首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 619 毫秒
1.
Knudsen 《Journal of Geodesy》1987,61(2):145-160
The estimation of a local empirical covariance function from a set of observations was done in the Faeroe Islands region. Gravity and adjusted Seasat altimeter data relative to theGPM2 spherical harmonic approximation were selected holding one value in celles of1/8°×1/4° covering the area. In order to center the observations they were transformed into a locally best fitting reference system having a semimajor axis1.8 m smaller than the one ofGRS80. The variance of the data then was273 mgal 2 and0.12 m 2 respectively. In the calculations both the space domain method and the frequency domain method were used. Using the space domain method the auto-covariances for gravity anomalies and geoid heights and the cross-covariances between the quantities were estimated. Furthermore an empirical error estimate was derived. Using the frequency domain method the auto-covariances of gridded gravity anomalies was estimated. The gridding procedure was found to have a considerable smoothing effect, but a deconvolution made the results of the two methods to agree. The local covariance function model was represented by a Tscherning/Rapp degree-variance model,A/((i−1)(i−2)(i+24))(R B /R E )2i+2, and the error degree-variances related to the potential coefficient setGPM2. This covariance function was adjusted to fit the empirical values using an iterative least squares inversion procedure adjusting the factor A, the depth to the Bjerhammar sphere(R E R B ), and a scale factor associated with the error degree-variances. Three different combinations of the empirical covariance values were used. The scale factor was not well determined from the gravity anomaly covariance values, and the depth to the Bjerhammar sphere was not well determined from geoid height covariance values only. A combination of the two types of auto-covariance values resulted in a well determined model.  相似文献   

2.
 The Somigliana–Pizzetti gravity field (the International gravity formula), namely the gravity field of the level ellipsoid (the International Reference Ellipsoid), is derived to the sub-nanoGal accuracy level in order to fulfil the demands of modern gravimetry (absolute gravimeters, super conducting gravimeters, atomic gravimeters). Equations (53), (54) and (59) summarise Somigliana–Pizzetti gravity Γ(φ,u) as a function of Jacobi spheroidal latitude φ and height u to the order ?(10−10 Gal), and Γ(B,H) as a function of Gauss (surface normal) ellipsoidal latitude B and height H to the order ?(10−10 Gal) as determined by GPS (`global problem solver'). Within the test area of the state of Baden-Württemberg, Somigliana–Pizzetti gravity disturbances of an average of 25.452 mGal were produced. Computer programs for an operational application of the new international gravity formula with (L,B,H) or (λ,φ,u) coordinate inputs to a sub-nanoGal level of accuracy are available on the Internet. Received: 23 June 2000 / Accepted: 2 January 2001  相似文献   

3.
The Bayesian estimates b of the standard deviation σ in a linear model—as needed for the evaluation of reliability—is well known to be proportional to the square root of the Bayesian estimate (s 2) b of the variance component σ2 by a proportionality factor involving the ratio of Gamma functions. However, in analogy to the case of the respective unbiased estimates, the troublesome exact computation ofa b may be avoided by a simple approximation which turns out to be good enough for most applications even if the degree of freedom ν is rather small. Paper presented to the Int. Conf. on “Practical Bayesian Statistics”, Cambridge (U.K.), 8.–11. July 1986.  相似文献   

4.
Construction of anisotropic covariance functions using Riesz-representers   总被引:1,自引:1,他引:0  
A reproducing-kernel Hilbert space (RKHS) of functions harmonic in the set outside a sphere with radius R 0, having a reproducing kernel K 0(P,Q) is considered (P, Q, and later P n being points in the set of harmonicity). The degree variances of this kernel will be denoted σ0 n . The set of Riesz representers associated with the evaluation functionals (or gravity functionals) related to distinct points P n ,n = 1,…,N, on a two-dimensional surface surrounding the bounding sphere, will be linearly independent. These functions are used to define a new N-dimensional RKHS with kernel (a n >0)
If the points all are located on a concentric sphere with radius R 1>R 0, and form an ε-net covering the sphere, and a n are suitable area elements (depending on N), then this kernel will converge towards an isotropic kernel with degree variances
Consequently, if K N (P,Q) is required to represent an isotropic covariance function of the Earth's gravity potential, COV(P,Q), σ0 n can be selected so that σ n becomes equal to the empirical degree variances. If the points are chosen at varying radial distances R n >R 0, then an anisotropic kernel, or equivalent covariance function representation, can be constructed. If the points are located in a bounded region, the kernel may be used to modify the original kernel
Values of anisotropic covariance functions constructed based on these ideas are calculated, and some initial ideas are presented on how to select the points P n . Received: 24 September 1998 / Accepted: 10 March 1999  相似文献   

