通过古地磁资料与板块重建的研究与分析,揭示了塔里木-柴达木陆块在早古生代很可能作为一个整体漂移,发生了以逆时针方向为主的相对旋转,这与弯山构造的形成息息相关。在原特提斯洋向南斜向俯冲闭合过程中,分布在大洋中的塔里木-柴达木陆块、中阿尔金-中祁连微陆块以及其他亲冈瓦纳古陆的微陆块组成的链状陆块群,形成了近直线型的俯冲造山带。在斜向俯冲-碰撞机制下,塔里木-柴达木陆块的逆时针旋转,诱发了大型韧性剪切带和右行走滑断裂带,加之微陆块间的俯冲-碰撞相互作用的影响,最终导致初始造山带发生弯曲。塔里木盆地内发育的早古生代构造不整合以及呈"S"形展布的古构造、油气藏分布形态恰好为其提供了佐证。对塔里木盆地东南缘早古生代弯山构造的研究,不仅有助于增进对原特提斯洋俯冲、闭合的理解和认识,还可以为建立中央造山带的演化模式提供新的思路。  相似文献   

5.
中国中央造山系是由亲劳亚的北方陆块群、亲冈瓦纳的南方陆块群及其间大量过渡性微陆块历经复杂拼合而成的复合型造山带,是中国大陆完成主体拼合的构造结合带。中央造山系自西而东包括昆仑造山带、祁连造山带和秦岭- 大别造山带,保存了古生代—早中生代时期华北、华南、柴达木、塔里木、羌塘等众多大小陆块造山过程的丰富信息,是研究东特提斯构造域原、古特提斯洋构造演化的重要窗口。本文综述了中央造山系地质、地球化学和高精度年代学等多学科研究成果,得到以下主要认识:① 550 Ma之前,众多大小陆块孤立散布于原特提斯洋;② 541~485 Ma,原特提斯洋各分支开始俯冲;③ 485~444 Ma,原特提斯洋持续俯冲,导致秦岭二郎坪弧后盆地、昆仑祁漫塔格弧后盆地打开;④ 444~420 Ma,原特提斯北祁连洋、南祁连洋和商丹洋闭合,昆仑祁漫塔格弧后盆地关闭;⑤ 420~300 Ma,昆仑地区古特提斯洋继承原特提斯洋,古特提斯勉略洋逐步扩张;⑥ 300~250 Ma,昆仑洋自阿其克库勒湖- 昆中缝合带向木孜塔格- 布青山- 阿尼玛卿缝合带发生俯冲后撤;⑦ 250~200 Ma,原- 古特提斯昆仑洋、古特提斯勉略洋关闭;⑧ 200 Ma以来,中央造山系转入陆内造山阶段。  相似文献   

6.
全球早古生代造山带(Ⅳ):板块重建与Carolina超大陆   总被引:2,自引:0,他引:2  
古元古代与显生宙的板块构造特征和旋回演化过程具有明显区别,反映出地质记录为两种不同的板块构造体制。早古生代为这两个时期的过渡阶段,其构造过程研究与板块重建是地球板块构造旋回机制和周期分析的关键。本文采用综合集成的方法,在总结对比罗迪尼亚超大陆裂解以来全球早古生代主要碰撞造山带的地质事件基础上,分析早古生代碰撞造山带的演化特征,总结出与冈瓦纳大陆拼合、劳俄大陆拼合、古中华陆块群增生相关的7期碰撞-增生造山事件群:Brasiliano、东非、Kuunga、东亚与原特提斯洋和古亚洲洋演化相关的的加里东期造山事件、经典加里东造山、中欧加里东造山、Appalachian造山。再在这7期造山事件群基础上,结合古地磁、古生物、古地理等资料,重建了新元古代-早古生代末全球板块的拼合过程:罗迪尼亚超大陆从新元古代的~950 Ma开始经历了3个阶段裂解,此时存在泛大洋、莫桑比克洋和古太平洋3个大洋,随后615~560 Ma Iapetus洋打开,~560 Ma波罗的陆块与西冈瓦纳裂离导致狭窄的Ran洋打开;~540 Ma南半球Brasiliano、东非和Kuunga造山运动导致冈瓦纳大陆分阶段最终完成拼贴;~500 Ma冈瓦纳大陆北缘西段的微陆块群局部向北裂离,导致Rheic洋和Tornquist洋打开,并于~420 Ma随经典加里东造山带和中欧缝合带形成导致Iapetus洋闭合,此时斯瓦尔巴特和英国可能位于格陵兰地盾东南缘,同时冈瓦纳大陆北缘东段华北为代表的微陆块基本拼合在冈瓦纳大陆北缘;此外,虽然425 Ma西伯利亚板块有远离聚合了的劳俄大陆的趋势,但晚奥陶世-早泥盆世南美和北美板块靠近,北美板块与环冈瓦纳北缘西段的地体拼合碰撞。在大约400 Ma时,南、北美洲的混合生物群和古地理重建显示两者非常接近,因此,推测此时存在一个初始的逐步稳定的超大陆的可能,本文称为Carolina超大陆,因为Carolina造山带是这个超大陆最终拼合的地带。并据此判断超大陆旋回为7亿年。  相似文献   