5.
The boundary value problem of physical geodesy has been solved with the use of a harmonic reduction down to an internal sphere using a discrete procedure. (For gravity cf. Bjerhammar 1964 and for the potential cf. Bjerhammar 1968). This was a finite-dimensional approach mostly with one-to-one correspondence between observations and unknowns on the sphere. Earlier studies were made with the use of surface elements (on the sphere) with constantgravity. Integration over the surface elements was replaced by a discrete approach with the use of the distance to a point in the centre of the surface element. See Bjerhammar (1968) and (1969). This approach was later presented as a “reflexive prediction” technique for a weakly stationary stochastic process. Bjerhammar (1974, 1976). Krarup (1969) minimized the L2-norm of the potential on the internal sphere. It will here be proved that the two solutions are identical for a proper choice of the radii of the internal spheres. The proof is given for a spherical earth with selected choice of “carrier points”. The convergence problem is discussed. The L2-norm solution is found convergent for the fully harmonic case. Uniform convergence is obtained in the non-harmonic case with the use of the original procedure applied in accordance with the theorems of Keldych-Lavrentieff and Yamabe.  相似文献   

6.
The TOPEX/Poseidon (T/P) satellite alti- meter mission marked a new era in determining the geopotential constant W 0. On the basis of T/P data during 1993–2003 (cycles 11–414), long-term variations in W 0 have been investigated. The rounded value W 0 = 62636856.0 ± 0.5) m 2 s −2 has already been adopted by the International Astronomical Union for the definition of the constant L G = W 0/c 2 = 6.969290134 × 10−10 (where c is the speed of light), which is required for the realization of the relativistic atomic time scale. The constant L G , based on the above value of W 0, is also included in the 2003 International Earth Rotation and Reference Frames Service conventions. It has also been suggested that W 0 is used to specify a global vertical reference system (GVRS). W 0 ensures the consistency with the International Terrestrial Reference System, i.e. after adopting W 0, along with the geocentric gravitational constant (GM), the Earth’s rotational velocity (ω) and the second zonal geopotential coefficient (J 2) as primary constants (parameters), then the ellipsoidal parameters (a,α) can be computed and adopted as derived parameters. The scale of the International Terrestrial Reference Frame 2000 (ITRF2000) has also been specified with the use of W 0 to be consistent with the geocentric coordinate time. As an example of using W 0 for a GVRS realization, the geopotential difference between the adopted W 0 and the geopotential at the Rimouski tide-gauge point, specifying the North American Vertical Datum 1988 (NAVD88), has been estimated.  相似文献   

7.
The problem of the convergence of the collocation solution to the true gravity field was defined long ago (Tscherning in Boll Geod Sci Affini 39:221–252, 1978) and some results were derived, in particular by Krarup (Boll Geod Sci Affini 40:225–240, 1981). The problem is taken up again in the context of the stochastic interpretation of collocation theory and some new results are derived, showing that, when the potential T can be really continued down to a Bjerhammar sphere, we have a quite general convergence property in the noiseless case. When noise is present in data, still reasonable convergence results hold true.
“Democrito che ’l mondo a caso pone” “Democritus who made the world stochastic” Dante Alighieri, La Divina Commedia, Inferno, IV – 136  相似文献   

8.
 Ten days of GPS data from 1998 were processed to determine how the accuracy of a derived three-dimensional relative position vector between GPS antennas depends on the chord distance (denoted L) between these antennas and on the duration of the GPS observing session (denoted T). It was found that the dependence of accuracy on L is negligibly small when (a) using the `final' GPS satellite orbits disseminated by the International GPS Service, (b) fixing integer ambiguities, (c) estimating appropriate neutral-atmosphere-delay parameters, (d) 26 km ≤ L ≤ 300 km, and (e) 4 h ≤T ≤ 24 h. Under these same conditions, the standard error for the relative position in the north–south dimension (denoted S n and expressed in mm) is adequately approximated by the equation S n =k n /T  0.5 with k n =9.5 ± 2.1 mm · h0.5 and T expressed in hours. Similarly, the standard errors for the relative position in the east–west and in the up-down dimensions are adequately approximated by the equations S e =k e /T  0.5 and S u =k u /T  0.5, respectively, with k e =9.9 ± 3.1 mm · h0.5 and k u =36.5 ± 9.1 mm · h0.5. Received: 5 February 2001 / Accepted: 14 May 2001  相似文献   

9.
Given the second radial derivative Vrr(P) |δs of the Earth's gravitational potential V(P) on the surface δS corresponding to the satellite altitude, by using the fictitious compress recovery method, a fictitious regular harmonic field rrVrr(P)^* and a fictitious second radial gradient field V:(P) in the domain outside an inner sphere Ki can be determined, which coincides with the real field V(P) in the domain outside the Earth. Vrr^*(P)could be further expressed as a uniformly convergent expansion series in the domain outside the inner sphere, because rrV(P)^* could be expressed as a uniformly convergent spherical harmonic expansion series due to its regularity and harmony in that domain. In another aspect, the fictitious field V^*(P) defined in the domain outside the inner sphere, which coincides with the real field V(P) in the domain outside the Earth, could be also expressed as a spherical harmonic expansion series. Then, the harmonic coefficients contained in the series expressing V^*(P) can be determined, and consequently the real field V(P) is recovered. Preliminary simulation calculations show that the second radial gradient field Vrr(P) could be recovered based only on the second radial derivative V(P)|δs given on the satellite boundary. Concerning the final recovery of the potential field V(P) based only on the boundary value Vrr (P)|δs, the simulation tests are still in process.  相似文献   

10.
Summary The probability to find an error vector in multiples of the Helmert-Maxwell-Boltzmann point error σ2 δijij Kronecker symbol) is calculated. It is found that the probability is for σ39%, for2 σ86% and for3 σ99% in two dimensions, for σ20%, for2 σ74% and for3 σ97% in three dimensions. The fundamental Maxwell-Boltzmann-distribution is tabulated0,02 (0,02) 4,50.   相似文献   

11.
GLONASS time is the reference for all time scales aboard GLONASS satellites. It is derived from the Central Synchronizer (CS), which consists of an ensemble of hydrogen clocks (HC) having a instability of (1...3) × 10−14 (averaging interval 24 hours). The CS time is compared to UTC(SU) in a differential mode using a TV channel of the Technical TV Center. Presently the error of GLONASS time is within 20...150 ns; however, there is a potential to decrease this value to 15 to 50 ns (3σ). The paper discusses the possible benefits of mutual phase comparisons between the HCs to determine the grouped frequency standard. These comparisons are averaged daily. The approach yields an accuracy of better than 10 ns (3σ) for CS, bringing the expected GLONASS time accuracy to the level of 15 to 50 ns (3σ). ? 2001 John Wiley & Sons, Inc.  相似文献   

12.
An intrresting variation on the familiar method of determining the earth's equatorial radius ae, from a knowledge of the earth's equatorial gravity is suggested. The value of equatorial radius thus found is 6378,142±5 meters. The associated parameters are GM=3.986005±.000004 × 1020 cm3 sec-−2 which excludes the relative mass of atmosphere ≅10−6 ξ GM, the equatorial gravity γe 978,030.9 milligals (constrained in this solution by the Potsdam Correction of 13.67 milligals as the Potsdam Correction is more directly, orless indirectly, measurable than the equatorial gravity) and an ellipsoidal flattening of f=1/298.255.  相似文献   