7.
早古生代原特提斯洋在祁连造山带的分支本文称为古祁连洋。其洋内及邻区存在中祁连、阿拉善、柴达木、华北、扬子、塔里木等多个陆块、微陆块,处在一个复杂的多岛洋的环境中。祁连地区早古生代经历了较为复杂的俯冲拼合、碰撞造山过程。本文探讨了祁连造山带的几个构造单元构造属性,认为早古生代阿拉善微陆块南缘为被动大陆边缘,中祁连北缘为活动大陆边缘。阿拉善南部与之平行的龙首山构造单元为俯冲造山形成的增生楔体;北祁连构造带为一套俯冲增生杂岩,包含高压变质岩带、蛇绿岩带、岛弧岩浆和部分洋壳残片等,记录了古祁连洋壳从大陆裂解,洋壳形成,俯冲拼合,碰撞造山的造山过程。495Ma左右南祁连南部柴达木微陆块向北俯冲的影响,古祁连洋壳俯冲受阻,俯冲带向北后退,形成大岔大坂岛弧。弧前地区发生洋-洋俯冲事件,堆积增生大岔大坂、白泉门、九个泉等SSZ型北祁连蛇绿岩北带,并伴随第二期清水沟、牛心山、野牛滩等地岩浆事件。460Ma左右阿拉善微陆块和中祁连微陆块开始碰撞拼合,古祁连洋开始闭合。值得注意的是拼合过程不是均一的,存在自西向东斜向"剪刀式"的拼合方式,产生了由西向东年代变新的"S"型同碰撞岩浆岩。约440Ma古祁连洋闭合,进入陆内造山阶段。440Ma之后,拼合陆块处在一种拉伸的构造环境之下,金佛寺、牛心山、老虎山等地产生碰撞后岩浆岩。422~406Ma发生俯冲折返、高压榴辉岩和高压低温蓝片岩退变质作用,形成以紧闭不对褶皱为特征的第二幕变形。根据各陆块、微陆块碎屑锆石年龄谱分析对比,中祁连基底应与华北不同,而可能与扬子有关。Rodinia超大陆聚合之前,中祁连微陆块作为一个独立的微陆块与华北、扬子保持一定距离。1.0~0.8Ga Rodinia超大陆聚合过程中祁连微陆块与冈瓦纳北缘拼贴在一起,而距华北较远。随着Rodinia超大陆裂解,中祁连微陆块远离冈瓦纳,逐渐向华北靠近,500~400Ma原特提斯洋闭合,华北、阿拉善与中祁连拼合,并整体拼合到冈瓦纳大陆北缘。  相似文献   