13.
Array algebra forms the general base of fast transforms and multilinear algebra making rigorous solutions of a large number (millions) of parameters computationally feasible. Loop inverses are operators solving the problem of general matrix inverses. Their derivation starts from the inconsistent linear equations by a parameter exchangeXL 0, where X is a set of unknown observables,A 0 forming a basis of the so called “problem space”. The resulting full rank design matrix of parameters L0 and its ℓ-inverse reveal properties speeding the computational least squares solution expressed in observed values . The loop inverses are found by the back substitution expressing ∧X in terms ofL through . Ifp=rank (A) ≤n, this chain operator creates the pseudoinverseA +. The idea of loop inverses and array algebra started in the late60's from the further specialized case,p=n=rank (A), where the loop inverse A 0 −1 (AA 0 −1 ) reduces into the ℓ-inverse A=(ATA)−1AT. The physical interpretation of the design matrixA A 0 −1 as an interpolator, associated with the parametersL 0, and the consideration of its multidimensional version has resulted in extended rules of matrix and tensor calculus and mathematical statistics called array algebra.  相似文献   

14.
Given a continuous boundary value on the boundary of a "simply closed surface"S that encloses the whole Earth, a regular harmonic fictitious field V*(P) in the domain outside an inner sphere K i that lies inside the Earth could be determined, and it is proved that V*(P) coincides with the Earth’s real field V(P) in the whole domain outside the Earth. Since in the domain outside the inner sphere Ki and the fictitious regular harmonic function V*(P) could be expressed as a uniformly convergent spherical harm...  相似文献   

15.
Summary Let S be the (regular) boundary-surface of an exterior regionE e in Euclidean space ℜ3 (for instance: sphere, ellipsoid, geoid, earth's surface). Denote by {φn} a countable, linearly independent system of trial functions (e.g., solid spherical harmonics or certain singularity functions) which are harmonic in some domain containingE e ∪ S. It is the purpose of this paper to show that the restrictions {ϕn} of the functions {φn} onS form a closed system in the spaceC (S), i.e. any functionf, defined and continuous onS, can be approximated uniformly by a linear combination of the functions ϕn. Consequences of this result are versions of Runge and Keldysh-Lavrentiev theorems adapted to the chosen system {φn} and the mathematical justification of the use of trial functions in numerical (especially: collocational) procedures.  相似文献   

16.
Based on the gravity field models EGM96 and EIGEN-GL04C, the Earth's time-dependent principal moments of inertia A, B, C are obtained, and the variable rotation of the Earth is determined. Numerical results show that A, B, and C have increasing tendencies; the tilt of the rotation axis increases 2.1×10^ 8 mas/yr; the third component of the rotational angular velocity, ω3 , has a decrease of 1.0×10^ 22 rad/s^2, which is around 23% of the present observed value. Studies show in detail that both 0 and ω3 experience complex fluctuations at various time scales due to the variations of A, B and C.  相似文献   

17.
Crop yield estimation has an important role on economy development and its accuracy and speed influence yield price and helps in deciding the excess or deficit production conditions. The water productivity evaluates the irrigation command through water use efficiency (WUE). Remote sensing (RS) and geographical information system (GIS) techniques were used for crop yield and water productivity estimation of wheat crop (Triticum aestivum) grown in Tarafeni South Main Canal (TSMC) irrigation command of West Bengal State in India. One IRS P6 image and four wide field sensor (WiFS) images for different months of winter season were used to determine the Normalized Difference Vegetation Index (NDVI) and Soil Adjusted Vegetation Index (SAVI) for area under wheat crop. The temporally and spatially distributed spectral growth profile and AREASUM of NDVI (ANDVI) and SAVI (ASAVI) with time after sowing of wheat crop were developed and correlated with actual crop yield of wheat (Yact). The developed relationships between ASAVI and Yact resulted high correlation in comparison to that of ANDVI. Using the developed model the RS based wheat yield (YRS) predicted from ASAVI varied on entire TSMC irrigation command from 22.67 to 33.13 q ha−1 respectively, which gave an average yield of 26.50 q ha−1. The RS generated yield based water use efficiency (WUEYRS) for water supplied from canal of TSMC irrigation command was found to be 6.69 kg ha−1 mm−1.  相似文献   

18.
Modern models of the Earth's gravity field are developed in the IERS (International Earth Rotation Service) terrestrial reference frame. In this frame the mean values for gravity coefficients of the second degree and first order, C 21(IERS) and S 21(IERS), by the current IERS Conventions are recommended to be calculated by using the observed polar motion parameters. Here, it is proved that the formulae presently employed by the IERS Conventions to obtain these coefficients are insufficient to ensure their values as given by the same source. The relevant error of the normalized mean values for C 21(IERS) and S 21(IERS) is 3×10−12, far above the adopted cutoff (10−13) for variations of these coefficients. Such an error in C 21 and S 21 can produce non-modeled perturbations in motion prediction of certain artificial Earth satellites of a magnitude comparable to the accuracy of current tracking measurements. Received: 14 September 1998 / Accepted: 20 May 1999  相似文献   

19.
The present study investigates the characteristics of CO2 exchange (photosynthesis and respiration) over agricultural site dominated by wheat crop and their relationship with ecosystem parameters derived from MODIS. Eddy covariance measurement of CO2 and H2O exchanges was carried out at 10 Hz interval and fluxes of CO2 were computed at half-hourly time steps. The net ecosystem exchange (NEE) was partitioned into gross primary productivity (GPP) and ecosystem respiration (R e) by taking difference between day-time NEE and respiration. Time-series of daily reflectance and surface temperature products at varying resolution (250–1000 m) were used to derive ecosystem variables (EVI, NDVI, LST). Diurnal pattern in Net ecosystem exchange reveals negative NEE during day-time representing CO2 uptake and positive during night as release of CO2. The amplitude of the diurnal variation in NEE increased as LAI crop growth advances and reached its peak around the anthesis stage. The mid-day uptake during this stage was around 1.15 mg CO2 m−2 s−1 and night-time release was around 0.15 mg CO2 m−2 s−1. Linear and non-linear least square regression procedures were employed to develop phenomenological models and empirical fits between flux tower based GPP and NEE with satellite derived variables and environmental parameters. Enhanced vegetation index was found significantly related to both GPP and NEE. However, NDVI showed little less significant relationship with both GPP and NEE. Furthemore, temperature-greenness (TG) model combining scaled EVI and LST was parameterized to estimate daily GPP over dominantly wheat crop site. (R 2 = 0.77). Multi-variate analysis shows that inclusion of LST or air temperature with EVI marginally improves variance explained in daily NEE and GPP.  相似文献   

20.
As a conformal mapping of the sphere S 2 R or of the ellipsoid of revolution E 2 A , B the Mercator projection maps the equator equidistantly while the transverse Mercator projection maps the transverse metaequator, the meridian of reference, with equidistance. Accordingly, the Mercator projection is very well suited to geographic regions which extend east-west along the equator; in contrast, the transverse Mercator projection is appropriate for those regions which have a south-north extension. Like the optimal transverse Mercator projection known as the Universal Transverse Mercator Projection (UTM), which maps the meridian of reference Λ0 with an optimal dilatation factor &ρcirc;=0.999 578 with respect to the World Geodetic Reference System WGS 84 and a strip [Λ0−Λ W 0 + Λ E ]×[Φ S N ]= [−3.5,+3.5]×[−80,+84], we construct an optimal dilatation factor ρ for the optimal Mercator projection, summarized as the Universal Mercator Projection (UM), and an optimal dilatation factor ρ0 for the optimal polycylindric projection for various strip widths which maps parallel circles Φ0 equidistantly except for a dilatation factor ρ0, summarized as the Universal Polycylindric Projection (UPC). It turns out that the optimal dilatation factors are independent of the longitudinal extension of the strip and depend only on the latitude Φ0 of the parallel circle of reference and the southern and northern extension, namely the latitudes Φ S and Φ N , of the strip. For instance, for a strip [Φ S N ]= [−1.5,+1.5] along the equator Φ0=0, the optimal Mercator projection with respect to WGS 84 is characterized by an optimal dilatation factor &ρcirc;=0.999 887 (strip width 3). For other strip widths and different choices of the parallel circle of reference Φ0, precise optimal dilatation factors are given. Finally the UPC for the geographic region of Indonesia is presented as an example. Received: 17 December 1997 / Accepted: 15 August 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号