8.
中亚造山带南缘如何向南扩展,对深入理解增生型造山作用和大陆地壳生长机制以及中亚构造域与特提斯构造域的衔接具有重要科学意义。作为中亚造山带南缘的关键构造单元,敦煌构造带大地构造属性长期备受关注且颇有争议。传统观点认为敦煌构造带是古亚洲洋南侧的前寒武纪稳定大陆地块,以刚性块体的形式参与了中亚造山带南缘的最终拼贴过程。然而,近年来研究认为敦煌构造带卷入了古亚洲洋南部的俯冲增生造山过程,属于中亚造山带南缘的增生系统。显然,这一争议限制了对中亚造山带南缘向南扩展方式及增生造山过程的理解。敦煌北部三危山地区出露一套古生代岩浆-变质杂岩,是解开这一争论的关键。本文综合前人研究基础及新的资料,归纳了这套岩浆-变质杂岩的野外岩石-构造组合、地球化学和年代学等方面特征:该岩浆-变质杂岩整体显示"二元结构"特征,即较老的增生杂岩为基底,弧岩浆岩侵入或不整合覆盖其上;其中岩浆岩属于中钾-高钾钙碱性系列中酸性岩浆岩,富集大离子亲石元素(LILE)和轻稀土元素(LREE),亏损高场强元素(HFSE),与典型的弧岩浆岩类似,并且微量元素组成特征反映中酸性岩浆的源区与俯冲沉积物部分熔融有关;岩浆作用大致归为510Ma、460~410Ma和370~360Ma三期。岩浆岩中结晶锆石不一致的εHft)值(既有正值,又有负值)以及继承锆石的存在表明,岩浆源区既有古老地壳物质的加入,也有新生地壳物质的形成。以上这些特征与发育在增生杂岩之上的增生弧十分类似,因此本文提出敦煌北部岩浆-变质杂岩的属性为古生代增生弧,并且该增生弧与其南部的红柳峡俯冲增生杂岩共同勾勒出敦煌构造带自北向南增生弧-增生杂岩的基本构造格架,即敦煌构造带的大地构造属性实为造山带而非稳定地块。结合区域地质背景及敦煌地区与北山地区古生代至早中生代构造-热事件的对应关系,认为敦煌造山带属于中亚造山带中段南缘的增生系统,中亚造山带中段以增生弧-增生杂岩的形式向南扩展至敦煌地区。  相似文献   

9.
当前,增生型造山带和碰撞型造山带的研究均取得了丰富的成果和创新性认识。二者过渡期间常常发生陆壳俯冲。然而,该俯冲具有什么样的构造变形特点,并如何影响造山带演化过程,长期未受到足够的关注。基于此,文中选择曾发生了陆壳俯冲的两个新生代时期的造山带(中国台湾造山带和雅鲁藏布江造山带)和一个中生代时期的造山带(羌塘造山带)开展研究,以期阐明陆壳俯冲的独特构造变形特征以及和造山过程的交互作用。研究发现,陆壳俯冲常常在造山带形成双层结构,上部为一套由史密斯地层组成的逆冲叠瓦扇构造体系,下部为一套具“岩块–基质”结构特征的俯冲杂岩。双层结构的上下部分物质组成相似,均以斜坡相–海底扇相沉积为主,也有陆棚相沉积。因此,由于构造变形时间相近,双层结构应是由同一套被动陆缘物质俯冲形成的深浅不同的构造体系。研究认为,在陆壳俯冲过程中,早期的斜坡–海底扇俯冲是形成双层结构的主要因素。后续的陆棚俯冲则对碰撞作用的发生起到了主导作用,从而使应变逐渐向克拉通内部扩展,形成前陆褶皱–冲断带。随着碰撞作用的持续,双层结构常常遭到构造破坏,深部的俯冲杂岩因此得以剥露至浅表。因此,文章的研究强调了陆壳俯冲和深俯冲物质的折返在造山带演化中的重要意义。   相似文献   

10.
刘晓春 《岩石学报》2009,25(8):1808-1818
东南极普里兹带是一条经受格林维尔期和泛非期高级构造热事件影响的多相变质带,其构造演化过程与罗迪尼亚和冈瓦纳超大陆的形成密切相关.新的岩石学和年代学资料表明,普里兹带中的格林维尔期高级变质作用是区域性的,并经历了>970Ma和930~900Ma两个演化阶段(期),变质条件达到相对高温高压的麻粒岩相.格林维尔期造山作用起始于活动大陆边缘或岛弧环境下的岩浆增生,最后发展到陆陆碰撞,从而使印度、东南极西陆块和非洲的卡拉哈里克拉通拼合在一起,构成了罗迪尼亚超大陆的重要组成部分之一.普里兹带中的泛非期高级变质作用并不象前人认为的那样只发生在中低压麻粒岩相条件下,而是达到高压麻粒岩相,并具有近等温减压的顺时针P-T演化轨迹.格林维尔期变质先驱的普遍存在说明泛非期碰撞造山事件主要叠加在印度-南极陆块东缘的基底杂岩之上,所以其主缝合线的位置应该在现今普里兹带的东南方向,并可能向南极内陆延伸到甘布尔采夫冰下山脉.对不同类型岩石的精细定年揭示,普里兹带中泛非期造山作用过程从570Ma一直持续到490Ma,这与东非造山带的晚期碰撞阶段大致相吻合.因此,冈瓦纳超大陆的最后拼合可能是通过西冈瓦纳、印度-南极陆块和澳大利亚-南极陆块等三个陆块的近于同期碰撞来完成的.  相似文献   

11.
The Vohibory Block of south‐western Madagascar is part of the East African Orogen, the formation of which is related to the assembly of the Gondwana supercontinent. It is dominated by metabasic rocks, which have chemical compositions similar to those of recent basalts from a mid‐ocean ridge, back‐arc setting and island‐arc setting. The age of formation of protolith basalts has been dated at 850–700 Ma by U–Pb SHRIMP analysis of magmatic cores in zircon, pointing to an origin related to the Neoproterozoic Mozambique Ocean. The metabasic rocks are interpreted as representing components of an island arc with an associated back‐arc basin. In the early stage of the Pan‐African orogeny, these rocks experienced high‐pressure amphibolite to granulite facies metamorphism (9–12 kbar, 750–880 °C), dated at 612 ± 5 Ma from metamorphic rims in zircon. The metamorphism was most likely related to accretion of the arc terrane to the margin of the Azania microcontinent (Proto‐Madagascar) and closure of the back‐arc basin. The main metamorphism is significantly older than high‐temperature metamorphism in other tectonic units of southern Madagascar, indicating a distinct tectono‐metamorphic history.  相似文献   

12.
The northeastern part of Madagascar is characterized by Archaean to early Proterozoic rocks composed principally of Archaean granite and greenstone/amphibolite as well as reworked migmatite with subordinate Proterozoic paragneisses. The southern part is mostly occupied by Proterozoic rocks, composed mostly of Meso to Neo-Proterozoic and less metamorphic metasediments (Itremo Group) in the northwest, para- and ortho-gneisses in most other areas, with minor granitic gneisses with some Archaean components in the southeast. The north-northwest trending Central Granite-Gneiss-Migmatite Belt (CGGMB) is situated at the western margin of the Archaean-early Proterozoic terrain. The CGGMB is composed of granite, gneiss and migmatite with distinct lithologies and structures. They are: i) many types of granites including alkaline to mildly alkaline granites, and calc-alkaline granites; ii) batholitic granites, migmatitic granites and granite dyke swarm, iii) eclogite, and iv) the Ankazobe-Antananarivo-Fianarantsoa Virgation.

The CGGMB was formed by the collision of the palaeo-Dharwar Craton to the east and the East African Orogen to the west at ca. 820-720 Ma and suffered indentation by a part of the western part of the East African Orogen at ca. 530 Ma that produced the Ankazobe-Antananarivo-Fianarantsoa Virgation at the centre of the CGGMB. Thus, the CGGMB is proposed to be the continuation of the eastern suture between the palaeo Dharwar Craton and the East African Orogen, and carries the main feature of the Pan-African collisional event in Madagascar.  相似文献   


13.
《Gondwana Research》2014,25(3-4):1051-1066
The Early Palaeozoic Ross–Delamerian orogenic belt is considered to have formed as an active margin facing the palaeo-Pacific Ocean with some island arc collisions, as in Tasmania (Australia) and Northern Victoria Land (Antarctica), followed by terminal deformation and cessation of active convergence. On the Cambrian eastern margin of Australia adjacent to the Delamerian Fold Belt, island arc and backarc basin crust was formed and is now preserved in the Lachlan Fold Belt and is consistent with a spatial link between the Delamerian and Lachlan orogens. The Delamerian–Lachlan connection is tested with new zircon data. Metamorphic zircons from a basic eclogite sample from the Franklin Metamorphic Complex in the Tyennan region of central Tasmania have rare earth element signatures showing that eclogite metamorphism occurred at ~ 510 Ma, consistent with island arc–passive margin collision during the Delamerian(− Tyennan) Orogeny. U–Pb ages of detrital zircons have been determined from two samples of Ordovician sandstones in the Lachlan Fold Belt at Melville Point (south coast of New South Wales) and the Howqua River (western Tabberabbera Zone of eastern Victoria). These rocks were chosen because they are the first major clastic influx at the base of the Ordovician ‘Bengal-fan’ scale turbidite pile. The samples show the same prominent peaks as previously found elsewhere (600–500 Ma Pacific-Gondwana and the 1300–1000 Ma Grenville–Gondwana signatures) reflecting supercontinent formation. We highlight the presence of ~ 500 Ma non-rounded, simple zircons indicating clastic input most likely from igneous rocks formed during the Delamerian and Ross Orogenies. We consider that the most probable source of the Ordovician turbidites was in East Antarctica adjacent to the Ross Orogen rather than reflecting long distance transport from the Transgondwanan Supermountain (i.e. East African Orogen). Together with other provenance indicators such as detrital mica ages, this is a confirmation of the Delamerian–Lachlan connection.  相似文献   

14.
东南极普里兹带高级变质作用演化   总被引:4,自引:0,他引:4  
东南极普里兹带是经历泛非期高级变质和强烈变形的造山带,其内发现有经历格林维尔期高级变质事件的残块。格林维尔期变质矿物组合局部见于姐妹岛和赖于尔群岛,其高峰变质条件达到>950℃和>0.95GPa。泛非期高级变质作用是区域性的,其高峰变质并不像前人想象的那样只发生在中低压麻粒岩相条件下,而是高达850~950℃和0.90~0.95GPa。这些岩石随后经历了近等温减压过程,在760~860℃和0.55~0.70GPa的条件下达到了重新平衡,并进一步减压或近等压冷却至450~750℃和0.30~0.50GPa。同造山的紫苏花岗岩在减压伸展阶段侵位于格罗夫山地区的变质杂岩中,而晚-后造山的A型花岗岩、伟晶岩和花岗岩脉则遍布于整个普里兹带,从而构成一个完整的造山演化序列。由此可见,现有研究资料支持普里兹带是一条冈瓦纳超大陆在泛非期拼合的碰撞造山带的认识。  相似文献   

15.
《International Geology Review》2012,54(16):2046-2064
ABSTRACT

The Jebel Ja’alan and Qalhat inliers of Oman represent the easternmost exposures in the Arabian peninsula of the Neoproterozoic basement associated with the East African Orogen (EAO) and the assembly of East and West Gondwana. These inliers expose tonalitic gneisses and metasediments intruded by granodiorites and granites of the Ja’alan batholith. Zircons from the gneisses yield U–Pb SIMS ages of ca. 900–880 Ma, which are interpreted as crystallization ages. These represent the oldest magmatic events associated with the closure of the Mozambique Ocean reported to date. Zircon of this age is also the dominant component in the metasediments. The Ja’alan batholith yields ages of ca. 840–825 Ma. Nd isotopes indicate that both the gneisses and the batholith range from juvenile to slightly more evolved, with εNd(t) of +6 to +1.5 interpreted to reflect variable contamination by older, evolved continental material; this is also indicated by >900 Ma detrital zircon from the metasediments. The Nd data also contrast with the uniformly juvenile signature of younger, ca. 840 Ma, rocks of the Marbat region of southern Oman that lie structurally to the west. The Ja’alan and Qalhat inliers thus document eastward increasing age and continental influence, consistent with the progressive development of arc rocks onto the western margin of East Gondwana, although the location and nature of the eastern continental block remain elusive.  相似文献   

16.
《Precambrian Research》2007,152(3-4):93-118
George V Land (Antarctica) includes the boundary between Late Archean–Paleoproterozoic metamorphic terrains of the East Antarctic craton and the intrusive and metasedimentary rocks of the Early Paleozoic Ross–Delamerian Orogen. This therefore represents a key region for understanding the tectono-metamorphic evolution of the East Antarctic Craton and the Ross Orogen and for defining their structural relationship in East Antarctica, with potential implications for Gondwana reconstructions. In the East Antarctic Craton the outcrops closest to the Ross orogenic belt form the Mertz Shear Zone, a prominent ductile shear zone up to 5 km wide. Its deformation fabric includes a series of progressive, overprinting shear structures developed under different metamorphic conditions: from an early medium-P granulite-facies metamorphism, through amphibolite-facies to late greenschist-facies conditions. 40Ar–39Ar laserprobe data on biotite in mylonitic rocks from the Mertz Shear Zone indicate that the minimum age for ductile deformation under greenschist-facies conditions is 1502 ± 9 Ma and reveal no evidence of reactivation processes linked to the Ross Orogeny. 40Ar–39Ar laserprobe data on amphibole, although plagued by excess argon, suggest the presence of a ∼1.7 Ga old phase of regional-scale retrogression under amphibolite-facies conditions. Results support the correlation between the East Antarctic Craton in the Mertz Glacier area and the Sleaford Complex of the Gawler Craton in southern Australia, and suggest that the Mertz Shear Zone may be considered a correlative of the Kalinjala Shear Zone. An erratic immature metasandstone collected east of Ninnis Glacier (∼180 km east of the Mertz Glacier) and petrographically similar to metasedimentary rocks enclosed as xenoliths in Cambro–Ordovician granites cropping out along the western side of Ninnis Glacier, yielded detrital white-mica 40Ar–39Ar ages from ∼530 to 640 Ma and a minimum age of 518 ± 5 Ma. This pattern compares remarkably well with those previously obtained for the Kanmantoo Group from the Adelaide Rift Complex of southern Australia, thereby suggesting that the segment of the Ross Orogen exposed east of the Mertz Glacier may represent a continuation of the eastern part of the Delamerian Orogen.  相似文献   

17.
Geological, geochronological and isotopic data are integrated in order to present a revised model for the Neoproterozoic evolution of Western Gondwana. Although the classical geodynamic scenario assumed for the period 800–700 Ma is related to Rodinia break-up and the consequent opening of major oceanic basins, a significantly different tectonic evolution can be inferred for most Western Gondwana cratons. These cratons occupied a marginal position in the southern hemisphere with respect to Rodinia and recorded subduction with back-arc extension, island arc development and limited formation of oceanic crust in internal oceans. This period was thus characterized by increased crustal growth in Western Gondwana, resulting from addition of juvenile continental crust along convergent margins. In contrast, crustal reworking and metacratonization were dominant during the subsequent assembly of Gondwana. The Río de la Plata, Congo-São Francisco, West African and Amazonian cratons collided at ca. 630–600 Ma along the West Gondwana Orogen. These events overlap in time with the onset of the opening of the Iapetus Ocean at ca. 610–600 Ma, which gave rise to the separation of Baltica, Laurentia and Amazonia and resulted from the final Rodinia break-up. The East African/Antarctic Orogen recorded the subsequent amalgamation of Western and Eastern Gondwana after ca. 580 Ma, contemporaneously with the beginning of subduction in the Terra Australis Orogen along the southern Gondwana margin. However, the Kalahari Craton was lately incorporated during the Late Ediacaran–Early Cambrian. The proposed Gondwana evolution rules out the existence of Pannotia, as the final Gondwana amalgamation postdates latest connections between Laurentia and Amazonia. Additionally, a combination of introversion and extroversion is proposed for the assembly of Gondwana. The contemporaneous record of final Rodinia break-up and Gondwana assembly has major implications for the supercontinent cycle, as supercontinent amalgamation and break-up do not necessarily represent alternating episodic processes but overlap in time.  相似文献   

18.
Granulites are developed in various tectonic settings and during different geological periods, and have been used for continental correlation within supercontinent models. In this context the Balaram-Kui-Surpagla-Kengora granulites of the South Delhi Terrane of the Aravalli Mobile Belt of northwestern India are significant. The granulites occur as shear zone bounded lensoidal bodies within low-grade rocks of the South Delhi Terrane and comprise pelitic and calcareous granulites, a gabbro-norite-basic granulite suite and multiple phases of granites of the Ambaji suite. The granulites have undergone three major phases of folding and shearing. The F1 and F2 folds are coaxial along NE-SW axis, and F3 folds are developed across the former along NW-SE axis. Thus, various types of interference patterns are produced. The granulite facies metamorphism is marked by a spinel–cordierite–garnet–sillimanite–quartz assemblage with melt phase and is synkinematic to the F1 phase of folding. The peak thermobarometric condition is set at ≥850 °C and 5.5–6.8 kb. The granulites have been exhumed through thrusting along multiple ductile shear zones during syn- to post-F2 folding. Late-stage shearing has produced cataclasites and pseudotachylites. Sensitive High Resolution Ion MicroProbe (SHRIMP) U–Pb dating of zircon from pelitic granulites and synkinematically emplaced granites indicate that: (1) the sedimentary succession of the South Delhi Terrane was deposited between 1240 and 860 Ma with detritus derived from magmatic sources with ages between 1620 and 1240 Ma; (2) folding and granulite metamorphism have taken place between ca. 860 and 800 Ma, and exhumation at around ca. 800–760 Ma; and (3) the last phase of granitic activity occurred at ca. 759 Ma. This shows, for the first time, that the granulites of the South Delhi Terrane are much younger than those of the Sandmata Granulite Complex of the northern part of the Aravalli Mobile Belt, the Saussar granulites of the Central India Mobile Belt and the Eastern Ghats Mobile Belt. Instead, they show similarities to the Neoproterozoic granulites of the Circum Indian Orogens that include the East African Orogen (East Africa and Madagascar), the Southern Granulite Terrane of India and much of Sri Lanka. We suggest that the South Delhi Basin probably marks a trace of the proto-Mozambique Ocean in NW India within Gondwana, that closed when the Marwar Craton, arc fragments (Bemarivo Belt in Madagascar and the Seychelles) and components of the Arabian-Nubian Shield collided with the Aravalli-Bundelkhand Protocontinent at ca. 850–750 Ma.  相似文献   

19.
The Fosdick Mountains migmatite–granite complex in West Antarctica records episodes of crustal melting and plutonism in Devonian–Carboniferous time that acted to transform transitional crust, dominated by immature oceanic turbidites of the accretionary margin of East Gondwana, into stable continental crust. West Antarctica, New Zealand and Australia originated as contiguous parts of this margin, according to plate reconstructions, however, detailed correlations are uncertain due to a lack of isotopic and geochronological data. Our study of the mid-crustal exposures of the Fosdick range uses U–Pb SHRIMP zircon geochronology to examine the tectonic environment and timing for Paleozoic magmatism in West Antarctica, and to assess a correlation with the better known Lachlan Orogen of eastern Australia and Western Province of New Zealand.NNE–SSW to NE–SW contraction occurred in West Antarctica in early Paleozoic time, and is expressed by km-scale folds developed both in lower crustal metasedimentary migmatite gneisses of the Fosdick Mountains and in low greenschist-grade turbidite successions of the upper crust, present in neighboring ranges. The metasedimentary rocks and structures were intruded by calc-alkaline, I-type plutons attributed to arc magmatism along the convergent East Gondwana margin. Within the Fosdick Mountains, the intrusions form a layered plutonic complex at lower structural levels and discrete plutons at upper levels. Dilational structures that host anatectic granite overprint plutonic layering and migmatitic foliation. They exhibit systematic geometries indicative of NNE–SSW stretching, parallel to a first-generation mineral lineation. New U–Pb SHRIMP zircon ages for granodiorite and porphyritic monzogranite plutons, and for leucogranites that occupy shear bands and other mesoscopic-scale structural sites, define an interval of 370 to 355 Ma for plutonism and migmatization.Paleozoic plutonism in West Antarctica postdates magmatism in the western Lachlan Orogen of Australia, but it coincides with that in the central part of the Lachlan Orogen and with the rapid main phase of emplacement of the Karamea Batholith of the Western Province, New Zealand. Emplaced within a 15 to 20 million year interval, the Paleozoic granitoids of the Fosdick Mountains are a product of subduction-related plutonism associated with high temperature metamorphism and crustal melting. The presence of anatectic granites within extensional structures is a possible indication of alternating strain states (‘tectonic switching’) in a supra-subduction zone setting characterized by thin crust and high heat flow along the Devonian–Carboniferous accretionary margin of East Gondwana.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号